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ABSTRACT 
Data volumes in the geosciences have been increasing 
substantially over the past decade. This data naturally includes 
both spatial and chronological information. Fast access to specific 
portions of large collections of such datasets is a precursor to 
efficiently visualizing them. Here, we provide an overview of how 
a geospatial storage system, GALILEO, provides storage of such 
timeseries data while providing access to specific portions of the 
dataset.  
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1 INTRODUCTION 
In the geosciences there is often a need to visualize portions of 

the data that represent measurements from data sources such as 
sensors, radars, satellites, and networked instruments. The earliest 
records in the geosciences relate to thermometer and barometer 
measurements that were made in the mid-to-late 1600s. The 
volume of data generated in the geosciences has increased 
dramatically over the past decade. Estimates [1] for the 
cumulative size of the global climate data from climate models, 
remotely sensed data, and in situ measurement data is expected to 
cross 300 petabytes. This represents a 30-fold increase in the 
estimated data volume for the year 2011. 

 
Such rapid growth in data volumes poses challenges to 

scientists in both the geosciences and computer science. Data 
intensive computing [2] is an example of a new research paradigm 
to cope with such data volumes. Besides developing domain-
specific algorithms, other critical requirements in such settings 
include efficient access, querying, sharing, and processing of large 
datasets. Besides being inherently geospatial, such data also has a 
time component: often, the same feature such as humidity, 
pressure, etc. will have observational measurements being 
reported for different times for the same geographic location.  

 
We have developed a distributed scalable storage system, 

GALILEO, specifically for storing and querying large geospatial 
time-series datasets. GALILEO provides efficient access to specific 
portions of large datasets, and an ability to sift and process such 
observational data in real-time prior to storage via the Granules  
runtime [3]. There have been several approaches to provide a 
storage service to applications using geospatial datasets. 
Geographic Information Systems (GIS) provide advanced search 
and information overlay features [4, 5] for such data. GIS-based 
approaches are very useful for systems such as map-based 
information retrieval services, however, time-series datasets 

especially data streams that represent realtime measurements have 
not been their focus. GALILEO supports high-resolution time series 
datasets that are published as streams. Domain specific software 
and services for storing and sharing geospatial datasets are 
available [6],[7]. These systems incorporate support for 
distributing datasets within a specific community while 
incorporating support for advanced data access functionalities 
such as data subsetting or augmentation. However most of the 
data processing such as filtering must be performed on the client’s 
computing resources. Data stored in GALILEO is co-located with 
the Granules distributed stream processing system. Granules 
allows computations to be developed in C, C++, Java, R, and 
Python. Granules manages the lifecycle of these computations, 
and it activates computations that have data available on their 
input data streams and keeps them dormant otherwise. The 
processing logic within these computations can be arbitrary and is 
not restricted to say, query evaluation. By interleaving multiple 
computations on the same machine, Granules maximizes resource 
utilizations. The execution of data processing in GALILEO may 
also be orchestrated using MapReduce. In the database 
community, there have been active investigations for managing 
geospatial datasets [8] and N-dimensional scientific array data [9] 
[10] however issues related to the size of these datasets and the 
size of database tables persist. Popular geoscience data formats 
include netCDF [11] and HDF [12].  
 

2 MOTIVATIONS AND DESIGN ISSUES IN GALILEO 
Periodically published time-series observational data is 

generally made available as a package, with care taken to encode 
the metadata and data such that it results in a compact 
representation with the smallest possible array of bytes. Often the 
metadata is minimally encoded in the name of the file that has 
been made available. (e.g. Data from the NESDIS Satellite 
between 2011-07-09 to 2011-07-16 would be encoded as 
/fileServer/satellite/3.9/WEST-CONUS_4km/20110716/WEST-
CONUS_4km_3.9_20110716_0300.gini). However, this style of 
organizing the data for packaging and distribution can limit the 
amount of processing that can be done: for example, querying a 
collection of datasets for specific attributes that span multiple 
datasets is often a challenge in such encoding schemes.  

 
Data accesses are closely related to the application and the 

algorithms that underpin the processing that will be performed. 
Data visualization represents an example of a unique data access 
style. For geospatial data visualization, there are several 
distinctive characteristics in terms of the data access: 
• Data access is often closely associated with geospatial 

attributes. 



• Time series data, for a specific set of features, associated 
with a specified area is often accessed. 

• Interactive access to the selected parameters (e.g. 
humidity, temperature) is required. 

• On-demand data processing is needed. For e.g. creating of 
an image, simple statistics such as computing the mean 
and standard deviation. 

Static file based data storage systems cannot support 
visualization tools for near real time datasets.  

 
In GALILEO, datasets are delivered in near real-time and stored 

in a cluster of commodity machines. Since many geoscientific 
computations are tightly related to the geospatial attributes, we 
stage datasets based on its geospatial information to maximize the 
data locality; this ensures that observations from locations that are 
close to each other are most likely on the same machine. 
Similarly, temporal information and features (e.g. wind speed, 
humidity) are major components that determine how and where 
we stage the dataset. Finally the data, especially for large datasets, 
is extremely hard to recover when there are data corruptions and 
node failures. In GALILEO we rely on replications and automated 
discovery of nodes holding replicas of data blocks to cope with 
such failures and faults.  

 
Queries in GALILEO can specify geographical ranges, temporal 

ranges, and specific features. Each query is evaluated concurrently 
on the nodes that comprise the distributed storage and the results 
of these queries are streamed back to the requestor. The responses 
generated by the individual nodes (each of which is responsible 
for storing a portion of the data collection) to such queries are 
then used to construct a virtual dataset.  

 
This virtual dataset is constructed on the fly, organized in 

memory using a tree-based data structure, and evolves as data 
blocks are found (and added to the virtual dataset) to satisfy the 
query. The graph can be traversed and the block metadata queried 
for relevant information. Should the need arise, blocks can 
retrieved from the nodes that host them since this information is 
encoded in the block metadata. The virtual dataset allows creation 
of multiple views so that only those elements that need to be 
visualized would be retrieved. These data blocks can be retrieved 
in the presence of failures. 
 

3 PRELIMINARY PERFORMANCE EVALUATION 
We have performed some preliminary experiments with 

GALILEO. These experiments were performed on a cluster of 48 
quad-core Xeon-based servers with a gigabit interconnect.  Each 
machine is equipped with 12GB of RAM and a 300GB, 15,000 
RPM hard disk.  The experiments ran on version 1.6.0_20 of the 
OpenJDK Runtime Environment. 

 
To create a test scenario, 100 million data blocks were 

generated randomly and streamed into the system from four 
different sources. Each block contained 1000 simulated sensor 
readings. Along with the data itself, metadata was also generated 
randomly. Blocks were assigned temporal ranges within the years 
2002-2011 and were evenly dispersed across the continental 
United States’ spatial range. Each block represented one of three 
features: pressure, humidity, and temperature readings.  

 
Next, we executed queries to retrieve parts of the randomly 

generated collection of measurements representing a data 

collection of 100 million blocks each of size 4 KB. We queried 
for blocks that contained pressure readings for the month of July 
in 2011 within a geospatial range that roughly bounded the state 
of Colorado and parts of Utah and Wyoming. This query was 
evaluated concurrently on all the nodes that comprised the storage 
network. This query returned 105,556 data blocks, with the first 
result payload being received in 542.96ms and the final result 
being received in 5769.21ms. The results that were streamed back 
in this experiment included the data blocks themselves. We also 
have the ability to stream back only the block metadata that 
summarizes the observations and the locations of the storage 
nodes that held the corresponding block rather than the individual 
blocks; in such a setting, a client can interactively choose specific 
blocks that it would like to retrieve and visualize. Such selective 
retrievals underpin on-demand visualizations. 
 

4 CONCLUSIONS 
Large datasets that arrive in near realtime have been a challenge 

in the geosciences. This is especially true for an application that 
requires high accuracy and efficient access to portions of large 
data volumes. GALILEO supports efficient distribution of data over 
a collection of nodes in a decentralized fashion. The system 
allows access to specific portions of the dataset with the results 
generated in response to a queries being streamed back to the 
requestor. Streaming allows visualization to make progress as data 
continues to become available, instead of awaiting the completion 
of data transfers; such interleaving of transfers and visualization 
result in faster visualizations. 
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