
Enabling Access to Timeseries, Geospatial Data

for On-demand Visualization

Sangmi Lee Pallickara, Matthew Malensek, and Shrideep Pallickara

(sangmi, malensek, shrideep)@cs.colostate.edu

Department of Computer Science
Colorado State University

ABSTRACT
Data volumes in the geosciences have been increasing
substantially over the past decade. This data naturally includes
both spatial and chronological information. Fast access to specific
portions of large collections of such datasets is a precursor to
efficiently visualizing them. Here, we provide an overview of how
a geospatial storage system, GALILEO, provides storage of such
timeseries data while providing access to specific portions of the
dataset.

KEYWORDS:

Geoscience, time-series data, distributed geospatial storage.

1 INTRODUCTION
In the geosciences there is often a need to visualize portions of

the data that represent measurements from data sources such as
sensors, radars, satellites, and networked instruments. The earliest
records in the geosciences relate to thermometer and barometer
measurements that were made in the mid-to-late 1600s. The
volume of data generated in the geosciences has increased
dramatically over the past decade. Estimates [1] for the
cumulative size of the global climate data from climate models,
remotely sensed data, and in situ measurement data is expected to
cross 300 petabytes. This represents a 30-fold increase in the
estimated data volume for the year 2011.

Such rapid growth in data volumes poses challenges to

scientists in both the geosciences and computer science. Data
intensive computing [2] is an example of a new research paradigm
to cope with such data volumes. Besides developing domain-
specific algorithms, other critical requirements in such settings
include efficient access, querying, sharing, and processing of large
datasets. Besides being inherently geospatial, such data also has a
time component: often, the same feature such as humidity,
pressure, etc. will have observational measurements being
reported for different times for the same geographic location.

We have developed a distributed scalable storage system,

GALILEO, specifically for storing and querying large geospatial
time-series datasets. GALILEO provides efficient access to specific
portions of large datasets, and an ability to sift and process such
observational data in real-time prior to storage via the Granules
runtime [3]. There have been several approaches to provide a
storage service to applications using geospatial datasets.
Geographic Information Systems (GIS) provide advanced search
and information overlay features [4, 5] for such data. GIS-based
approaches are very useful for systems such as map-based
information retrieval services, however, time-series datasets

especially data streams that represent realtime measurements have
not been their focus. GALILEO supports high-resolution time series
datasets that are published as streams. Domain specific software
and services for storing and sharing geospatial datasets are
available [6],[7]. These systems incorporate support for
distributing datasets within a specific community while
incorporating support for advanced data access functionalities
such as data subsetting or augmentation. However most of the
data processing such as filtering must be performed on the client’s
computing resources. Data stored in GALILEO is co-located with
the Granules distributed stream processing system. Granules
allows computations to be developed in C, C++, Java, R, and
Python. Granules manages the lifecycle of these computations,
and it activates computations that have data available on their
input data streams and keeps them dormant otherwise. The
processing logic within these computations can be arbitrary and is
not restricted to say, query evaluation. By interleaving multiple
computations on the same machine, Granules maximizes resource
utilizations. The execution of data processing in GALILEO may
also be orchestrated using MapReduce. In the database
community, there have been active investigations for managing
geospatial datasets [8] and N-dimensional scientific array data [9]
[10] however issues related to the size of these datasets and the
size of database tables persist. Popular geoscience data formats
include netCDF [11] and HDF [12].

2 MOTIVATIONS AND DESIGN ISSUES IN GALILEO
Periodically published time-series observational data is

generally made available as a package, with care taken to encode
the metadata and data such that it results in a compact
representation with the smallest possible array of bytes. Often the
metadata is minimally encoded in the name of the file that has
been made available. (e.g. Data from the NESDIS Satellite
between 2011-07-09 to 2011-07-16 would be encoded as
/fileServer/satellite/3.9/WEST-CONUS_4km/20110716/WEST-
CONUS_4km_3.9_20110716_0300.gini). However, this style of
organizing the data for packaging and distribution can limit the
amount of processing that can be done: for example, querying a
collection of datasets for specific attributes that span multiple
datasets is often a challenge in such encoding schemes.

Data accesses are closely related to the application and the

algorithms that underpin the processing that will be performed.
Data visualization represents an example of a unique data access
style. For geospatial data visualization, there are several
distinctive characteristics in terms of the data access:
• Data access is often closely associated with geospatial

attributes.

• Time series data, for a specific set of features, associated
with a specified area is often accessed.

• Interactive access to the selected parameters (e.g.
humidity, temperature) is required.

• On-demand data processing is needed. For e.g. creating of
an image, simple statistics such as computing the mean
and standard deviation.

Static file based data storage systems cannot support
visualization tools for near real time datasets.

In GALILEO, datasets are delivered in near real-time and stored

in a cluster of commodity machines. Since many geoscientific
computations are tightly related to the geospatial attributes, we
stage datasets based on its geospatial information to maximize the
data locality; this ensures that observations from locations that are
close to each other are most likely on the same machine.
Similarly, temporal information and features (e.g. wind speed,
humidity) are major components that determine how and where
we stage the dataset. Finally the data, especially for large datasets,
is extremely hard to recover when there are data corruptions and
node failures. In GALILEO we rely on replications and automated
discovery of nodes holding replicas of data blocks to cope with
such failures and faults.

Queries in GALILEO can specify geographical ranges, temporal

ranges, and specific features. Each query is evaluated concurrently
on the nodes that comprise the distributed storage and the results
of these queries are streamed back to the requestor. The responses
generated by the individual nodes (each of which is responsible
for storing a portion of the data collection) to such queries are
then used to construct a virtual dataset.

This virtual dataset is constructed on the fly, organized in

memory using a tree-based data structure, and evolves as data
blocks are found (and added to the virtual dataset) to satisfy the
query. The graph can be traversed and the block metadata queried
for relevant information. Should the need arise, blocks can
retrieved from the nodes that host them since this information is
encoded in the block metadata. The virtual dataset allows creation
of multiple views so that only those elements that need to be
visualized would be retrieved. These data blocks can be retrieved
in the presence of failures.

3 PRELIMINARY PERFORMANCE EVALUATION
We have performed some preliminary experiments with

GALILEO. These experiments were performed on a cluster of 48
quad-core Xeon-based servers with a gigabit interconnect. Each
machine is equipped with 12GB of RAM and a 300GB, 15,000
RPM hard disk. The experiments ran on version 1.6.0_20 of the
OpenJDK Runtime Environment.

To create a test scenario, 100 million data blocks were

generated randomly and streamed into the system from four
different sources. Each block contained 1000 simulated sensor
readings. Along with the data itself, metadata was also generated
randomly. Blocks were assigned temporal ranges within the years
2002-2011 and were evenly dispersed across the continental
United States’ spatial range. Each block represented one of three
features: pressure, humidity, and temperature readings.

Next, we executed queries to retrieve parts of the randomly

generated collection of measurements representing a data

collection of 100 million blocks each of size 4 KB. We queried
for blocks that contained pressure readings for the month of July
in 2011 within a geospatial range that roughly bounded the state
of Colorado and parts of Utah and Wyoming. This query was
evaluated concurrently on all the nodes that comprised the storage
network. This query returned 105,556 data blocks, with the first
result payload being received in 542.96ms and the final result
being received in 5769.21ms. The results that were streamed back
in this experiment included the data blocks themselves. We also
have the ability to stream back only the block metadata that
summarizes the observations and the locations of the storage
nodes that held the corresponding block rather than the individual
blocks; in such a setting, a client can interactively choose specific
blocks that it would like to retrieve and visualize. Such selective
retrievals underpin on-demand visualizations.

4 CONCLUSIONS
Large datasets that arrive in near realtime have been a challenge

in the geosciences. This is especially true for an application that
requires high accuracy and efficient access to portions of large
data volumes. GALILEO supports efficient distribution of data over
a collection of nodes in a decentralized fashion. The system
allows access to specific portions of the dataset with the results
generated in response to a queries being streamed back to the
requestor. Streaming allows visualization to make progress as data
continues to become available, instead of awaiting the completion
of data transfers; such interleaving of transfers and visualization
result in faster visualizations.

REFERENCES

[1] J. T. Overpeck, et al., "Climate Data Challenges in the 21st Centry,"
Science vol. 221, pp. 700-702, 2011.

[2] T. Hey, et al., The Fourth Paradigm: Data-Intensive Scientific
Discovery. Redmond, Washington: Microsoft Corporation, 2009.

[3] S. Pallickara, et al., "Granules: A Lightweight, Streaming Runtime
for Cloud Computing With Support for Map-Reduce.," in the IEEE
International Conference on Cluster Computing, 2009.

[4] P. Ramsey, "PostGIS Manual," ed: Refractions Research.
[5] A. Guttman, "R-trees: a dynamic index structure for spatial

searching," in Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, ed. Boston, Massachusetts:
ACM, 1984, pp. 47-57.

[6] P. Cornillon, et al., "OPeNDAP: Accessing data in a distributed,
heterogeneous environment," Data Science Journal, vol. 2, pp. 164-
174, 2003.

[7] B. Domenico, et al., "Thematic Real-time Environmental Distributed
Data Services (THREDDS): Incorporating Interactive Analysis
Tools into NSDL," Journal of Interactivity in Digital Libraries, vol.
2, 2002.

[8] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide:
O'Reilly Media, 2010.

[9] P. Cudre-Mauroux, et al., "A Demonstration of SciDB: A Science-
Oriented DBMS," in the 2009 VLDB Endowment 2009.

[10] P. G. Brown, "Overview of sciDB: large scale array storage,
processing and analysis," in Proceedings of the 2010 international
conference on Management of data, ed. Indianapolis, Indiana, USA:
ACM, 2010, pp. 963-968.

[11] R. Rew and G. Davis, "NetCDF: an interface for scientific data
access," IEEE Computer Graphics and Applications, vol. 10, pp. 76-
82, 1990.

[12] (2010, The HDF Group. Hierarchical data format version 5.
http://www.hdfgroup.org/HDF5.

