Representation, Search and Genetic Algorithms

Darrell Whitley

Soraya B. Rana

Computer Science Department
Colorado State University
Fort Collins, Colorado 80523
email: {whitley,rana}@cs.colostate.edu

Abstract

Wolpert and Macready’s No Free Lunch theorem
proves that no search algorithm is better than any
other over all possible discrete functions. The mean-
ing of the No Free Lunch theorem has, however, been
the subject of intense debate. We prove that for
local neighborhood search on problems of bounded
complexity, where complexity is measured in terms
of number of basins of attraction in the search space
a Gray coded representation is better than Binary in
the sense that on average it induces fewer minima in
a Hamming distance 1 search neighborhood.

Introduction

Wolpert and Macready’s No Free Lunch theorem
(Wolpert & Macready 1995) shows that the perfor-
mance of no search algorithm is better than another
when averaged over the set of all possible discrete func-
tions. We explore the concept of No Free Lunch as it
relates to representations of optimization and search
problems that are coded as bit strings of length L. Bit
representations of this type are used by traditional ge-
netic algorithms as well as other local search methods,
such as Random Bit Climbing (Davis 1991).

Of course, there are actually many possible bit rep-
resentations: standard Binary encodings and standard
Binary Reflective Gray code are the two most com-
monly used. But if we consider all bit representations
over all possible functions, Binary is no better than
Gray encoding. Every bit representation can be de-
coded as a Binary representation of a function f; or
as the reflective Gray codings of a function fs. The
set of all possible Gray representations and the set of
all Binary representations is just the set of all possible
functions defined over bit strings; therefore, the sets of
all Gray and all Binary representations are identical.
Hence, there is No Free Lunch.

Copyright (©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite No Free Lunch results, applications oriented
researchers have argued for the use of Gray codes. It is
well known that Gray codes remove Hamming cliffs. A
Hamming cliff occurs when numbers that are adjacent
integers have Binary representations that are comple-
ments: for example 3 and 4 (011 and 100). Also, it has
been shown that a Gray code representation induces
fewer minima for some common test functions (Math-
ias & Whitley 1994b). Practitioners have argued that
real world applications have structure that bounds the
complexity of the problems that we actually want to
solve: No Free Lunch is no big deal. Yet the conjec-
ture that No Free Lunch does not hold for problems of
bounded complexity is largely unexplored.

We propose a measure of complexity that counts
the number of local minima that exist in a nonbinary
Defining neighborhood representation of the domain of
the functions. Functions that have fewer minima are
assumed to be less complex than functions with more
minima. We prove that for local neighborhood search
on problems of bounded complexity, where complexity
is measured in terms of number of basins of attraction
in the search space a Gray coded representation is bet-
ter than Binary in the sense that on average it induces
fewer minima in a Hamming distance 1 neighborhood.

The debate as to whether Gray coding is better than
Binary representations has been a classic example of
where theory and practice clash. The results in this
paper bring theory and practice closer together and
yields new insights into the role of representation as
it impacts search. This also leads to insights about
the relative merits of Binary versus Gray encodings for
genetic algorithm representations. The empirical evi-
dence indicates that genetic algorithms perform better
on Gray coded representations than Binary represen-
tations for most common test functions (Caruana &
Schaffer 1988) (Mathias & Whitley 1994a); in addi-
tion, the Gray coded representations induce fewer min-
ima than the corresponding Binary representations of
common test functions.



A Finite Set of Discrete Functions

Because we are only interested in the set of functions
which can be represented as bit strings, we also restrict
our attention to a special set of discretized functions
whose domain are the integers 0 to 2 — 1 and hence
can be represented using an L-bit representation; if
a function has multiple input parameters, then each
parameter, p, must map onto [, bits and has a domain
0 to 2'» — 1. If the natural domain of the function and
its parameters is not these integers, we assume some
auxiliary mapping exists onto this integer domain.

We also restrict our attention to functions that have
as their range 1 to 2. For discrete functions with dif-
ferent ranges we assume that the values in the natural
range of the functions can be sorted; ties can be broken
in an arbitrary fashion. We then map the i** element
in the sorted natural range to the integer i.

This reduction of the domain and range creates a
well defined finite set of functions, which we denote by
F; f; is a function in F. Let g be a function whose
domain has already been mapped to the set of integers
0 to 2L — 1, but where the range is defined arbitrar-
ily. We map g to a function f; by ranking all possible
outputs of g. Thus the range of all functions in F' is
limited to 1 to 2%. For convenience, we sometimes talk
about functions in F' as if they are 1-dimensional func-
tions with only 1 parameter coded using L bits, but all
statements apply equally to N-dimensional functions
with N parameters, N < L; we discuss N-dimensional
functions when there is potential for confusion.

Now consider a local search operator with the fol-
lowing neighborhood structure. For all integers, ¢ €
[0,2F], and for all parameters, p, in the domain of
function f; the points ¢ — 1 and ¢ + 1 are neighbors;
endpoints at 0 and 2% — 1 (or 2'» for parameter p) are
also considered adjacent. We will refer to the neighbor-
hood structure induced by this as the Defining neigh-
borhood. Given a point in the search space, we use
a local search operator that increments or decrements
each input parameter by 1, accepting either the first
improving move or the best improving move in this
neighborhood. Without loss of generality we assume
we are minimizing the function. If all points in the
neighborhood are worse than the current solution, the
current solution is a local minimum. Every local min-
imum in g is also a local minimum in f; since we pre-
served the relative value of the strings in the mapping
of g onto f;. Also, the basins of attraction that lead
to a local optimum are identical for both g and f;.
Furthermore, function g and f; will be processed iden-
tically by any genetic algorithm that uses a rank-based
selection scheme, including Tournament Selection and
Truncation Selection.

Bit Representations

Typically, with a bit representation a local search op-
erator searches a neighborhood of L bits for an improv-
ing move. We refer to this as the Hamming distance 1
neighborhood, or Hamming neighborhood. Thus, for an
N dimensional function, the number of neighbors for
any point in the space is more in the Hamming neigh-
borhood (i.e., the Hamming distance 1 neighborhood)
compared to the 2N points in the Defining neighbor-
hood, provided that there is an least 1 parameter, p,
that has an encoding using I, > 2 bits. When N =L,
each parameter takes on only 2 values and is coded
with a single bit; in this case there is no difference
between the Hamming neighborhood and the Defining
neighborhood. Also in this case there is no difference
in the Binary and Gray representation since the Bi-
nary coding and Gray coding of a bit string of length 1
are identical. If a parameter can take on 4 values and
is coded using 2 bits, then the neighborhood size as-
sociated with the parameter is again the same: there
are 2 neighbors in the Defining neighborhood and 2
neighbors in the Hamming neighborhood. However,
the Gray codes and Binary codes are not the same:
Binary maps the integer 2 and 3 to strings 10 and 11
respectively, while Gray maps the integers 2 and 3 to
strings 11 and 10 respectively. If a parameter can take
on more than 4 values, then the Hamming neighbor-
hood is larger than the Defining neighborhood.

We will denote the set of all bit representations of
functions in F' as R; R is really all possible functions
defined over bit strings of length L since R explicitly
includes the string representation as well as the eval-
uations of those strings. When the parameters in the
domain of every function in F' are converted into their
Binary representation, a one-to-one and onto mapping
is created between F' and R; Gray coding also induces
a one-to-one and onto mapping between F' and R, but
the mapping is different. Thus, R isn’t a Binary rep-
resentation or a Gray representation. Instead, Binary
and Gray representations are each just invertible map-
pings between F' and R.

One might assume that there are fewer local minima
in the Hamming neighborhood topology of an arbitrary
bit representation of a function compared to the Defin-
ing neighborhood topology. But this isn’t necessarily
true; if a function is highly structured, then an arbi-
trary bit representation can destroy the structure and
induce more local minima than exists in the Defining
neighborhood. For common test functions the number
of minima that exists under standard Gray and Binary
representations is dramatically smaller than the aver-
age number of minima for an arbitrary representation
(Rana & Whitley 1997).



The Family of Gray Codes

Usually “Gray code” refers to Standard Binary Re-
flective Gray code, which we also refer to as, reflec-
tive Gray code. Reflective Gray coding is just one of
many possible representations that belong to the gen-
eral family of Gray codes. A Gray code is any rep-
resentation where integers that are adjacent also have
bit representations that are adjacent; for any integer 4
the bit representation of ¢ is Hamming distance 1 away
from the bit representations of the integers ¢ + 1 and
i —1. The addition and subtraction operators are mod
2L (or 2%), so that 0 and the maximum represented
integer are adjacent as well.

Reflective Gray code is easy to compute: construct
the standard Binary representation of any integer 1.
Apply logical “and” to the L-bit Binary representation
and a duplicate of the Binary bit representation that
has been shifted 1 bit to the right. The first L bits of
the “and” operation is the reflective Gray code of i.

Another way to generate the reflective Gray code
is by using a transformation matrix. There exists an
L x L matrix G that transforms a string of length
L from Binary to the reflective Gray representation.
There also exists a matrix Dy that maps the Gray
string back to its Binary representation. The matrices
G4 and Dy (for strings of length 4) matrices are:

1100 111 1
0110 01 1 1
Gi=\g 01 1| P1=|g o011
000 1 000 1

In higher dimensions the Gz, matrix continues to have
“1” bits along the diagonal and the upper minor di-
agonal, and D has “1” bits in the diagonal and the
upper triangle. Given a bit vector, z, which is the Bi-
nary vector for integer i, z7 G';, produces a Gray coding
of z and integer i; 27 D,, produces a DeGray coding of
x, where x is an L-bit column vector. Addition oper-
ations during the matrix multiply are addition mod 2.
Transformation matrices for other Gray codes can be
produced by permuting the columns of G ; other Gray
codes can also be produced by first adding a constant
Y to each integer, then generating the Binary represen-
tation and Graying using G, or some permutation of
G'1. This suggests that for strings of length L, on the
order of L2%* Gray codes may exist. The exact number
of Gray codes that exist for strings of length L is an
open question.

Gray Beats Binary: An Example

To find differences between Gray representations and
Binary representations, we must partition the set of

functions into special subsets. But we would like these
subsets to be indicative of problem complexity. One
way to do this is to partition the set of all functions
according to the number of local optima that occur
in the representation induced by the Defining neigh-
borhood of the function. Actually we only partition
the finite set of functions £, but this also partitions all
functions that can be mapped onto F. Our assumption
is that less complex functions have fewer local optima
in the Defining neighborhood topology; more complex
functions have more local optima.

We look at all functions in F' that have ) or fewer
local optima in their Defining neighborhood topology;
we then ask, which induces fewer local optima in the
resulting sets of bit representation, Gray or Binary?
We next give a specific example where the Gray repre-
sentation is better than Binary.

Consider functions in F' with a 2 bit representation.
For now assume the function has no duplicates in the
range of outputs. We need only consider 1-dimensional
functions where a single 2-bit parameter is taken as
input. For 2 dimensional functions there are 2 1-bit
parameters so that the Gray and Binary encodings are
identical. Thus, in this case, if there are differences
between Gray and Binary representations, they only
exist for the 1-dimensional functions. By definition,
the domain of F is {0,1,2,3} and the range {1,2, 3,4}.

Now consider the following two functions, f, and fj:

fa(0) =1, fa(1) = 3, fa(2) = 2, fu(3) = 4
which we will denoted by f, = 1324 for brevity.

fo(0) =1, fo(1) = 3, fo(2) = 4, f5(3) = 2 or fp = 1342

Function f, = 1324 has 2 optima in its Defining neigh-
borhood topology at f,(0) = 1 and f,(2) = 2. Func-
tion fp = 1342 has 1 optimum at f;(0) = 1.

The following graphs are the Hamming neighbor-
hoods under Gray and Binary representations. How-
ever, the diagram does not distinguish between F, and
Fy or Gray and Binary. Let the representation on the
left be r, € R and the representation on the right be
ry € R. Then r, is the Binary code of f, and 7 is the
Gray code of f,. But r, is also the Gray code of f;
and 7y is the Binary code of fj.

E(00)=1 E(00)=1
/N /N
E(01)=3 E(10)=2  E(01)=3 E(10)=4
N/ N/
E(11)=4 E(11)=2

FE is the evaluation function in R. Representation r,
has 1 minimum at 00 under the Hamming neighbor-
hood search operator while r, has 2 minima: 00 and
11.



Assume we are interested in functions with 1 min-
imum in the Defining neighborhood topology. Under
this restriction, we are interested in f;, but not f,.

All 1-D functions with unique values that can be
mapped onto a 2-bit encoding can be represented by
permutations over 1 2 3 4. There are only 4! or 24 pos-
sible functions (permutations) over these values. Let
all functions in F' with 1 minimum be in class-1 and all
functions in F' with 2 minima be in class-2. We then
show that Gray is better over the class-1 functions in F
with 1 minimum in the sense that Gray induces fewer
minima than Binary in the resulting Hamming neigh-
borhoods. Since there is indeed No Free Lunch over
all functions, it follows that Binary is better over the
class-2 functions with 2 minima. Again, we denote a
function by f = 1234 for brevity. The functions on the
right in the following list simply reverse the assignment
of the values with respect to the functions on the left,
so the number of minima do not change.

Min Min Min
Functions in F in G in B Functions
1234 > 1 1 1 <-4321
1243 > 1 1 1 <-3421
1324 > 2 2 1 <-4231
1342 > 1 1 2 <- 2431
1423 > 2 2 1 <-3241
1432 > 1 1 2 <- 2341
2314 > 2 2 1 <- 4132
2134 > 1 1 1 <-4312
2143 > 1 1 1 <- 3412
2413 > 2 2 1 <- 3142
3124 -> 1 1 2 <-4213
3214 - 1 1 2 <-4123

Number of minima in Gray for class-1: 16
Number of minima in Binary for class-1: 24

Number of minima in Gray for class-2: 16
Number of minima in Binary for class-2: 8

What about functions with outputs that are ties?
Our search algorithm will look at all Defining neighbors
that are tied to see if there is an improving move from
any neighbor with an equivalent output. If not, the
equivalent neighbors are treated as a single optimum,
since they share a single basin of attraction. Note that
F already handles ties. Recall that by construction of
F, ties are mapped to adjacent sets of integers in the
range. First we look at how two strings can be tied.
If the outputs ranked 3 and 4 are equivalent, it has
no impact on the number of minima in the Defining
neighborhood or the Gray or Binary Hamming neigh-
borhoods and the number of optima induced is iden-

tical to the case where all 4 values in the range are
unique. Over this subset of functions, Gray is again
better than Binary for class-1 functions that have 1
minimum in the Defining neighborhood. If outputs
ranked 2 and 3 are equal, then there is always a single
optimum at 1 and Gray and Binary are equivalent for
this subset. If outputs ranked 1 and 2 are equal, the
result is the same as when all 4 values are unique; this
is also true if 1 = 2 and 3 = 4, but 1 # 3. There are
only 3 other possibilities: 1 =2 =3 and 1 =4;1 # 2
and 2 =3 =4;and last 1 =2 = 3 = 4. In the last 3
cases, there is a single optimum and Gray and Binary
are equivalent.

Thus, for the class-1 functions in F' with a 2 bit rep-
resentation, the corresponding set of Gray represen-
tations induces fewer total minima in the correspond-
ing set of representations under a Hamming distance
1 neighborhood search compared to the set of Binary
representations.

Generalizing to all L Bit Functions

THEOREM 1:(The Gray-Compactness Theorem)
Let X be the number of local optima induced by
a Hamming distance 1 neighborhood search operator
over the bits in any Gray coded representation of a
function in F. Let Y be the number of local optima
induced under the Defining neighborhood topology of
the same function in F: X <Y

PROOF: By definition, a Gray coding ensures that
all adjacent numbers in the Defining neighborhood dif-
fer by only one bit in Hamming space: this means
that the adjacency of the Defining neighborhood is pre-
served in any Gray encoding. By induction, all paths
in the Defining neighborhood topology are preserved
in the Gray encoding. Since the original connectiv-
ity of the problem is preserved, no new optima can be
created. The result automatically follows. QED.

The additional connectivity introduced by a Gray
coding can create paths out of what are local minima in
the Defining neighborhood topology, so that the Gray
representation may have fewer optima.

Definitions:

Let F'Q be the subset of functions in F' with @ or
fewer optima in their Defining neighborhood topology;
FQ is FQ-complement, the subset of functions in F
with more than () optima.

Let RQ be the set of bit representations of functions
in R with @ or fewer optima in their Hamming neigh-
borhood topology; RQ is RQ-complement, the set of
functions with more than @ optima in R.

@ is used to partition F and R as follows.



Let C(G, FQ) be the count of all optima in the Ham-
ming neighborhood of Gray representations of func-
tions in FQ. Let C(G, FQ) be the count of all optima
in the Gray representations of functions in FQ.

Let C(B, FQ) be the count of all optima in the Ham-
ming neighborhood of Binary representations of func-
tions in FQ. Let C(B, FQ) be the count of all optima
in the Binary representations of functions in F'Q.

LEMMA 1: (NFL for bit representations)
C(G,FQ)+C(G,FQ) =C(B,FQ) +C(B,FQ)

PROOF: Every bit-encoded function in R is the
Gray coding for some function in F; it is also the Bi-
nary encoding for some function in F'. Thus, over all
functions in F', the total number of local optima under
each representation is the same. QED.

A useful corollary of Lemma 1 is:

C(G,FQ) < C(B,FQ) < C(G,FQ) > C(B,FQ)

As will be seen, for specific values of ), one can con-
struct functions in F') that have a Binary representa-
tion in RQ. However, when Gray code is involved, the
following Lemma holds.

LEMMA 2: Every function in F'() has a Gray rep-
resentation, r, in R(Q). Every representation, r, in RQ
is the Gray representation of a a function in FQ.

PROOF: Lemma 2 follows directly from the Gray-
Compactness Theorem: every function in F'() has @
or fewer minima and must have a Gray representation
in RQ; every representation in RQ is the Gray repre-
sentation of some function that must have more than
Q optima and hence must be in FQ. QED.

THEOREM 2: For all discrete functions in F’ with
bit representation of length L (L > 1), for @ = 1, the
set of all Gray coded representation for functions in F')
induce fewer total minima than the set of all Binary
coded representations for functions in F'Q).

PROOF: When Q = 1, then C(G,FQ) = |FQ)|,
by the Gray Compactness theorem. In other words,
each function in F'() that has 1 minimum in its Defin-
ing neighborhood topology can have only 1 minimum
in its Gray representation. The number of minima in
the Binary representation of each function in F'Q) can
only be 1 or some value greater than 1. If there is
any function with 1 minimum in its Defining neighbor-
hood that has 2 minima in its Binary representation,

then C(B,FQ) > |FQ| and C(B,FQ) > C(G,FQ).

Consider the function, f, where f,(0) = 4, fo(1) =
2, f2(2) = 1, f»(3) = 3, and otherwise, f,(i) =i+ 1.
This function is in F'@) since it has only 1 minimum
in the Defining neighborhood, and so the Gray code
of fr must be in R@, but the Binary code induces
2 minima and is in R(). This proves that for all L,
C(G,FQ) < C(B,FQ) when @ = 1. QED.

A corollary of the the theorem for Q = 1 is that
C(B,FQ) < C(G,FQ@) which means that Binary is
better over FQ when Q = 1. This might seem to
offer the “practical” advantage to Binary if most real
world problems have more than 1 minimum, but there
is additional evidence to suggest that Gray is better
for a much wider set of values for @ than just @ = 1.

A worst case function in F occurs if every other num-
ber is a minimum. An analogous worst case function
in R occurs if all strings with even numbers of bits
are minima (or maxima) while all strings with odd
numbers of bits are maxima (or minima). Thus define
MAX = 2F~! as the maximum number of minima in
the Defining and Hamming neighborhood topologies.

CONJECTURE 1: For all functions in F' with
bit representations of length L, when ) = MAX — 1
the set of all Gray coded representation for functions
in F'Q induce fewer total minima than the set of all
Binary coded representations for functions in FQ).

Note that the conjecture is true if C(G,FQ) >
C(B,FQ) when Q = M AX —1. The conjecture is true
for 3 and 4 bit functions. We now present Lemma’s
that provide evidence for Conjecture 1.

LEMMA 3. Let f; be a function that has M AX
optima in the Defining neighborhood. The Binary rep-
resentation of f; has at most 2/~2 optima.

PROOF: If f; has MAX optima in the Defining
neighborhood, then all even (or odd) integers are min-
ima. The bit strings representing all even points end
with a 0 and all odd points end with a 1 under a Bi-
nary representation. Thus all minima reside in an L—1
dimensional hypercube which can be constructed by
taking all strings representing the 2£~! minima and
dropping the last 0 (or 1 if odd integers are minima).
Only half the points in the resulting L — 1 dimensional
bit representation can still be minima. Thus, at most
2L=2 exist. QED.

LEMMA 4. Let f; be a function that has MAX
minima in the Defining neighborhood so that f; € FQ
when Q = MAX. Let X be the maximum evaluation
associated with any minimum. Let Y be minimal value
associated with any maximum that separates minima.
If X <Y, then any Gray code of f; also has MAX
minima.

PROOF: Assume f; is an L-bit one dimensional




function. Under Gray coding, all adjacent numbers
are 1 bit away in Hamming space. Therefore, all even
numbers will be encoded using an even number of 1
bits in the string and all odd numbers with an odd
number of 1 bits in the string, or vice versa. Thus, if
fi € FQ when Q = M AX —1 then any Gray coding of
fi isolates all of the minima in f; along any path that
occurs in both the Defining neighborhoods or the Gray
Hamming neighborhoods. The only way for minima to
collapse is via the additional connectivity introduced
in the higher dimensional bit representation space; but
because every minimum has a lower evaluation than
any maximum, every connecting path between minima
must contain a maximum, and thus all minima are
preserved. If f; is an N-dimensional function, the same
argument applies to every subspace of f; so the result
still holds. QED.

Lemma 3 and 4 show that while there are functions
in FQ when Q = MAX that induce MAX = 201
optima in the corresponding Gray representation, the
same functions have at most 2£~2 optima in their Bi-
nary representations. Furthermore, all representations
in RQ when Q = MAX serve as the Gray represen-
tations of functions in FQ by the Gray compactness
theorem. But by Lemma 4, all representations in RQ
when ) = M AX serve as the Binary representations
of functions in F'Q.

More Examples and Empirical Data

We previously enumerated all possible functions in F
that can be mapped onto a 2 bit representation. This
example is limited, however, since M AX in this case
is2and @ =1= MAX — 1.

We can also enumerate all possible functions in F'
with unique outputs that can be mapped onto a 3 bit
representation. We also divide F' up into subsets that
have ezactly K minima in Defining space so as to pre-
serve more information about the functions. Doing this
we then obtain the following result.

No. of F with || No. of Min | No. of Min
K K minima in Gray in Binary
1 512 512 960
2 14,592 23,040 27,344
3 23,040 49,152 49,392
4 2,176 7,936 2,944

The construction of subsets of the form FQ (i.e.,
functions with Q or fewer minima) is unnecessary in
as much as the trend over functions with exactly K
minima is obvious. There are of course 8! or 40,320
functions and the number of minima for both Gray or
Binary representations is 80,640. Note that Gray is

better than Binary for all @ =1 to MAX — 1. We
speculate this is always true regardless of L.

For higher dimensional functions, enumeration
quickly becomes impossible. We have randomly sam-
pled 1,000,000 functions that can be mapped onto 5 bit
encodings and 1,000,000 functions that can be mapped
onto 6 bit encodings. In each case, Gray was better
than Binary for all subsets of functions with exactly K
minima in the Defining neighborhood as long as K was
less than %M AX. However, empirically when K is be-
tween 2M AX and M AX Binary begins to dominate
in terms of inducing fewer minima in the resulting bit
representations than Gray.

Conclusions

We have shown that it is possible to partition the set of
all possible functions so that for interesting subclasses
a Gray representation induces fewer total minima than
a Binary representations. The reverse is also true, but
the evidence suggests that Gray is likely to be better
for most common test problems, and perhaps most ap-
plications.

Acknowledgments

This work was supported by NSF grants TRI-9312748
and TRI-9503366. Soraya Rana was supported by a
National Physical Science Consortium fellowship.

References

Caruana, R., and Schaffer, J. 1988. Representation
and Hidden Bias: Gray vs. Binary Coding for Ge-
netic Algorithms. In Proc. of the 5th Int’l. Conf. on
Machine Learning. Morgan Kaufmann.

Davis, L. 1991. Bit-Climbing, Representational Bias,
and Test Suite Design. In Booker, L., and Belew,
R., eds., Proc. of the 4th Int’l. Conf. on GAs, 18-23.
Morgan Kauffman.

Mathias, K. E., and Whitley, L. D. 1994a. Chang-
ing Representations During Search: A Comparative
Study of Delta Coding. Journal of Evolutionary Com-
putation 2(3):249-278.

Mathias, K. E., and Whitley, L. D. 1994b. Transform-
ing the Search Space with Gray Coding. In Schaffer,

J. D, ed., IEEE Int’l. Conf. on Evolutionary Com-
putation, 513-518. IEEE Service Center.

Rana, S., and Whitley, D. 1997. Search, representa-
tion and counting optima. Technical report, Colorado
State University.

Wolpert, D. H., and Macready, W. G. 1995. No free
lunch theorems for search. Technical Report SFI-TR-
95-02-010, Santa Fe Institute.



