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Abstract— Serverless computing platforms provide 

function(s)-as-a-Service (FaaS) to end users while promising 
reduced hosting costs, high availability, fault tolerance, and 
dynamic elasticity for hosting individual functions known as 
microservices.  Serverless Computing environments, unlike 
Infrastructure-as-a-Service (IaaS) cloud platforms, abstract 
infrastructure management including creation of virtual machines 
(VMs), operating system containers, and request load balancing 
from users.  To conserve cloud server capacity and energy, cloud 
providers allow hosting infrastructure to go COLD, 
deprovisioning containers when service demand is low freeing 
infrastructure to be harnessed by others.  In this paper, we present 
results from our comprehensive investigation into the factors 
which influence microservice performance afforded by serverless 
computing.  We examine hosting implications related to 
infrastructure elasticity, load balancing, provisioning variation, 
infrastructure retention, and memory reservation size.  We identify 
four states of serverless infrastructure including: provider cold, 
VM cold, container cold, and warm and demonstrate how 
microservice performance varies up to 15x based on these states.   

Keywords Resource Management and Performance; Serverless 
Computing; Function-as-a-Service; Provisioning Variation;  

I. INTRODUCTION 

Serverless computing recently has emerged as a compelling 
approach for hosting applications in the cloud [1] [2] [3].  While 
Infrastructure-as-a-Service (IaaS) clouds provide users with 
access to voluminous cloud resources, resource elasticity is 
managed at the virtual machine level, often resulting in over-
provisioning of resources leading to increased hosting costs, or 
under-provisioning leading to poor application performance. 
Serverless computing platforms provide Function(s)-as-a-
Service (FaaS) by hosting individual callable functions.  These 
platforms promise reduced hosting costs, high availability, fault 
tolerance, and dynamic elasticity through automatic 
provisioning and management of compute infrastructure [4].   

 Serverless computing platforms integrate support for 
scalability, availability, fault tolerance capabilities directly as 
features of the framework.  Early adoption of serverless 
computing has focused on deployment of lightweight stateless 
services for image processing, static processing routines, speech 
processing, and event handlers for Internet-of-Things devices 
[5].   The promised benefits, however, makes the platform very 
compelling for hosting any application.  If serverless computing 
delivers on its promises, it has the potential to fundamentally 
transform how we build and deploy software on the cloud, 

driving a paradigm shift rivaling a scale not seen since the 
advent of cloud computing itself! 

Fundamentally different than application hosting with IaaS 
or Platform-as-a-Service (PaaS) clouds, with serverless 
computing, applications are decomposed and deployed as code 
modules.  Each cloud provider restricts the maximum size of 
code (e.g. 64 to 256MB) and runtime (e.g. 5 minutes) of 
functions.  Serverless platform functions are often used to host 
RESTful web services.  When RESTful web services have a 
small code size they can be referred to as microservices.  
Throughout this paper we refer to our code deployments as 
mircoservices because they are small RESTful web services, but 
the results of our work are applicable to any code asset deployed 
to a serverless computing platform.  We do not focus on defining 
the difference between a RESTful web service and a 
microservice and leave this debate open. 

Serverless environments leverage operating system 
containers such as Docker to deploy and scale microservices [6].  
Granular code deployment harnessing containers enables 
incremental, rapid scaling of server infrastructure surpassing the 
elasticity afforded by dynamically scaling virtual machines 
(VMs).  Cloud providers can load balance many small container 
placements across servers helping to minimize idle server 
capacity better than with VM placements [7].  Cloud providers 
are responsible for creating, destroying, and load balancing 
requests across container pools.  Given their small size and 
footprint, containers can be aggregated and reprovisioned more 
rapidly than bulky VMs.  To conserve server real estate and 
energy, cloud providers allow infrastructure to go COLD, 
deprovisioning containers when service demand is low freeing 
infrastructure to be harnessed by others.  These efficiencies hold 
promise for better server utilization leading to workload 
consolidation and energy savings. 
 In this paper, we present results of our investigation focused 
on identifying factors that influence performance of 
microservices deployed to serverless computing platforms.  Our 
primary goal for this study has been to identify factors 
influencing microservice performance to inform practitioners 
regarding the nuances of serverless computing infrastructure to 
enable better application deployments.  We investigate 
microservice performance implications related to: infrastructure 
elasticity, load balancing, provisioning variation, infrastructure 
retention, and memory reservation size. 
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A. Research Questions 

To support our investigation of factors influencing 
microservice performance for serverless computing platforms, 
we investigate the following research questions: 

RQ-1: (Elasticity) What are the performance implications for 
leveraging elastic serverless computing infrastructure 
for microservice hosting?  How is response time 
impacted for COLD vs WARM service requests?   

COLD service requests are sent by clients to microservice 
hosting platforms where the service hosting infrastructure must 
be provisioned to respond to these requests.  Four types of 
function invocations exist relating to infrastructure warm up for 
serverless computing infrastructure.  These include: (1-provider 
cold) the very first service invocation for a given microservice 
code release made to the cloud provider, (2-VM cold) the very 
first service invocation made to a virtual machine (VM) hosting 
one or more containers hosting microservice code, (3-container 
cold) the very first service invocation made to an operating 
system container hosting microservice code, and (4-warm) a 
repeated invocation to a preexisting container hosting 
microservice code.  

RQ-2: (Load Balancing) How does load balancing vary for 
hosting microservices in serverless computing?  How 
do computational requirements of service requests 
impact load balancing, and ultimately microservice 
performance? 

Serverless computing platforms automatically load balance 
service requests across hosting infrastructure.  Cloud providers 
typically leverage round robin or load balancing based on CPU 
load to distribute incoming resource requests [8].  For serverless 
computing, we are interested in understanding how the 
computational requirements of individual microservice requests 
impact load balancing and ultimately performance.  

RQ-3: (Provisioning Variation) What microservice 
performance implications result from provisioning 
variation of container infrastructure?   

Provisioning variation refers to random deployment variation of 
virtual infrastructure across the physical hardware of cloud 
datacenters [9] [10].  Provisioning variation results from the use 
of load balancing algorithms, which attempt to place VMs and 
containers evenly across available infrastructure.  From a user’s 
point-of-view, however, resource placement may seem random 
as resource assignments are made in conjunction with requests 
from other users resulting in a greater spread of a user 
infrastructure compared with private server deployments.  
Consolidating many containers to a single host VM leverages 
image caching to reduce cold launch latency, but may lead to 
increased resource contention when many simultaneous requests 
are hosted on the same VMs impacting performance [38].  We 
are interested in understanding the microservice performance 
implications for provisioning variation introduced by the cloud 
provider.   

RQ-4: (Infrastructure Retention) How long is microservice 
infrastructure retained based on utilization, and what 
are the performance implications?  

Serverless computing frameworks automatically manage VMs 
and operating system containers to host microservice code.  
Once a VM participates in hosting a microservice, the Docker 

container image can be cached enabling additional container 
instances to be created more rapidly.  Containers preserved in a 
warm state can rapidly service incoming requests, but retaining 
infrastructure indefinitely is not feasible as cloud providers must 
share server infrastructure amongst all cloud users.  We are 
interested in quantifying how infrastructure is deprecated to 
understand implications for performance as well as derive keep 
alive workloads to prevent microservices with strict SLAs from 
experiencing longer latencies. 

RQ-5: (Memory Reservations) What performance 
implications result from microservice memory 
reservation size?  How do memory reservations impact 
container placement? 

Serverless computing platforms abstract most infrastructure 
management configuration from end users.  Platforms such as 
AWS Lambda and Google Cloud Functions allow users to 
specify a memory reservation size.  Users are then billed for each 
function invocation based on memory utilization to the nearest 
tenth of a second.  For example, Lambda functions can reserve 
from 128MB to 3008MB, while Google Cloud Functions can 
reserve from 128MB to 2048MB.  Azure functions allows users 
to create function apps.  Function apps share hosting 
infrastructure and memory for one or more user functions.  
Azure function app hosts are limited 1536MB maximum 
memory.  Users do not reserve memory for individual functions 
and are billed only for memory used in 128MB increments.  One 
advantage to Azure’s model is that users do not have to 
understand the memory requirements of their functions.  They 
simply deploy their code, and infrastructure is automatically 
provisioned for functions up to the 1536MB limit.  In contrast, 
users deploying microservices to Lambda or Google Cloud 
Functions must specify a memory reservation size for function 
deployment.  These reservations are applied to Docker 
containers created to host user functions.  Containers are created 
to host individual function deployments, and user functions may 
or may not share resources of underlying VMs. 
B. Contributions 

 This paper reports on our investigations of performance 
implications for microservice hosting on serverless computing 
platforms.  This study analyzes performance implications 
related to infrastructure elasticity, service request load 
balancing, provision variation of hosting infrastructure, 
infrastructure retention, and implications of the size of memory 
reservations.  While originally envisioned for hosting light-
weight event based code, benefits of serverless computing 
including autonomous high availability, elasticity, and fault 
tolerance makes the platform very compelling for broad use.  A 
key contribution of this study is a comprehensive profiling of the 
performance implications of the autonomic infrastructure 
management provided by serverless computing platforms.  We 
believe our study is the first to investigate many of these 
performance implications in depth. 

The primary contributions of this paper include: 

1. Identification, and performance analysis of the four 
states of serverless computing for microservice hosting: 
provider cold, VM cold, container cold, and warm. 

2. Performance, elasticity, and load balancing analysis 
across infrastructure provided by AWS Lambda and 
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Azure functions, including the use of standard deviation 
to quantify fairness of load balancing. 

3. Analysis of the performance implications of 
provisioning variation of containers deployed across 
host VMs. 

4. Performance analysis of infrastructure retention and 
combined memory and CPU capacity reservations 
provided by AWS Lambda for microservices hosting. 

II. BACKGROUND AND RELATED WORK 

A. Motivation for Microservices Architecture 

A microservices application architecture provides a means 
to develop software applications as a suite of small services [4].  
Decomposing functionality of historically large, coupled, and 
monolithic applications into compositions of microservices 
enables developer agility supporting DevOps software 
development processes. Microservices have a small codebase, 
are easy to deploy and subsequently scale.  Applications which 
compose multiple microservices as a mashup offer resilience as 
portions of an application can be revised while maintaining 
availability of the application at large.   

 Aderaldo et al. note that there is a lack of repeatable 
empirical research on the design, development, and evaluation 
of microservices applications [11].  They provide a set of 
requirements towards the development of a microservices 
benchmark application equivalent to TPC-W, the webserver and 
database benchmark.  Kecskemeti et al. offer the ENTICE 
approach to decompose monolithic services into microservices 
[12].  ENTICE, however, focuses primarily on generation of 
dynamic VM images with requisite software libraries to support 
decomposition as the work does not apply to serverless 
environments directly.  Hassan and Bahsoon identify the 
importance to balance design tradeoffs in microservices 
architecture and propose the use of a self-adaptive feedback 
control loop to generate potential application deployments that 
trade off criteria such as size, number of microservices, and 
satisfaction of non-functional requirements [13].   Granchelli et 
al. are able to decompose microservice application architecture 
to generate an architectural model of the system given a GitHub 
repository and a web container endpoint using MicroART [14].  
And Frey et al. apply a genetic algorithm to reduce the search 
space of potential deployment configurations for traditional 
VM-based cloud applications to rapidly identify optimal 
configurations [15].  These efforts have not specifically 
considered microservices application deployment to serverless 
computing platforms.  We are unaware of prior research efforts 
that specifically assess performance implications of 
microservice deployment to serverless computing platforms. 
B. Serverless Computing Frameworks 

 Commercially provided serverless computing 
platforms provide dynamic scalable infrastructure on-demand to 
host microservice applications [16][17][18][19].  Research into 
best practices for monolithic application decomposition for 
deployment as microservices, however, has not yet considered 
deployment to serverless computing environments leaving cost 
and performance tradeoffs unexplored [4] [20].  Recently Sill 
noted in his IEEE Cloud Computing magazine column that 
serverless computing’s adoption of deploying services to 
containers is more of a coincidence than a direct consequence of 

optimal design [6].  McGrath and Brenner recently presented a 
serverless computing framework that runs atop of the Microsoft 
Azure cloud and Windows containers [21].  They contribute 
metrics to evaluate performance of serverless platforms 
including examining scaling and container instance expiration 
trends while showing their framework achieves greater 
throughput than available commercial frameworks at most 
concurrency levels.   
C. Improving Serverless Application Deployments 

Efforts to improve elasticity of cloud computing 
infrastructure for application hosting almost exclusively focuses 
on IaaS clouds.  Considerable work has focused on evaluating 
performance modeling and machine learning techniques to 
support dynamic scaling of VMs [22] [23] [24] [37] or to 
evaluate the efficacy of linear regression, neural networks, and 
support vector machines to predict performance and resource 
demands in the future for threshold based auto scaling.  Qu et al. 
provide high-availability using low cost spot VMs [25].   

Our investigations help inform our understanding of the 
factors that influence microservice performance afforded by 
serverless computing platforms.  These understandings will help 
guide practitioners towards making better deployment decisions 
while establishing best practices. 

III. SERVERLESS COMPUTING PLATFORMS 

To investigate research questions described in section 1, we 
harness two commercial serverless computing platforms: AWS 
Lambda, and Microsoft Azure [16][18].   

AWS Lambda, introduced in 2014, harnesses containers 
atop of the AWS Linux operating system based on Redhat 
Linux.  Presently, Lambda officially supports hosting 
microservices written in Node.js, Python, Java, and C#.  
Lambda’s billing model provides 1 million function invocations 
a month for free, while each subsequent 1 million requests costs 
approximately 20 cents ($.20 USD).  Functions can use up to 
400,000 GB-seconds a month for free, after which additional 
memory utilization costs approximately 6 cents ($.06 USD) for 
each 1 GB of memory reserved per hour.  Functions can 
individually reserve from 128MB to 3008MB of memory.  
Lambda automatically hosts and scales infrastructure to provide 
microservices supporting by default up to 1,000 concurrent 
requests.  As of fall 2017, containers are provided with 2 
hyperthreads backed by the Intel Intel(R) Xeon(R) CPU E5-
2666 v3 @ 2.90GHz.  Lambda allocates CPU power and other 
resources proportional to memory.  For example, reserving 
256MB of memory allocates approximately twice as much CPU 
power to a Lambda function as requesting 128MB of memory, 
and half as much CPU power as choosing 512MB of memory.  
Docker containers support specification of CPU-period (the 
completely fair scheduler-CFS interval), CPU-quota (a CFS 
CPU quota), and CPU shares (the share of CPU resources 
provided when constrained) [26].  The precise mappings 
between Lambda memory and CPU configuration is not 
documented.  Each container has 512 MB of disk space and can 
support up to 250MB of deployed code provided in compressed 
format up to 50MB. Microservices execution time is limited to 
a maximum of 5 minutes. 

Azure Functions, is a serverless computing platform 
provided by Microsoft that allows users to run small pieces of 
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code or ‘functions’ in the cloud.  Azure Functions is derived 
from, and built on the Azure App Service, and is a natural 
extension of WebJobs with additional features such as dynamic 
scaling [28].  Azure Functions automatically creates a function 
app for the user.  This app hosts one or more individual 
functions managed by the Azure App Service.  Function apps 
hosted by the Azure App Service run using low-privileged 
worker processes using a random application identity [28].  The 
runtime for Functions is the underlying WebJobs SDK host that 
performs all operations related to running code including 
listening for events, as well as gathering and relaying data [29].  

Presently, Functions supports hosting of code in C#, F# and 
Node.js.  Support for languages such as Python, PHP and Bash 
are currently under development.  Functions can be run using 
two plans, i.e. the Consumption Plan and the App Service Plan. 
The type of plan decides how the function/app will scale and 
what resources are available to the host [30].  The Consumption 
Plan automatically decides the resources required to run the app, 
provides dynamic scaling, and bills only according to resources 
consumed.  Each app is limited to 1.5 GB total memory, and 
functions are limited to 10 minutes execution time  [31].  In the 
App Service Plan, function apps are run on dedicated VMs, 
similar to Web Apps. For the App Service Plan the functions 
host is always running and it is possible to manually scale out 
by adding new VMs, or by enabling auto scaling.  

IV. EXPERIMENTAL SETUP 

To support experimentation, we developed and deployed 
AWS Lambda and Azure functions microservices aimed at 
introspecting platform performance and infrastructure 
management.  We describe the microservices below. 

A. Lambda Experimental Microservice 

For Lambda, we developed a compute-bound microservice 
that performs random math calculations where operations avoid 
using stack variables with operands stored in large arrays on the 
heap.  To vary the degree of memory stress we make the array 
size a service parameter.  For each calculation, operands are 
referenced from a random location in the array.  When the array 
size is larger, this referencing scheme induces additional page 
faults resulting in memory stress.  When the array size is small, 
the behavior of the function is primarily bound only by random 
multiplication and division calculations.  While maintaining the 
same number of calculations, we observe that larger array sizes 
result in microservice failure on Lambda function deployments 
with low memory/CPU allocations confirming the efficacy of 
our ability to introduce memory stress.  

TABLE I.  SUMMARY OF CALCULATIONS SERVICE CONFIGURATIONS  

Stress Level 
# of  

Calculations 
Operand  

Array Size 
Function 

Calls 
 1 0 0 0 
 2 2,000 100 20 
  3 20,000 1,000 20 
  4 200,000 10,000 20 
 5 500,000 25,000 20 
 6 2,000,000 100,000 20 
 7 10,000,000 10,000 1,000 
 8 10,000,000 100 100,000 
 9 6,000,000 20 300,000 

To support our experiments, we defined 9 stress levels for 
our calculations services each introducing increasing stress and 
requiring longer execution time.  These stress levels are 
described as calculations service configurations in table I.  They 
reflect the different function parameterizations used in our 
experiments.  Stress level 1 is used to simply evaluate the 
microservice round trip time to execute a calculation free service 
call.  Stress levels 2 to 9 introduce 2,000 to 10,000,000 random 
math operations.  Operand array size reflects memory stress.  
Three arrays are used to store two multiplication operands and 
one division operand.  The number of function calls reflects 
stress from call stack activity.   

Our Lambda testing leveraged the AWS API Gateway and 
all of our functions invocations were synchronous.  The API 
Gateway imposes an unalterable 30-second limit on 
synchronous service requests.  We performed our Lambda tests 
using bash scripts under Ubuntu 16.04 hosted by a c4.2xlarge 8-
vCPU EC2 instance with “High” networking performance.  We 
pinned our EC2 instances and Lambda functions to run using a 
default VPC in the us-east-1e availability zone.  The default 
configuration for Lambda function deployments is to span 
multiple sub-regions for redundancy and fault tolerance.  To 
eliminate potential performance variability from randomly 
communicating across different sub-regions, we elected to fix 
our deployment to one sub-region.  Please note that Amazon 
sub-regions are floating.  Each user experiences different 
mappings to avoid having users accidentally provision too many 
cloud resources in the first sub-region, us-east-1a.  High 
networking performance is generally considered to be 
approximately ~1 Gbps.  We harnessed GNU parallel to perform 
all requests in parallel and utilized the command-line curl REST 
client to instrument all HTTP-POST JSON service requests.  
Given the small JSON request/response payloads of our 
microservice, we observed little stress on our c4.2xlarge client 
instance while performing up to 100 concurrent Lambda service 
invocations. 

Our calculations microservice provided a compute-bound 
workload to exercise AWS Lambda.  Additionally, we 
augmented our microservice to introspect the Lambda execution 
environment.   

Container Identification: Each Lambda function is hosted 
in a Docker container with a local 512MB filesystem.  When a 
service request is received by a container we check for the 
presence of a temporary file.  If the temporary file is not present, 
we create it and stamp the container with a universally unique 
identifier (UUID) by writing to this temp file.  When the 
container is retained for subsequent service requests, the UUID 
serves to identify new vs. recycled containers.  In the service 
response, we report the unique UUID and whether the request 
generated a new container. 

Host Identification: Docker containers provide access to the 
/proc filesystem of the Linux host.  We determined the hosts run 
Amazon Linux VMs.  By inspecting /proc/cpuinfo we 
identify that Docker containers leverage the Intel Xeon E5-2666 
v3 @ 2.90GHz CPU.  This is the same CPU as used by c4/m4/r4 
EC2 instances, Amazon’s 4th generation of VMs.  We also 
identified that each container has access to two vCPUs.  We are 
interested in knowing how many Docker containers run on each 
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AWS Lambda host VM.  We leverage “btime” in 
/proc/stat to identify the boot time of the VM in seconds 
since the epoch, January 1, 1970.  Using this technique, we are 
able to identify when the Docker containers used to host a 
Lambda function “appear” to leverage the same host (VM).  
While this technique does not guarantee that we’ve found host 
affinity, statistically it is highly reliable.    

Let’s consider the probability that two VMs boot and 
initialize their “btime” variable at the same exact same second.  
To establish probability, we consider the infrastructure used to 
host 132 trials of 100-concurrent requests for the 12 memory 
reservation levels described in table II.  For this workload, we 
observed a range of boot times across the 91 unique VMs that 
participated in hosting these Lambda service requests.  We 
measured the uptime for VMs to establish their estimated 
lifetime.  For these 91 VMs, we observed VM uptime to range 
from a minimum of 17 minutes and 45 seconds, to a 
maximum of 3 hours and 26 minutes.  The average uptime 
was approximately 2 hours and 8 minutes.  The VM uptime here 
spans a range of 11,302 seconds.  If we consider the probability 
of a VM receiving a given boot time in this 11,302 second range 
to be 1/11,302, then the probability of any given boot time is just 
P(boot_timeA) = 0.00008848.  The probability of two VMs 
having the same boot_time will be P (boot_timeA ∩ boot_timeB) 
= 7.8*10-9.  While it is unlikely that VMs are launched entirely 
randomly by Lambda, actual probability will likely be higher as 
VMs are inevitably launched in groups.   We deem our approach 
as suitable to identify host affinity and its efficacy is verified 
through successful use throughout all of our experiments. 

Client Testing: Our clients process service outputs to 
determine the number of service requests processed by each 
container and host.  We capture the uptime, and number of new 
containers generated.  We also calculate the standard deviation 
of service requests distributed to both containers and hosts.  
When the standard deviation of this distribution is zero, it 
identifies perfectly even balancing of requests across 
infrastructure akin to round-robin.  As the standard deviation of 
load balancing increases, this indicates discontinuity.  For 
example, if 4 hosts participate in 100 service requests, and the 
distribution of requests is: 10, 5, 2, and 83, then the standard 
deviation is 38.8.  This uneven distribution of requests will stress 
the 4th node unevenly, potentially leading to performance 
degradation.  We capture standard deviation in our test scripts to 
identify fairness of service request load balancing.  Our testing 
also captures average service execution time for all requests, and 
the quantity of requests serviced by individual containers and 
hosts.  Using this approach, we can clearly see when new hosts 
(VMs) and containers join the infrastructure pool for a 
microservice.   

In section 1, we described three types of COLD runs: 
provider cold, VM cold, and container cold.  Each type of 
COLD run using Docker results in different performance 
overheads.  Provider cold runs force the container image to be 
initially built/compiled requiring the most time.  VM cold runs 
force the container image to be transferred to new hosts, while 
for container cold, images are already cached at the host and 
overhead is limited to container initialization time for creating 
new containers.  Making a configuration change in Lambda is 

sufficient to generate container cold tests.  Creating a new 
function is required to force requests to be provider cold, while 
we observed that waiting ~40+ minutes between requests is 
nearly infallible to generate VM cold runs.  Given the reliance 
of serverless computing infrastructure on Docker container 
infrastructure, the significance of container initialization 
overhead cannot be overlooked!  This reliance is not limited 
to only the AWS Lambda serverless computing platform [2] 
[19] [21]. 

B. Azure Functions Experimental Microservice 

For Functions, we developed an Http-Triggered Functions 
App, that contains a single function written in C#.  The function 
logs the App Service Instance Id and the current worker process 
Id to an Azure Table [32], to provide information about the App 
Service Instance that services individual microservice requests.  
We utilized the Consumption Plan to assess automatically 
provided infrastructure for our Functions App.  Function Apps 
store files on a file share in a separate storage account, thereby 
allowing files to be easily mounted onto new App Service 
instances as the app scales.  We harnessed the Visual Studio 
Team System (VSTS) to implement performance load tests and 
to provide stress on our functions for the experiments [33]. 

We investigated COLD and WARM performance of our 
functions app.  COLD runs measure the behavior of functions 
when provisioned for the very first time with newly assigned 
App Service Instances.  We observed that once an App Service 
Instance was assigned to the function app, it’s lifespan was at 
least 12 hours.  Restarting the function app, or changing the code 
executed by the function did not assign a new app service 
instance.  To force COLD runs, we created a new function app 
for each COLD run.  We leveraged a URL-based load test, to 
perform stress tests against our function endpoint for a specified 
duration of time and with a given concurrency.  For concurrency 
testing we scaled the number of requests as follows: 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200.  For COLD 
runs we tested a load duration of 2 minutes, while for WARM 
runs we tested 2, 5, and 10 minutes for each test. 

 For each microservice invocation the App Service Instance 
Id and Worker Process Id responding to the request were 
recorded in an Azure Table.  We were able to capture the Service 
Instance Id from the environment variable 
WEBSITE_INSTANCE_ID set by Kudu in the Azure runtime 
environment [34].  We used the Power BI Desktop to view and 
analyze the data captured into our Azure Tables. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Docker Performance Comparison 

AWS Lambda hosts microservice code using fleets of 
Docker containers that are dynamically provisioned based on 
client demand.  To compare performance of Lambda with 
“equivalent” infrastructure to gauge overhead of the platform, 
we harnessed Docker-Machine, a tool that enables remote hosts 
and containers to be provisioned on-the-fly [35].  Aided by 
Docker-Machine, we deployed our Calculations service code 
into our own Docker container independent of Lambda on EC2.  
The motivation for using Docker-machine was to emulate TCP 
networking overhead similar to that incurred by the AWS API 
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Gateway and Lambda function invocation.  For both Docker-
Machine and Lambda testing, we harnessed a c4.2xlarge 8 
vCPU EC2 instance with “High” 1-Gigabit networking as a test 
client.  We observed minimal load on our client while running 
remote tests. 

TABLE II.  DOCKER-MACHINE CONFIGURATIONS: 
MEMORY QUOTA AND MAXIMUM CPU CAPACITY 

Memory 
(MB) 

Expected 
CPU% 

128 16.6% 
256 33.3% 
384 50.0% 
512 66.6% 
640 83.3% 
768 100.0% 
896 116.7% 
1024 133.3% 
1152 150.0% 
1280 166.60% 
1408 183.30% 
1536 200.00% 

 
Lambda states that every time memory is doubled, the CPU 

capacity is doubled [16].  Using this guideline, we calculated 
plausible ratios of memory and CPU resource allocations 
shown in Table II.  To calculate these ratios, we assume that 
when Lambda has access to the maximum allowable memory 
(1536 MB, August 2017), it will have full access to 2 Intel Xeon 
E5-2666 v3 @ 2.90GHz vCPUs.  Lambda memory limits were 
increased to 3008 MB in November 2017. We constrain our 
Docker containers by providing “--cpus” and “--memory” 
settings to Docker-Machine for container creation to enable our 
performance comparison as shown in Table II. 

 

Fig. 1: Cold Performance: 
Docker-Machine vs. AWS Lambda 

We performed container cold and container warm test runs 
by hosting individual containers for 1 or 12 concurrent runs on 
a c4.8xlarge 36 vCPU EC2 instance.  This instance type is 
selected because it is backed by the same CPU, the Intel Xeon 

E5-2666 v3 CPU, as used by the AWS Lambda platform. We 
evaluate Docker-Machine performance for 1 thread and 12 
threads, because from our memory testing experiments (RQ-5) 
we observed that the average number of runs per container in 
Lambda across all tests was ~12.3.  Our ultimate goal is to 
evaluate whether the serverless computing platform "overhead" 
is reasonable compared to an equivalent implementation using 
remote Docker containers to host code.  Figure 1 details a 
COLD performance comparison, while figure 2 shows a 
WARM performance comparison.  We observe that Lambda’s 
WARM performance is quite good given the comparison to our 
Docker-Machine analog, while container cold performance 
could be improved.  When hosting 12-threads per host, Docker-
Machine outperformed Lambda for COLD runs when 
containers reserved 640MB or less.  Lambda performance 
excelled beyond Docker-Machine performance for 12-thread 
COLD tests at 768MB and above.  For WARM runs Lambda 
clearly outperforms out Docker-Machine analog for all tests.  
For memory configurations of 512MB and above, however, the 
performance slowdown averaged around a somewhat 
manageable ~41%.  We posit that our Docker-Machine analog 
could match Lambda performance if we slightly reduce the 
number of containers per host.  Docker 12 threads always 
underperforms Docker 1 thread due to CPU context switching. 

 

Fig. 2: Warm Performance: 
Docker-Machine vs. AWS Lambda 

B. Elasticity (RQ-1) 

To investigate RQ-1, we evaluated COLD performance of our 
Calculation service at stress level #4 on AWS Lambda with a 
128MB deployment.  We performed from 1 to 100 concurrent 
requests.  We tested 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 
70, 80, 90, and 100 concurrent requests with a 10-second sleep 
between requests.  By making an “advanced” configuration 
change to our Lambda function through the UI or CLI we were 
able to force runs to be container cold.  Configuration changes 
such as modifying the container memory size or function 
timeout were sufficient to force containers to be deprecated 
forcing the platform to create new containers.  Figure 3 shows 
container cold performance with an increasing number of 
concurrent requests. 

For this slowly scaling workload the cloud provider creates 
the initial infrastructure and slowly scales up.  For cold service 
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execution, from 1 to 100 requests, performance degraded by a 
factor of 3.8x.  From 10 requests to 100, performance degrades 
by a factor of 2.6x.  Cold service hosting required one Docker 
container for every request, and these containers leveraged from 
1 to 7 host VMs as shown in figure 4.  For this experiment VMs 
hosted an average of 11.3 service requests. 

 

 

Fig. 3: AWS Lambda Container cold  
Calculation Service Scaling Performance 

 

Fig. 4: AWS Lambda - Calculation Service Cold Scaling 
Test: Infrastructure Elasticity and Load Balancing 

 

Fig. 5: AWS Lambda: Stress Level vs. 
 Calculation Service Performance 

C. Load Balancing (RQ-2) 

To investigate load balancing of warm service requests, we 
executed 10 sets of 100 concurrent requests using each of the  
calculation service stress levels described in table I.  Each level 
reflects an increasing amount of required CPU time.  Services 
requests were hosted using 128 MB containers on AWS Lambda 
with 10 seconds sleep between test sets.  From level 1 to level 9, 
average service execution time increased by a factor of ~ 78x.  
Performance is shown in figure 5 where the x-axis has been 
plotted using a log scale. 

 

Fig. 6: AWS Lambda: Infrastructure Elasticity and Load 
Balancing vs. Microservice CPU Stress 

Figure 6 shows infrastructure utilized by AWS Lambda to 
host 100 concurrent requests for our Calculation Service.  Stress 
level 1 only required an average of 39 containers with each 
completing an average of ~3 requests.  Each stress level required 
an increasing number of containers for hosting, with stress levels 
5 and above requiring one container for each microservice 
request.  The number of hosts (VMs) used to execute our service 
requests did not appear to vary based on the stress level of our 
service with 5 to 9 hosts being used.  Load balancing of service 
requests across containers improved to a standard deviation of 0 
for stress levels 5 and above, while the standard deviation of load 
balancing only improved slightly for service request distribution 
across VM hosts.  

D. Provisioning Variation (RQ-3) 

To evaluate the impact of container placement across host 
VMs on service performance we captured data from our 
experiment examining elasticity for RQ-1.  We computed a 
linear regression and found there is a very strong relationship 
(R2=.9886) between the number of containers per host VM and 
the resulting COLD service performance.  The data used for this 
regression is from stress level #4 service requests performed on 
128 MB Docker containers.  Figure 7 shows our regression plot. 

 This stress of container initialization on the host is 
significant.  When microservice infrastructure is initialized 
placing too many containers on the same host directly 
correlates with poor performance.  We hypothesize that 
container initialization requires substantial network and disk I/O 
contributing to poor performance. 

Next, we next tested 3,000 concurrent WARM requests at 
stress level #9 while configuring our Lambda service to use 512 



8 
 

MB of memory.  Due to client limitations, sending 3,000 
requests required approximately ~1.6 minutes.  This workload 
harnessed 218 containers across 47 host VMs where each 
container processed an average of 13.76 runs, and each VM an 
average of 63.83 runs.  Linear regressions were, between 
containers per host (VM) and (1) average WARM service 
execution time (R2=0.53), and (2) the number of requests per 
host (R2=.063).  These relationships, though not as strong as for 
COLD service execution with 128 MB containers, are still clear.  
We observed the maximum number of containers per host drop 
from ~26 for 128MB containers, to just ~12 containers for 
512MB containers.  Increasing container memory from 128MB 
to 512MB provided a performance improvement of 6.5x for our 
Calculations Service at Stress Level 9.  Amazon suggests we 
should observe a 4x increase in CPU performance as 
performance is doubled twice from 1  
 28-to-256MB and 256-to-512MB.  The additional 
performance improve could be attributed to fewer containers per 
host. 

 
Fig. 7: AWS Lambda - Linear Regression: Container 

Placement vs. Container Cold Performance – Stress Level 4 

E. Infrastructure Retention (RQ-4) 

We investigated how serverless computing infrastructure is 
retained over time to host microservices.  Given our 
observations of poor performance for COLD service execution 
time seen while investigating RQ-1 and RQ-3 we already know 
how important infrastructure retention will be for service 
performance.  For RQ-4 we sought to quantify precisely how 
much infrastructure (hosts and containers) is retained, and for 
how long.  We also investigated the microservice performance 
implications of infrastructure retention.  To test container 
retention, we executed sets of 100 concurrent Calculation 
Service requests at Stress Level 4 on Lambda configured to use 
128 MB Docker containers.  Warming the service created 100 
containers across 5 hosts.  We then sent subsequent sets of 100 
concurrent requests interspersed with .166, 1, 5, 10, 15, 20, 25, 

30, 35, 40, and 45-minute idle periods.  We captured the number 
of new and recycled containers and hosts (VMs) involved in the 
test sets.    

When testing after 40 minutes of inactivity, no containers or 
VMs were recycled and all infrastructure was reinitialized from 
the VM cold state.  For Stress Level 4 warm service execution 
time required only an average of 1.005 seconds.  When all 
infrastructure is VM cold, average service execution time 
increased over 15x to 15.573 seconds!  Service execution time 
increased as follows: 10 min ~ 2x, 15 min ~ 5x, 20 min ~ 6.9x, 
25 min ~ 9.3x, 30 min ~ 13.4x, 35 min ~ 14.1x.  After just 10 
minutes of idle time 41.8% of the containers had to be recreated.  
An open question is, does infrastructure retention vary 
throughout the day based on system load?  Cloud providers 
should consider opportunistically retaining infrastructure 
for longer periods when there is idle capacity to help offset 
the performance costs of container initialization.   

 
Fig. 8: AWS Lambda: Microservice Performance and  

(%) Recycled Containers for Long Duration Retention Tests 

 
Fig. 9: AWS Lambda: New vs. Recycled Host VMs  

for Long Duration Retention Tests 

 For RQ-2, we observed that Stress Level 5 or higher is 
sufficient to involve all containers of 128MB size in service sets 
of concurrent service requests.  If infrastructure is fully retained 
within 5 minutes, then executing 8,640 service sets a month at 
5-minute intervals should help retain infrastructure.  
Complicating this service “warming” is a recent report that host 
VMs are recycled every ~4 hours [36].   Avoiding microservice 
performance degradation from infrastructure deprecation may 
require redundant service endpoints. 



9 
 

F. Memory Reservation (RQ-5) 

Lambda supports reserving memory from 128MB to 
3008MB in 64MB increments.  Additionally, CPU capacity is 
scaled proportional to memory with capacity doubling when 
memory is doubled presumably as we estimate in Table II.  To 
investigate RQ-5, we are interested in examining how these 
capacity adjustments impact container density on VM hosts and 
service performance.  We tested the following memory 
increments in MB: 128, 256, 384, 512, 640, 768, 896, 1024, 
1152, 1280, 1408, and 1536 using our Calculation Service at 
Stress Level 4.  We warmed infrastructure first, and then 
performed 10 sets of 100 concurrent runs for each memory 
configuration.  We paused for 10 seconds between every set and 
performed 10 batches for a total of 1,200 sets.  Graphs presented 
here represent averages across the batch of tests.  Performance 
vs. memory reservation size is shown in figure 10, while figure 
11 shows memory reservation size vs. active hosts (VMs).   

 

Fig. 10: AWS Lambda: Memory Reservation Size  
vs. Service Performance 

We observed a ~4x performance boost for average COLD 
service execution time when increasing the function’s memory 
reservation from 128MB to 1536MB.  This is in contrast to the 
expected increase of 12x, if each time memory is doubled, 
performance doubles.  For WARM service execution time, we 
observed only a 1.55x performance improvement.  Memory 
configurations of 512MB achieve this improvement.  Reserving 
(and paying for) memory beyond 512MB was not helpful to 
improve our WARM service performance.  We posit that for our 
simple calculation service much of the execution time is actually 
overhead, and adding additional memory and CPU power is not 
sufficient to increasing the speed of Lambda framework 
overhead.  Our results demonstrate the importance to profile 
microservice functions to determine an optimal memory 
reservation.  Ad hoc tuning may be insufficient to guess an 
optimal memory and CPU performance setting.  Users with 
minimal cost constraints or for hosting microservices with very 
light load, may opt to simply allocate the maximum memory to 
provide optimal COLD service performance. 

 Interesting behavior is seen in figure 11 regarding the 
number of host VMs.  WARM and COLD 128MB deployments 
are shown to leverage a large number of hosts.  Immediately, the 
number of hosts plummets at 256MB particularly for WARM 
runs.  The unusual use of additional VMs for 128MB was 
limited to our investigation of RQ-5.  When we executed similar 
tests at Stress Level 4 with 100 concurrent requests for other 

experiments only 5 to 7 host VMs were used.  We determined 
that the use of additional hosts appears to be opportunistic in 
nature.  These hosts were present from previous 1536MB tests 
and were reused for the subsequent 128MB test.  While we 
typically observed around ~26 requests per host for WARM 
Service Level 4 requests against 128 MB containers, for this 
experiment the average number of requests per hosts was just 
1.8!  COLD requests per host dropped from approximately 20 to 
just 4.8.  This “host hangover” effect was replicated every time 
(10 times) in repeated experimental runs.  This effect helped to 
cut cold initialization average service execution time in half! 

 

Fig. 11: AWS Lambda: Memory Reservation Size  
vs. Number of Hosts 

G. Microsoft Azure Functions Elasticity (RQ-1) 

 To investigate elasticity of infrastructure provided by the 
Azure Functions platform we performed scaling tests to 
measure service performance and infrastructure scalability for 
COLD service tests.  We evaluated infrastructure scaling by 
performing a two-minute scaling load test.  We increased 
concurrency every six seconds using the steps: 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 200.  Average 
execution time of our Azure function barely increased from 1 
to 50 concurrent requests.  Beyond 50 concurrent requests, 
average service execution time increased rapidly as shown in 
Figure 12.  Cold service hosting utilized one worker process for 
each request while leveraging from 1 to 4 host VMs to host app 
service instances. 

 

Fig 12: Azure Functions: Average Execution Time vs. 
 Number of Concurrent Runs 
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 Next, we investigated the number of App Service instances 
involved in hosting our microservice scaling workloads for 
WARM infrastructure.  For this test, we did not create a new 
function app before each run, but reused our existing app to 
preserve previous infrastructure.  For this test, we generated a 
continuous scaling load for 2, 5, and 10 minutes with scaling 
steps at ~ 6, 15, and 30 seconds respectively.  We observed the 
number of App Service Instances that participate in hosting our 
scaling workloads as shown in Figure 13.  We observed that for 
our 5-minute test, ~10% more App Instances were used, and for 
our 10-minute scaling test, ~90% additional App Instances were 
used.  Given additional time, Azure Functions created additional 
App Instances as additional VMs were available ultimately 
enabling better microservice performance. 

 

Fig 13: Azure Functions: Number of App Service Instances  
vs. Number of Concurrent Runs 

VI. CONCLUSIONS 

In this study, we report our investigations on the 
performance implications of microservice hosting using 
Serverless Computing Infrastructure.  Specifically, we profile 
microservice hosting and analyze implications of infrastructure 
elasticity, load balancing, provisioning variation, infrastructure 
retention, and memory reservations.  For elasticity (RQ-1), we 
found that extra infrastructure is provisioned to compensate 
for initialization overhead of COLD service requests.  
Docker container initialization overhead significantly burdens 
serverless computing platforms, especially for VM cold 
initialization. Future service requests against WARM 
infrastructure do not always reuse extraneous infrastructure 
created in response to COLD initialization stress, with higher 
reuse rates corresponding with higher stress levels of 
microservice requests.  With respect to load balancing of 
requests against serverless infrastructure (RQ-2), we observed 
well balanced distribution across containers and host VMs for 
COLD service invocations and for WARM service invocation at 
higher calculation stress levels.  For low stress WARM service 
invocations, load distribution was uneven across hosts.  This 
uneven use of infrastructure may lead to early deprecation if 
client workloads do not utilize all nodes. 

Our investigations on provisioning variation (RQ-3) found 
that when too many container initialization requests go to 
individual host VMs, COLD service performance degrades up 
to 4.6x times.  Once a VM participates in microservice hosting 

and the container image is cached, there is a tendency to stack 
containers at the host.  We observed up to 26 collocated 
containers with a memory reservation size of 128MB, and ~12 
containers at higher memory reservation sizes.  Regarding 
infrastructure retention (RQ-4), we identified four unique states 
of serverless computing infrastructure: provider cold, VM cold, 
container cold, and warm. After 10 minutes, we observed that 
containers were deprecated first, followed by VMs, producing 
service performance degradation approaching 15x after 40 
minutes of inactivity.  After 40 minutes all original hosting 
infrastructure for the microservice, containers and VMs, are 
no longer used.  We observed an average uptime of VMs 
participating in Lambda microservice hosting to be 2 hours and 
8 minutes. 

Regarding memory reservation sizes (RQ-5), we discovered 
that the coupling of memory and CPU power by Lambda 
significantly constrained microservice performance for low 
memory reservation sizes.  To compensate Lambda allocates 
and retains as many as 4x more containers to host microservice 
workloads when memory reservation size is small.  With 
WARM infrastructure, we observed performance improvements 
when increasing memory reservation size until reaching 512 to 
640MB.  Beyond this we observed diminishing returns as adding 
additional memory (and CPU power) did not significantly 
improve microservice performance.  Determining the optimal 
memory reservation size for microservices hosting requires 
benchmarking behavior on the platform.  Platform users 
without cost constraints may consider using the highest 
available memory reservation size 1536MB to ensure optimal 
COLD and WARM service performance. 
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