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Abstract. In this paper, we examine the effects of noise on both
local search and genetic search. Understanding the potential effects
of noise on a search space may explain why some search techniques
fail and why others succeed in the presence of noise. We discuss
two effects that are the result of adding noise to a search space: the
annealing of peaks in the search space and the introduction of false
local optima.

1 Introduction

The two major components to any search problem are the algorithm we choose
to use to traverse the search space and the function used to provide feedback
to the algorithm (i.e. the objective function). When the objective function
provides noisy feedback, the resulting behaviors and long term performance of
search algorithms can be surprising.

By design, genetic algorithms should be effective search techniques in noisy en-
vironments. The genetic algorithm population preserves both highly fit points
in the space and less fit points in a space which allows for a certain amount
of variance for the fitness values of its members. Selection allocates trials to
subpartitions of the search space based on the relative fitness values of sample
strings the population: providing that the amount of noise is not overwhelming,
this operation is still effective in the presence of noise. Thus, one advantage of
using an evolutionary algorithm in a noisy environment is that it is not quick to
discard valuable information.

Local search techniques, while often producing very good results in noiseless
environments, are brittle in comparison to genetic algorithms in noisy envi-
ronments. Local neighborhood search methods are often unable to accurately
identify the best improving move or they may not be able to confidently identify
a local optimum without strong a priori information about the amount of noise
present relative to the expected change in the objective function for any given
move. On the other hand, noise can sometimes have a soft annealing effect on
the search space: even if one is currently in a local optimum, noisy evaluation
can still potentially indicate that an improving move is possible. This can po-
tentially make it possible for local search to actually perform well in the presence
of noise. Levitan refers to this effect as “melting” [8].



It is difficult to predict how an arbitrary algorithm will behave in the presence
of noise. This paper empirically examines the performance of various search
algorithms in both noisy and noiseless conditions. We also include some old
and new test functions, since the type of test function that is used also impacts
the performance. We tested both the CHC as well as an elitist simple genetic
algorithm along with Adaptive Simulated Annealing [7] and two local search
techniques: random bit climbing and Line Search.

2 Background

Holland’s schema theorem is based on the idea that selection acts not just on
individual strings, but also on hyperplanes representing subpartitions of the
search space. The schema theorem, in fact, is just a lower bound on the change
in the sampling rate for a single hyperplane from generation ¢ to generation ¢+ 1.
Let P(H,t) be the representation of hyperplane H in the population at generation
t; let P(H,t+s) be the representation of hyperplane H in the population at a
point intermediate between generation ¢ and t + 1 after selection but before
recombination. Under fitness proportionate selection

P(H,t+5) = P(a, 1) UL

e

where f(H,t) is the average fitness of strings in the population that sample H
at time t and f; is the average population fitness. Now assume that random
Gaussian noise is included as part of our fitness function. That is, for all strings
1 that are members of the current population,

FH, D) = (i) + Gi)

ieH

where e() is the true evaluation of string ¢ and G; is noise added to string i.
The noise is randomly drawn form a Gaussian distribution with g = 0. If we
have a reasonably large sample for hyperplane H, then

FH =D e+ Gi=> e

ieH ieH ieH

In other words, noise has no impact on the expected average fitness of a hyper-
plane subpartition if the number of samples from that partition is large. This
suggests that selection on large hyperplane subpartitions is not seriously affected
by noise if the population is also relatively large. This argument has been used
to suggest that genetic algorithms are robust in the presence of noise, but there
have been few empirical studies confirming this argument.

It should also be noted that this argument depends only on selection and that
similar arguments might be applied to other evolutionary algorithms using other
forms of selection. In the current study we look at CHC, which combines features
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z,y € [-512,511]

z,y € [-512,511]
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Table 1: Suite of test functions used in the experiments.

of genetic algorithms and (u + A) evolution strategies. CHC also used small
population sizes (i.e., 50) and truncation selection. This doesn’t appear to fit
the robust ”hyperplane sampling” model very well, but nevertheless our results
indicate that CHC is quite effective in the presence of noise.

Previous studies on the effects of noise on genetic algorithms performance have
dealt mainly in analyzing specific components of specific genetic algorithms that
may improve convergence properties, namely selection methods [10, 6]. Hammel
and Back [6] also discuss the relationship between population size and sample
size in terms of the potential benefit of one over the other. Greffenstette [4]
provides both theoretical and empirical evidence that indicates that better per-
formance can be achieved by choosing a large population over doing more work
per evaluation to reduce the impact of noise on each string evaluation when us-
ing a traditional genetic algorithm. Mathias and Whitley [9] have done similar
initial studies, but only looked at the random bit climbing, RBC, and also used
a restricted set of test functions.

We test a suite of five test functions with and without the addition of noise.
These include Rastrigin’s function (F6), Schwefel’s function (F7) and Griewangk’s
function (F8). We include these relatively simple functions in order to observe
how noise impacts functions with very limited nonlinearity and whose optima
can be found rather quickly using simple methods.

The remaining two functions were developed by Whitley et al. [11] (See Table
1). For all functions, every parameter is represented using a ten bit substring
and Gray coded. All functions were scaled to 20 parameters. F'6, F'7 and F8
are scaled using a summation from 1 to 20 of each parameter evaluated using
the basic subfunction that defines each function. For the functions in Table 1
Whitley et al. [11] describe methods for expanding functions of two variables
into functions of N variables in a nonlinear manner. The method used here is the
wrap method. A general formula illustrating the wrap method using a function
of two variables F is as follows:

n—1

EF(z1,%2,x3,..,2,) = F(z1,2,) + Z F(zi,xip1)

i=1

where E'F is a function obtained by the ezpansion of F.

We examine the performance of five search algorithms: two evolutionary algo-



rithms, two local search techniques and adaptive simulated annealing. We do
not tune any of the algorithms to deal with the noise. The CHC adaptive search
algorithm [3] (CHC) is run using a population of 50 with the HUX recombina-
tion operator while the elitist simple genetic algorithm uses tournament selection
[5] (ESGAT) and a population size 200. For ESGAT, recombination is accom-
plished using a 2-point reduced-surrogate crossover operator [1] applied with
probability 0.9 and mutation is applied to each individual bit with a probability
of 1/L, where L is the length of the string. (We stress that testing the effect of
increasing population size is one goal of our future work.)

The two local search techniques used here are Davis’s Random Bit Climber and
Line Search [11] (LINE). Davis’ random bit climber (RBC) starts by changing 1
bit at a time beginning at a random position. Each improving move is accepted.
The sequence in which the bits are tested is also randomly determined. After
testing every bit in the string, a new random sequence for checking the bits is
chosen and RBC again tests every bit for an improvement. If a local optima has
been reached (i.e., there are no improving moves) RBC is restarted from a new
random point in the space by generating a new random string.

Line Search works with any discretization of the space. Starting with a randomly
chosen solution of n parameters, Line Search enumerates each parameter to find
the best possible setting for that parameter. The order in which the parameters
are enumerated is also randomly determined. If there are no nonlinear inter-
actions between variables, then Line Search is an exact method guaranteed to
find the global optimum if the objective function is also exact. Assuming each of
the n parameters has k possible values, Line Search will have reached the global
optimum after nk evaluations if there are no nonlinear interactions. F6 and
F'7 are exactly solved by Line Search since there are no nonlinear interactions
between variables. On functions with nonlinear interactions, Line Search acts
like a local search method searching a neighborhood of nk points.

The last algorithm that we use in our experiments is adaptive simulated an-
nealing (ASA). The implementation used is ASA version 10.16 which was down-
loaded from the CalTech archive of Lester Ingber [7].ASA is a simulated anneal-
ing algorithm first developed as Very Fast Simulated Reannealing (VFSR) in
1987. It differs from traditional simulated annealing algorithms by allowing for
specialized annealing schedules for different parameters to address the issue of
parameter sensitivity. For our application, tuning of the algorithm was minimal
and limited to increasing performance on large parameter spaces. Reannealing is
not utilized due to the high number of evaluation function calls required. Termi-
nation criteria was modified to prevent repeating evaluation values from ending
the search.

3 Performance With and Without Noise

The first set of experiments were run using all four algorithms and all five test
functions without the addition of any noise. The results are given in Table 2.



Mean Mean o | Mean o | Nbr

FUNC | ALG Solution o Trials Trials | Rstrts | Rstrts | Slv
CHC -939.880 0.000 | 93388 | 50333 30
ESGAT | -809.875 | 73.102 0
EF101 | RBC -668.569 | 23.400 243.69 6.39 0
LINE -752.234 | 30.299 0

ASA -740.462 | 43.479 0

CHC -476.904 7.451 0
ESGAT | -415.845 12.906 0
EF102 | RBC -407.564 14.087 192.76 5.45 0
LINE -481.829 5.301 0

ASA -445.798 16.328 0

CHC 0.000 0.000 | 158839 | 72048 30
ESGAT 12.910 3.285 0

F6 RBC 23.198 1.879 422.89 2.53 0
LINE 0.000 0.000 | 20500 0 30

ASA 4.646 1.154 0

CHC -8379.655 0.000 | 30029 6397 30
ESGAT | -8294.249 | 57.703 0

F7 RBC -6994.345 | 188.166 468.20 2.36 0
LINE -8379.655 0.000 | 20500 0 30

ASA -8379.171 0.145 0

CHC 0.000 0.000 | 50509 | 39451 30
ESGAT 1.185 0.056 0

F8 RBC 0.000 0.000 | 82215 | 98985 | 56.90 | 69.45 30
LINE 0.037 0.024 | 178789 | 113710 7

ASA 0.869 0.113 0

Table 2: All four algorithms run on the suite of five test functions without the
addition of noise.

ASA produces relatively good results; it is not the best performer but is also
not the worst. As predicted, Line Search solves F6 and F7 on its first iteration.
RBC produces surprisingly good results on F'8 while Line Search performed sig-
nificantly worse than RBC in terms of the number of times the global optimum
is found. ESGAT performs better than RBC on four of the five functions tested
and never outperforms Line Search. In fact, CHC usually outperforms all al-
gorithms with the exception of Line Search. These experiments illustrate that
Line Search and RBC can be competitive with the genetic algorithms without
the presence of noise.

The next set of experiments involve the same functions with the addition of
Gaussian noise (See Table 3). The Gaussian noise is drawn from a distribution
with g = 0 and ¢ = 6. Assuming the global optimum is g and its evaluation
is e(g), search was terminated if a noisy evaluation is obtained that is less than
or equal to e(g) — 3. The first two columns of Table 3 are the noisy mean and




Mean Mean True Mean o | Nbr

FUNC | ALG Solution o Solution o | Rstrts | Rstrts | Slv
CHC -943.063 0.155 -939.294 0.220 30

EF101 | ESGAT | -840.927 | 82.007 -839.473 | 81.852 0
+noise | RBC -665.952 | 23.046 -663.263 | 22.935 | 370.33 6.65 0
LINE -737.868 | 50.032 -735.675 | 49.933 0

ASA -759.765 | 57.286 -756.886 | 57.346 0

CHC -479.425 7.483 -478.582 7.466 0

EF102 | ESGAT | -411.256 14.053 -410.248 | 14.078 0
+noise | RBC -396.821 8.611 -394.252 8.727 | 399.46 7.57 0
LINE -482.405 6.861 -481.088 6.621 0

ASA -446.467 | 17.003 -444.356 | 17.088 0

CHC -2.270 1.779 0.660 0.186 23

F6 ESGAT 15.433 3.010 17.219 2.932 0
+noise | RBC 27.161 3.550 29.772 3.660 | 434.36 5.98 0
LINE 2.081 0.5265 4.048 0.754 0

ASA 8.052 1.138 10.323 1.428 0

CHC -8382.810 0.157 -8379.099 0.220 30

F7 ESGAT | -8280.761 | 68.429 -8279.982 | 68.416 0
+noise | RBC -6977.993 | 168.510 -6975.396 | 168.516 | 393.16 5.06 0
LINE -8378.417 0.659 -8376.452 0.786 0

ASA -8379.029 0.826 -8376.451 0.991 0

CHC -0.380 1.296 2.231 0.544 0

F8 ESGAT 1.031 0.724 3.901 0.922 0
+noise | RBC 1.561 0.649 4.523 0.711 | 427.79 6.52 0
LINE 0.076 0.413 2.889 0.488 0

ASA -0.983 0.456 2.501 0.416 0

Table 3: All four algorithms evaluated on the suite of five test functions with
noise added.

standard deviations for each algorithm based on 30 runs. The third and fourth
columns are the true mean and standard deviations for the same experiments.

Typically, the performance of any algorithm on any function degrades when noise
is added. However, the degree to which the performance changes varies not only
from algorithm to algorithm but also from function to function. The performance
of several of the algorithms is not significantly affected by the addition of noise
on EF101, EF102 and F'7 (verified using a two-tailed Student’s T-test with p =
0.05). ESGAT’s performance was particularly stable across EF101, EF102 and
F'7 and shows no significant change in performance when noise is added. RBC
shows no significant change in performance on EF101 and F'7 and Line Search
and ASA show no significant change in performance on £F101 and EF102. The
only function for which CHC does not show a significant change in performance
is F'7. When there are significant changes in performance (particularly for Line
Search and CHC), it is usually because the functions were solved 30 out of 30




times when noise is not present. However, in those cases, the mean solutions
found for the noisy function are often very close to mean solutions found for the
corresponding non-noisy function.

The solutions for the noisy versions of F'6 and F'8 are categorically worse than the
non-noisy results for all algorithms. In all cases, the mean of the best solutions
found for each algorithms becomes significantly worse when noise is added.

3.1 Melting Optima Versus False Optima

There are at least two significant impacts of adding noise to an objective function:
the soft annealing effect and the creation of false optima. Levitan [8], refers to
the smoothing and soft annealing effect as “melting” of peaks. Noise can allow
a local search algorithm to escape a local optimum by indicating an improving
move is present when none in fact exists. Our results suggest that this effect can
cause some algorithms to perform better on some functions with added noise—
especially during the initial phases of search. However, the utility of the melting
effect depends on the underlying function.

One primary difference between our experiments and those performed by Levitan
are in the algorithms we tested. Levitan uses a single algorithm that is effectively
the same as RBC without restarts. We attempted to use RBC without restarts
but the resulting solutions were not competitive with those found using RBC
with restarts simply because there is an advantage to sampling several points
in the space as opposed to examining only one. An argument for removing
the restarts is that their removal allows closer study of effects of noise on a
given search space. However, it is also important to consider whether or not
the algorithm will ultimately converge to a reasonably good solution even in the
presence of noise. For this reason, we chose to report our results for RBC with
restarts.

Like Levitan, we found evidence that supports the annealing effect. For F'7, the
number of restarts for RBC dropped significantly when noise was added to the
function. This is evidence that the search space became “smoother” when noise
was added; however, this was the only function in which this effect dominated
and in the end RBC did not have an significant improvement in the quality
of solutions it found. On functions EF101, EF102, F6 and F8, the number
of restarts significantly increased when noise was added. This implies that the
second effect, introduction of false optima, dominated in those functions.

We conjecture that if the objective function is relatively simple before the noise is
added, the noise has little or no positive impact on search and only serves to make
search more difficult. This effect is particularly evident in the performance on
F8. Whitley et al. [11] show empirically and explain analytically that at higher
dimensions F'8 has smaller and more shallow local optima. Thus, scaling up
F'8 has a smoothing effect. At 20 variables the addition of noise to F'8 caused a
dramatic increase in the number of restarts for RBC. Given that the performance
of RBC on F'8 without noise was exceptionally good, its performance degraded



dramatically when the noise was added.

4 Resampling Data During Search
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Figure 1: ESGAT (left) and Line Search (right) on EF101 (top), EF6 (bot-
tom) without noise, with Gaussian noise added and with Gaussian noise with
scheduled resampling.

Resampling data points is a common approach used to reduce the effects of noise.
Other researchers [6, 4] point out that increasing the population size of a genetic
algorithm can have similar effects as resampling data points. However, since
two of our algorithms (ASA was not used in this set of experiments) are not
population based, increasing the number of points sampled during execution by
increasing population size was not used here. Instead, we wished to explore the
benefits of sampling the evaluation function multiple times for a simple string
in order to obtain more accurate evaluations as the execution progressed. A



schedule is used so that we initially start out with 1 evaluation per string, then
exponentially increase the number of evaluations per string every 20 thousand
points sampled (20 thousand evaluations roughly corresponds to one iteration
of Line Search.) This was done for both genetic algorithms and the local search
techniques. The schedule is as follows:

0-20K points: 1 evaluation 40K-60K points: 4 evaluations
20K-40K points: 2 evaluations 60K-80K points: 8 evaluations

Of the five functions and four algorithms tested using scheduled sampling, the
only case where the addition of noise produced any improvement of performance
is for ESGAT on EF101 as shown in the upper left graph of Figure 1. For the
scheduled resampling to reduce noise, as the accuracy of the evaluation of each
point is improved, the performance tends towards the evaluation of the true
function performance which in this case is a degradation in performance. In
the lower left graph of Figure 1, ESGAT’s behavior on F6 is fairly stable with
and without noise-which is typical of ESGAT’s behavior on all of the other test
functions. Line Search exhibits changes in performance for F6 in Figure 1 that
are more consistent with intuition. Line Search has degraded performance in the
presence of noise and as the resampling is increased, the performance improves
to become competitive with the performance without noise. However, sometimes
the noise had little effect, as is shown in Figure 1 for EF101.

5 Conclusions

Our empirical study of several algorithms on several test functions reveals in-
teresting characteristics of the algorithms and the test functions. First, adding
noise can potentially have a soft annealing effect in some cases. At the same time,
adding noise can have the negative effect of adding false optima to the search
space. The degree to which either of these effects occurs is directly related to
the underlying objective function.

When run on functions without noise, Line Search and CHC produce very good
results on all functions. As expected, both RBC and Line Search prove to be
more subject to noise than the other algorithms. In fact, both genetic algorithms
had very stable performance with or without noise. In general, the scheduled
resampling did not improve the performance of the genetic algorithms. It is in
the local search process where resampling of noisy data points has an opportunity
to improve performance.

This work has been a preliminary study of the effects of noise on a variety of
search techniques. Two future directions for this work is in the area of closer
analysis of the behavior of local search methods in noisy environments and in
additional experimentation with the population sizes of evolutionary algorithms.
Levitan [8] introduced several mechanisms for closely analyzing the traversal of
his adaptive walk (or our RBC with no restarts). Similar mechanisms can be



integrated into our algorithms to more accurately determine whether or not the
algorithms are benefiting or suffering from the addition of noise.
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