
Motivation and Framework for Using Genetic Algorithms for
Microcode Compaction

Steven Beaty
Department of Mechanical Engineering

Darrell Whitley
Department of Computer Science

Gearold Johnson
Department of Mechanical Engineering

Colorado State University
Fort Collins, Colorado, 80523

Abstract

Genetic algorithms are a robust adaptive optimization technique
based on a biological paradigm. They perform efficient search on
poorly-defined spaces by maintaining an ordered pool of strings
that represent regions in the search space. New strings are pro-
duced from existing strings using the genetic-based operators of
recombination and mutation. Combining these operators with nat-
ural selection results in the efficient use of hyperplane information
found in the problem to guide the search. The searches are not
greatly influenced by local optima or non-continuous functions.
Genetic algorithms have been successfully used in problems such
as the traveling salesperson and scheduling job shops. Microcode
compaction can be modeled as these same types of problems,
which motivates the application of genetic algorithms in this do-
main.

1 Introduction

Microcode compaction techniques have been based on
heuristics thought to produce the shortest final code se-
quences. In Landskov et al. [LDSM80] these are char-
acterized into the following types: linear analysis, critical
path, branch and bound, and list scheduling. The approach
put forth in this paper does not have its basis in heuristics nor
does it fall within the proper bounds of the previous clas-
sifications. The method proposed uses genetic algorithms,
an artificial intelligence technique, to correctly schedule
micro-operations into micro-instructions.

Because the cost of developing micro-architectures is
great, compaction should make maximal usage of the re-
sources available in a machine. This goal is complicated
by the fact that, as Robertson [Rob79] has shown, the en-
tire microcode compaction process is NP-complete. To
generate code in a reasonable amount of time, previous

methods have reduced the search space of the problem by
introducing heuristics that remove areas that do not appear
to benefit the final code sequence. This is a reasonable
approach given the nature of the algorithms used to search
for correct solutions.

Another approach would be to attempt to increase the
effectiveness of the search techniques. Genetic algorithms
have been already been applied to known difficult search
problems. Good results have been obtained on the well-
known travelingsalesperson (TSP) and job shop scheduling
problems. Both problems optimize a graph representation
that includes constraints. The TSP constrains the order that
nodes can be visited such that all nodes must be visited
once and only once. Job shop scheduling has both resource
conflicts and timing constraint between nodes. Microcode
compaction has similar constraints in the form of a data
dependency graph. The application of genetic algorithms,
known to be good at optimizing graph-based problems, to
compaction would seem appropriate.

An environment, such as the compiler described by Beaty
et al. [BDM+88], is assumed for this work. Such an en-
vironment needs to contain a machine description that in-
cludes all information relevant to compaction including

� machine-level resource descriptions with timing con-
straints,

� field encoding format and field requirements for each
individual machine operation, and

� dataflow information for each operation.

The environment must also produce a data structure
amenable to the compactor. This structure usually takes
the form of a graph that represents both the operations to
be performed and any constraints between successive op-
erations. Any milieu producing these requirements (such

as stand-alone assemblers or optimizers) is sufficient; a re-
targetable, optimizing, microcode compiler is the basis for
this work.

2 The Microcode Compaction Prob-
lem

The problem that compaction tries to solve is placing a
groupof micro-operations (MOs) necessary for correct exe-
cution of the algorithm into as few micro-instructions (MIs)
as possible. An optimal answer has been shown to be NP-
complete, i.e. computationally expensive. There are many
problems related to compaction such as the TSP and pro-
cessor scheduling problem but Landskov et al. [LDSM80]
states compaction is an example of job shop scheduling,
giving a direction of attack.

2.1 Representation

Most compaction algorithms run on data dependency
graphs (DDGs). A DDG is composed of nodes that rep-
resent MOs and arcs that enforce a partial ordering on the
nodes. The nodes contain information that constrain their
placement with other nodes, such as resource and instruc-
tion field information. Machine resource information, in
our environment, is represented as live tracks. This infor-
mation is read from a file that contains all machine specific
details. A live track contains the name of the resource
and whether the resource is live in, live out or defined in
this node. Nodes may have multiple live tracks for any
resource, indicating repeated usage of the resource. Field
usage for a node is maintained in a bit vector form for rapid
comparison.

The arcs are directed such that an arc from node X to
node Y implies that MO Y cannot be placed in an MI
higher than the MI in which MO X is placed. That is, Y
cannot execute in the machine before X and preserve the
semantics of the algorithmic description. There is timing
informationplaced along the arcs specifying how soon after
the preceding node a successor node may be executed. This
is data dependency information, i.e. how long the value in
a required resource is valid. This timing is specified to
have a minimum and a maximum value. So, for example,
if the arc between X and Y had a minimum time of 2 and
a maximum time of 6, Y cannot be placed in an MI until 2
time units after X and must be placed before 6 units have
expired. So the information written by X to a resource that
Y reads is available for four specific cycles in the machine.
The time units can be based on any convenient measure
such as major or minor cycles in the target architecture.

Data anti-dependencies describe the amount of time after
a resource has been read that it may be rewritten. Vegdahl
[Veg82] noted that more attention should be given to the
ordering of data anti-dependencies because of the large
effect on both resulting code and execution time of the
compactor.

Given a DDG that represents the action to be taken in the
target machine, the compaction algorithm attempts to place
all nodes in as few MIs as possible given the following
constraints:

� data dependencies in the graph are maintained,

� resource usage cannot conflict within an MI,

� encoding fields cannot conflict within an MI.

2.2 Previous Methods

Landskov et al. [LDSM80] elucidates four methods of
microcode compaction:

� linear analysis

� critical path

� branch and bound

� list scheduling.

Linear analysis attempts to place an MO in the highest MI
possible. When an MO does not fit within an existing MI,
a new one is formed to contain it. Critical path finds the
shortest viable path through the MOs and places them in the
required number of MIs first. It then attempts to place all
remaining MOs into those MIs. Failing that, it creates new
MIs to receive any leftover MOs. Branch and bound forms
trees of possible MIs; a new branch is formed wherever
more than one MI could be placed at that point in the list.
List scheduling starts with an initially empty MI list. MOs
are placed within this list when they are

1. data ready (that is, when all the resources they depend
upon have the proper values), and

2. highest on the data ready list as judged by a weighting
heuristic.

These all are methods for intrablock compaction.
Recent efforts have focused on interblock compaction

as well. Trace scheduling and percolation scheduling are
two methods. Trace scheduling extends local compaction
methods by allowing them to operate on more than one
block at a time [Fis81, HMS87]. A trace is a loop-free
section of code that contains multiple basic blocks. When
an entire trace is scheduled, the possibility for creating

incorrect code arises. A bookkeeping phase makes copies
of operations along other traces to correct the semantics.
Traces are chosen in order of most-likely-to-execute first.
Other traces can then be compacted. This emphasizes the
frequently traversed paths at the possible expense of the
infrequently traversed ones.

Percolation scheduling, as described by Nicolau [Nic85],
has a small set of operations allowed between MIs in a pro-
gram graph. These allow deletion of empty MIs, non-flow
control MO motion, movement of a conditional jump, and
removal of redundant MOs. The operations are defined so
that the intended semantics are always preserved. Inverses
of these functions are also allowed. The application of the
operators is guided by higher level heuristics.

2.3 Heuristics

All methods so far rely on heuristics to remove parts of
the search space that appear fruitless. Linear analysis tries
to place MOs in the highest possible MI so that it reduces
interference with other MOs that need to be placed. It
also uses a first-come first-served ordering on the MOs to
be placed. The critical path method places MOs not on
the critical path heuristically. Branch and bound reduces
the building and searching of the trees by guessing which
branches will not lead to more compact code. Packing of
MOs into MIs are ranked according to some metric. List
scheduling has a similar approach in that MO placement is
based on a set of weights assigned to each MO. The MO
that is placed next in the MI list is the one on the data ready
list with the highest weight. Some of the various criteria
for weighting as suggested by Allan [All86] are

� difference between current MI and the position this
MO must be placed,

� average of non-infinitesuccessor arc lengths, allowing
more tightly constrained nodes to be placed first,

� number of non-infinite successor arcs, and

� height in uncompacted DDG.

A combination of these and other weights can be used
to drive the list scheduling algorithm. A polynomial used
for varying the priority of the different weights on a per
machine basis was also implemented in Allan [All86].

The use of heuristics can be difficult when trying to
arrive at an efficient yet efficacious compactor. This dif-
ficulty is compounded by several factors. The heuristics
generally must be regenerated for each machine targeted.
The heuristics themselves are not in a form easily under-
stood by humans. This makes it difficult for humans to
correctly guess and modify a compactor’s behavior. It is

also possible that the heuristics do not address an issue that
has great import on the final code. Heuristics that work well
for one ordering of MOs may not work well for another.

3 Genetic Algorithms

Genetic algorithms (GAs) manipulate populations of strings
that represent the parameterization of the optimization
problem. The strings correspond to chromosomes or geno-
types in biological terms. There is a mapping from this rep-
resentation to the phenotype of the actual solution. GAs use
a form of selective pressure to encourage over-achieving
and discourage under-achieving strings in the population.
A string’s chances of reproducing correspond to its per-
formance in the current environment. This is an easily
understandable method and it produces robust searches of
difficult parameter spaces as demonstrated by Holland and
others [Hol75, DeJ86, Gol89].

3.1 Foundations

Parameters are usually encoded into some form of binary
representation. This representation is then used for sub-
sequent operations and evaluations. Consider the string:
1100101001110110001. This could represent an in-
teger, a fixed or floating point real, or any other relevant
model of the parameters to be optimized. Multiple param-
eters are simply appended together. The initial population
is usually generated by creating random strings.

To perform recombination, the basis for most ge-
netic adaptation in nature, consider also the string:
xyyxxyxyxyxxxyyyxxy (withx for 0 and y for 1) and
some number of break points. The genetic material from
one string is then swapped between those break points with
the corresponding material from the other. An example
with two break points is:

11001 \/ 01001110110 \/ 001
xyyxx /\ yxyxyxxxyyy /\ xxy

resulting in the two children:

11001yxyxyxxxyyy001
xyyxx01001110110xxy

Although a single break point is usually used in discus-
sions of GAs, two have been empirically shown by Booker
[Boo87] to produce better results.

Another operation in the reformation of strings is mu-
tation. This is accomplished by randomly toggling some
of the bits in the offspring. This creates genetic diversity.
It has been found, in the general case, that mutation rates
should be kept low (less the 5%) for best exploitation and
least disruption of the information present.

In standard GAs, all the strings in the population are
reformed during a generation. Parents are crossed on the
basis of their performance in comparison to the average
fitness of the population and mutation is allowed to occur
on the offspring. The selective pressure is provided by the
fitness measure; the differential need not be great to achieve
good results. Both selective pressure and initial population
sizes may be tuned to match the problem space. The type
of crossover and rate of mutation needs to be selected based
on the problem type.

To relate the encoding with the sampling of hyperspace,
consider a string of length three. With this we get the abil-
ity to represent a three-dimensional hypercube. The string
011 represents a corner of the hypercube. Edges have one
of the bits as a “don’t care”, i.e. 01*. Faces have two “don’t
cares”: i.e. 0**. The entire space can be expressed by a
complete “don’t care string”: i.e. ***. Strings that contain
a “don’t care” in some position are termed schemata. In
general, each binary encoding corresponds to one corner in
the hypercube and samples 2L � 1 different hyperplanes
in the search space where L is the length of the binary en-
coding. This is the idea of “intrinsic parallelism” whereby
one string samples the productivity of many hyperplanes
[Hol75]. The schema theory indicates that individual hy-
perplanes will increase or decrease their representation in a
population based upon their relative fitness in that popula-
tion when reproduction and recombination are applied.

The more diverse the original population, the more global
the search. The search does not avoid or escape from local
minima; it does a global search where local minima are
ignored in favor of higher-valued strings. If a local minima
is found to be best, it will tend to be competitive with all
areas of the space searched. It has been shown that if an
area in hyperspace has above average performance and is
sampled by a schema in the population, that area’s repre-
sentation will increase within the population. It has been
calculated that for the processing of N structures per gen-
eration approximately N 3 schemata are sampled (intrinsic
parallelism).

The ability to sustain search is dependent upon the ge-
netic diversity in the population. When a population lacks
diversity, new areas of the space are not examined. Muta-
tion can be used to drive the search into these unexamined
areas. However, a fixed level of mutation has been shown
to disrupt the search early and then fail to provide enough
diversity in the later stages. Thus, adaptive mutation in-
creases the mutation rate based on the homogeneity of the
population and gives better performance.

3.2 GENITOR

The GENITOR GA program, developed by Whitley
[WSF89, WSS90], has some differences with “standard”
GAs that appear to increase performance. It does not re-
place the entire population with each generation. Instead it
probabilistically chooses two parents to reform into two off-
spring. Recombination and mutation occur, then one of the
offspring is discarded randomly. The remaining offspring
is placed in the populationaccording to its fitness in relation
to the rest of the strings. The lowest-valued string is dis-
carded. This keeps high-valued strings within the popula-
tion, directly accumulating high-performance hyperplanes.
It also bases the reproductive opportunity upon rank with
the population, not upon a string’s fitness value in compari-
son with the average of the population, reducing the impact
of selective pressure fluctuation. It also reduces the impor-
tance of choosing a proper evaluation function for fitness
in that the difference in the fitness function between two
adjacent strings is irrelevant.

A recent improvement has been made to GENITOR in
the form of a distributed genetic search. This is not simply
running subpopulations on different processors but also
occasionally swapping the best members from neighboring
subpopulations. In this way, subpopulations are somewhat
independent while still sharing some information. The
search speed is increased over the serial method, allowing
larger populations to be explored in a given amount of time.
Larger problems are also approachable with the distributed
genetic search. It is also a more robust method, producing
better results without as much sensitivity to population size
or selective pressure. The improvements are attributed
to the maintenance of genetic diversity by the interacting
subpopulations.

4 Results from Related Work

Realistic scheduling problems are difficult to define using
traditional mathematical techniques. As a result, more tra-
ditional optimization methods are difficult to apply. GAs
are capable of searching ill-structured spaces and also pro-
vide a global method of search.

Genetic algorithms have been recently applied to two
areas of interest with good result: the traveling salesper-
son problem and job shop scheduling. The following two
subsections discuss the motivation and results reported by
Whitley and others [WSF89, WSS90, CS89]. High quality
solutions have been found for both problems. The results
are not based upon heuristics or local optimization infor-
mation. As is common with GAs, a method of ranking the
current population is required. In both these problems, this
is a simple task of summation to find the length of each

member of the population. This task is, if anything, easier
for microcode compaction in that the length of compacted
code is trivial to find.

4.1 The Traveling Salesperson Problem

This problem involves finding the shortest Hamiltonian
path or cycle in a graph where nodes represent cities, and
edges represent the paths and distances between two cities.
The optimal solution is one that has the least distance and
yet visits all the nodes (cities). The TSP is an example of
a problem that is NP-hard; all known methods for finding
an optimal solution require searching a space that grows
exponentially with the number of nodes in the graph.

When using GAs to perform TSP optimization, what is
desired is to maintain any good subtours present in the par-
ents. This leads to shorter overall tours in the children. A
recombinationoperator that preserves edges will exploit the
most amount of information from the parents. In Whitley
et al. [WSF89, WSS90] this is achieved by making an edge
map and having the recombination operator use this map.
It is possible to show that this method changes the sam-
pling rate of hyperplanes in the N-dimensional hypercube
(where N is the length of the encoding of the problem) in
favor of high fitness hyperplanes. This method of optimiza-
tion does not use any information on the distance between
cities, only the distance of the overall tour. The use of this
metric for the evaluation function is important because of
its simplicity and applicability to many forms of schedul-
ing and sequencing including the microcode compaction
problem.

The published results from this method are impressive.
The best known solution for a certain 30-city TSP problem
is 420. With a serial version of GENITOR, a population
of 200 and allowing up to 70,000 recombinations, the GA
found the best known solution in 28 of 30 tries. It found
a solution of 421 with the other two tries. With the dis-
tributed version, it found the best known solution in 30 of
30 attempts. On a 105-city problem, with the distributed
version and 10 subpopulation of 1000 each and allowing
for 200,000 recombinations in each subpopulation, the best
known value of 14,383 was found 15 out of the 30 times.
In the remaining 50% of the time, the solutions were within
1% of the best known. More recent enhancements to the
algorithm have further improved performance (solutions of
420 on 45 of 45 tries) while reducing search time by more
than 50(a maximum of 30,000 recombinations).

4.2 Job Shop Scheduling

In scheduling machine usage on a job shop floor, the flexi-
bility is usually found in the sequence of jobs presented to

the line. There are fixed setup, idle, and active costs for
machines. A strict amount of product needs to be produced
in order to meet the demand. Therefore, the approach taken
is viewing the optimization problem as one of sequencing
the types of jobs presented to the first machine in the line.
This can then be viewed as a problem similar to the TSP.
The sequence is then evaluated on the basis of total cost
and the GA performs the search accordingly.

In Whitley et al. [WSS90] a detailed description of an
actual production line in use at Hewlett-Packard in Fort
Collins, Colorado is discussed. It contains 6 workcells
(groups of machines) in sequence, each performing a spe-
cific operation. Each has a single input and a single output
queue. Every workcell contains two identical machines
operating independently. The machines have costs associ-
ated with the various tasks they perform. There are twenty
different types of products that are produced by the line.

Two different approaches were tried: 1) a strict FIFO
where the GA controlled the sequence of jobs presented
to the line, and 2) a HYBRID where the GA attempted
to optimize the initial sequence and a greedy algorithm
attempted to reorder jobs in the line for maximal machine
usage. The FIFO job appears to be more difficult because it
is not allowed to reorder jobs within the line. Both models
try to keep all machines busy all the time. Surprisingly,
the FIFO model produced better sequences, i.e. kept more
machines busy more of the time resulting in lower cost.
It also produced results faster than the HYBRID method.
The results were not greatly different (approximately 3%)
but the implication of not having to use a greedy, heuristic-
based method (requiring more code and effort) are great. It
is thought that FIFO worked better than HYBRID because
of its ability to directly control all the global information.
What appears good from a local greedy point of view is not
always good from a global perspective. The FIFO is also
probably a more realistic model of many scheduling tasks.

The implications of using only overall cost for the eval-
uation function are also significant. This allows for the
application of GAs to other scheduling or sequencing prob-
lems that are not well-structured enough for traditional op-
timization methods. The only two areas that vary between
problems are

1. the representation scheme and

2. the evaluation function.

It has been shown empirically that these are easy to vary.
[WSS90] concludes “that one should not attempt to build

heuristics into the scheduling system, but rather let the ge-
netic algorithm do the work.” By doing this, the imple-
mentation is simplified, the computational complexity is
reduced and the quality of the results are not damaged.

5 Framework for Scheduling Data-
Dependency Graphs

This section describes a framework for transforming DDGs
into scheduled microprograms. It must be emphasized that
this is only one of the plethora of possible methods. For all
methods in this vein there are several design components
that must be chosen. These are 1) the syntax of the chro-
mosomes, 2) the interpretation of the chromosomes, and 3)
the set of operators that transform the chromosomes. Other
controlling parameters may be tuned to enhance the per-
formance of the GA. These include population size, parent
selection method, choice of evaluation function, and mu-
tation rate. These have less impact upon the GA than do
the chromosome operators so less attention will be paid to
them.

One of the chromosome operators is mutation. Mutation
simultaneously increases genetic diversity and broadens
the search space. The method of mutation chosen moves
an MO from one MI to another. This is allowed only
when no code movement constraints are broken. Empty
MIs are not removed from the list during compaction as
they add scheduling flexibility. In the final schedule, all
non-essential empty MIs are removed. If a mutation-only
approach is effective, this implies that

1. there are few local minima, and similarly

2. there are many good solutions.

Our assumption is that these two conditions are not present
in compaction as a rule so the crossover operator becomes
important.

To examine the crossover operator, a relevant example
proves beneficial. The following is an overview of a com-
plex schedule optimization problem to which Syswerda
[Sys90] applied GAs. The problem involves scheduling
machinery in a lab cognizant of

� resource constraints between simultaneous users,

� time constraints within the workday,

� setup time for each task,

� priority of each task, and

� precedence in the ordering of tasks.

Information required to codify the process of creating ef-
ficient schedules is difficult to obtain, because of its com-
plex nature and the difficulty of expressing it in a succinct
rule-based form. GAs do not require this codification, an
example of domain-specific information.

The scheduling problem is one of placing tasks in a ma-
trix of resources versus time. Contention for a resource is

not allowed at any time during the schedule. If resource
overlap is empty,multiple tasks may be executed simultane-
ously. A complete schedule contains possibly overlapping
tasks ordered in an ascending time sequence. Time is dis-
crete with tasks allowed to start only on an hour boundary
and to use only integral hour increments. Using this ap-
proach, the problem may be viewed as either an ordering
or a combinatoric one. The list of tasks must be placed in a
particular order; not all orders are legal because they might
violate the constraints mentioned above.

To achieve legal orderings a deterministic schedule
builder is used. This receives an ordered list of tasks and
builds a schedule based upon that. It places tasks into the
matrix by choosing from the front of the ordered list. This
scheduler guarantees that all constraints hold for all tasks
placed. The process continues until all tasks are scheduled.
This process is very similar to microcode list scheduling
except heuristics are not used to choose a task’s priority.
What determines a task’s priority is its position within the
list: it is this ordering that the GA optimizes. This has
the benefit that the GA does not have to know anything
about the specific scheduling task. It only has to perform
perturbations on the priority list. Adjacency is unimportant
within the list; resource contention is resolved simply by
position.

The schedule builder used in [Sys90] is not very com-
plex, allowing and demanding the GA to produce good
orderings. This provides the GA with, and control of, all
information pertinent to the scheduling process. The eval-
uation function (based on how well priority jobs are placed
within the schedule) provides sufficient feedback.

Three different mutation and three different crossover
operators are compared to a simple random search. Each
of the mutation operators produced results much better than
simple random search. The best mutation operator simply
switched two tasks selected randomly. Each crossover op-
erator also produced results better than random search. In
subsequent tests, each crossover operator was combined
with the order-based mutation operator, and these combi-
nations produced the best overall results. It appears that
crossover plays a more significant role early in the gen-
erations with mutation playing a more important role as
populations converge.

The similarities between this problem description and
solution and those of list scheduling microcode are plain.
The encouraging results in both this system and others point
to GAs application to the compaction problem. The simple
schedulers and domain-independent optimizations promise
easy and effective compactors. While much needs to be
done to validate this approach, the explorationshould prove
fruitful.

6 Conclusion

Genetic algorithms provide for machine-independent mi-
crocode compaction optimizations. Their performance on
closely related problems suggest that they are well-suited
for the task. GAs remove the need to specify good heuristics
by using only the total length of the resulting microcode as
a metric. This allows more of the search space to be visited,
reducing the effects of local minima. They will combine
two well-suited graphs to form another, preserving areas of
well-compacted microcode in the process. The operators
are simple and easy for a human to comprehend.

A possible drawback is the time required by using GAs
to perform compaction. This will certainly be greater than
most of the heuristic-based methods. It should be noted,
however, that the time taken by a GA-based approach is
eminently controllable. One only has to limit the size of
the population and number of recombinations to control the
total time. There exists a classic tradeoff between running
time and other benefits. GAs should be considered when
ease of retargetability, lack of heuristics, and quality of
produced code are significant concerns.

References

[All86] V.H. Allan. A Critical Analysis of the
Global Optimization Problem for Horizontal
Microcode. PhD thesis, Computer Science
Department, Colorado State University, Fort
Collins, Colorado, 1986.

[BDM+88] S.J. Beaty, M.R. Duda, R.A. Mueller, P.H.
Sweany, and J Varghese. “Optimization is-
sues for a retargetable microcode compiler”.
IEEE MicroArch, 3(1):5–15, December 1988.

[Boo87] L. Booker. “Improving search in genetic algo-
rithms”. In Lawrence Davis, editor, Genetic
Algorithms and Simulated Annealing, pages
61–73. Morgan Kaufmann, 1987.

[CS89] Gary A. Cleveland and Stephen F. Smith. “Us-
ing genetic algorithms to schedule flow shop
releases”. In Proceedings of the Third Inter-
national Conference on Genetic Algorithms.
Morgan Kaufmann, 1989.

[DeJ86] K. DeJong. An Analysis of Reproduction and
Crossover in a Binary - coded Genetic Algo-
rithm. PhD thesis, University of Michigan,
Ann Arbor, 1986.

[Fis81] J.A. Fisher. “Trace scheduling: A technique
for global microcode compaction”. IEEE

Transactions on Computers, C-30(7):478–
490, July 1981.

[Gol89] David Goldberg. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[HMS87] M.A. Howland, R.A. Mueller, and P.H.
Sweany. “Trace scheduling optimization
in a retargetable microcode compiler”. In
Proceedings of the 20th Microprogramming
Workshop (MICRO-20), Colorado Springs,
CO, December 1987.

[Hol75] John Holland. Adaptation in Natural and Ar-
tificial Systems. University of Michigan Press,
1975.

[LDSM80] D. Landskov, S. Davidson, B.D. Shriver,
and P.W. Mallett. “Local Microcode Com-
paction Techniques”. ACM Computing Sur-
veys, 12(3):261–294, September 1980.

[Nic85] Alexandru Nicolau. “Percolation scheduling:
A parallel compilation technique”. Technical
report, Department of Computer Science, Cor-
nell University, Ithaca, New York, May 1985.

[Rob79] E.L. Robertson. “Microcode Bit Optimization
is NP-complete”. IEEE Transactions on Com-
puters, C-28(4):316–319, April 1979.

[Sys90] Gilbert Syswerda. “Schedule optimization us-
ing genetic algorithms”. In L. Davis, editor,
The Genetic Algorithms Handbook. 1990.

[Veg82] S.R. Vegdahl. Local Code Generation and
Compaction in Optimizing Microcode Compil-
ers. PhD thesis, Department of Computer Sci-
ence, Carnegie-Mellon University, Pittsburgh,
PA, 1982.

[WSF89] D. Whitley, T. Starkweather, and D. Fuquay.
“Scheduling problems and traveling salemen:
The genetic edge recombination operator”. In
Proceedings of the Third International Con-
ference on Genetic Algorithms. Morgan Kauf-
mann, 1989.

[WSS90] D. Whitley, T. Starkweather, and D. Shaner.
“The traveling saleman and sequence schedul-
ing quality solution using genetic edge recom-
bination”. In L. Davis, editor, The Genetic
Algorithms Handbook. 1990.

