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Recognition Challenge (PaSC) = Method: Hybrid Euclidean-and-Riemannian Metric Learning with MODEST framework
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: . _ . ® Luminance-reflectance model — photometric normalization
m AtIJCB 2014, Handeld Video O DCNI\-I archltectl:re.14 convolution layers, 2 1;ully co:nfected layers and 1 softmax layer m  Diverse feature extracted from images (Gabor, Pixels, LBP, LPQ)
Face and Person Recognition D DelLF: outputs of Layer 6-2 (totally 2,048D) for each frame m PLDA model trained for each feature set
J m Step 2: HERML for image set modeling (integrating DCNN features of all frames) S level binati ith Li Logistic R ion (LLR)
" ' m Score-level combination with Linear Logistic Regression
Competltlon Wwas presented' 0 Fusing three set-based video features : mean, covariance matrix and Gaussian model Enrollment
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Hierarchical-PEP Model MLPQ face matching on videos SURREY Modified from the PBPR approach [1]
= Unified face representation for face image and face video ' ;rgerngzseelection based on sharpness, focus, pose and e —a
= Decompose face into parts of parts _ . . B
. . . . Multiscale Local Phase Quantisation and LBP features D
= Hierarchically integrate parts with a PCA-LDE net | are extracted and combined using kernel fusion o (g) ficl
m  Construct low dimensional pose invariant face representation = Kernel Discriminant Analysis (KDA) of the combined wanstormatn | poins [1] C. Ding, C. Xu, and D.
______________________________________________________ features extracts discriminative information for face y :
Test face pair : ] Top-down ] Bo_ttom-up ] \: recogn|t|0n Rendered Frontal Face ~ Non-occlusion Detection Tao, MUItI-taSk pose-
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. . . . i <1> The PBPR approach handles the full range of pose variation from -90 degree to +90
F'ne'gra'ned structures of faces parts help in addressmg The “off the shelf” face matching algorithm outperforms LRPCA degree and achi,e)\’/)es strong performa:ce. (plgease,;efer :‘/o [l1] and [2]) 7
pose variations. but it is challenged by the harsh conditions of PaSC images <2> The modified approach from PBPR achieves very competitive performance with only
limited training data in this competition.
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Flip Mino F360B  640x480 Canopy Golf Swing
High Quality Video Camera - Control Handheld Consumer Grade Cameras Sensor Kodak 28 1280x720 | Canopy | Bag Toss
S_ Samsung M. CAM 1280x720 Office Newspaper
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® Tripod Mounted Panasonic HD700 camera ® Videos from a mix of 5 different cameras _ Sanyo Xacti 1280x720 Lab 1 Write on Easel
= Frame size is 1920x1080 m Camera types/sizes are summarized to the right Location Sanyo Xact 1280x720 | Lawn Blow Bubbles
. : - Nexus Phone 720x480  Stone Ball Toss
m Total of 1401 videos of 265 people m Total of 1401 videos of 265 people Action _ _
o _ S _ o _ S _ Kodak Zi8 1280x730 Lab 2 Pickup Phone
® Participants delivered 14012 similarity matrices ® Participants delivered 14012 similarity matrices
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® Wide range of approaches tested ®m Vertical axes is verification rate @ FAR = 0.01 . ~——/ — /
® Wide range of performance, all better than LRPCA ® Plots highlight performance change s M L s M L S M L S M L CaCa EaBu PhEa HZH2 HIH2 H2H3
m Significant Progress, best seen so farin ... = Algorithms trend together " UTS g
m Either IJCB 2014 competition or the PittPatt SDK ®m Location/Action matter the most .
m Control videos easier for most participants m Camera matters, but is confounded with location ] . / .
® No Control vs. Handheld difference for top algorithm ® Image/video attributes are secondary S - 5
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