
Fast and Accurate Feature Selection Using Hybrid Genetic Strategies

César Guerra-Salcedo
Department of

Computer Science
Colorado State University

Fort Collins, CO 80523
guerra@cs.colostate.edu

Stephen Chen
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

chens@ri.cmu.edu

Darrell Whitley
Department of

Computer Science
Colorado State University

Fort Collins, CO 80523
whitley@cs.colostate.edu

Stephen Smith
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

sfs@cs.cmu.edu

Abstract- When dealing with object classification, each
object is defined by a set of features (characteristics) that
classify the object to a particular class. The problem
is how to choose the best subset of characteristics that
provide an accurate classification. Previous research has
shown that Decision tables are as accurate as C4.5 for
classification purposes. Two different genetic search tech-
niques, CHC and CF/RSC, are applied to this problem.
Results shows that CF/RSC and Decision tables are a very
good combination when dealing with large feature spaces.
Results also suggest that CHC is better when used for
problems with noise added to the features.

1 Introduction

Feature subset selection is defined as a process of selecting a
subset of features, d, out of the larger set of D features which
maximize the classification performance of a given procedure
over all possible subsets [10].

In a typical problem of case-based classification, instances
(objects) need to be classified according to similar characteris-
tics. The characteristics describing an instance could be from
very different domains. For example, in a cloud classification
problem [1] [2] [5] [6] there are 204 different characteristics
to describe a cloud. These characteristics come from spectral,
textural and physical measures from each sample area [5] [6].

Searching for an accurate subset of features is a difficult
search problem. Search spaces to be explored could be very
large, as in the cloud classification problem in which there are�������

possible features combinations. Search strategies such as
Hill-climbing and Best-first search [16], among others, have
been used to find subsets of features with high predictive ac-
curacy.

Case-based classification requires the use of a classifier for
the instances. For this research we use decision tables as clas-
sifiers for all the classification problems. Empirically deci-
sion tables have shown to be as accurate as C4.5 [16] for case-
based classification tasks. In Section two we offered an em-
pirical comparison of decision tables with C4.5 for an image
classification problem. The learninng curve of decision tables
suggest that they are more accurate than C4.5.

In this paper we address the problem of feature subset
selection using two genetic-based search algorithms. One

is a genetic algorithm called CHC, and the other is a bit
climber called Common Features/Random Sample Climbing
(CF/RSC). GAs are search strategies based on the principles
of natural selection. In a GA a �	�
�	�
����������� of possible solu-
tions called ���	�������������! �� is maintained. Chromosomes are
selected (each according to its "#�����$ ����), recombined, and mu-
tated to evolve a new population. The process is repeated until
a ’stopping condition’ has been achieved for the most-fit indi-
vidual in the population or when a certain number of genera-
tions have been produced.

On the other hand, a simple bit climber is a local search
procedure. It starts with a randomly generated solution (some-
times with zero features selected) or population of solutions.
The bit climber flips every bit (one at a time) in the solution ac-
cording to a certain permutation. If a better solution is found,
it is kept and the procedure continues until no improvements
can be found.

The results obtained as part of this research show signif-
icant improvement in accuracy for case-based classification
problems when compared with other techniques. Experiments
have been conducted for feature-subset accuracy analysis for
the feature subsets obtained by our method. The results show
that is almost unlikely to obtain the same feature subsets ran-
domly.

As a final remark on our research, the bit climber has been
successfully applied for this type of problems with better re-
sults than traditional approaches. CF/RSC was able to obtain
very good feature subsets using less than 50% of time em-
ployed by CHC.

The paper is organized as follows. First a background re-
view of the material involved in the research is presented.
Second we present a description of the datasets for the experi-
ments. The experimental set up and results are detailed in sec-
tion 4. In section 5 a brief discussion is presented.

2 Background Review

In a supervised learning task, a training set of labeled fixed-
length features vectors is given; the task is to induce a clas-
sification model. This model is used to predict the class la-
bel of subsequent instances or previously unseen cases. The
information known about the class is inherent to the features
presented to the classifier and determines the accuracy of it.

Practical machine learning algorithms such as ID3 [20] [18]
and C4.5 [20], are known to perform poorly (degrade in accu-
racy) when presented with many features that are not neces-
sary for predicting the desired output [14].

Optimal feature extraction has been studied for years [2] as
a central topic of research in the Machine Learning Commu-
nity. The selection of relevant features, as well as the elimi-
nation of irrelevant ones, play a central role in machine learn-
ing applications. Reducing the set of features considered for
a specific task could improve the accuracy of a prediction or
the speed of processing input data for specific manipulation.

Reducing the number of features used for classification is
desirable for a number of reasons [5]. There can be redun-
dant or irrelevant information among the whole set of features;
there can also be estimation errors in the system parameters
used to measure the features. The problem of feature subset
selection involves finding a “good” set of features under some
objective function [14]. In other words, the goal is to find a
set of relevant features, which when presented to the classi-
fier, maximizes its performance (accuracy).

For this type of application, traditionally each chromo-
some in the population represents a possible subset of features
that is presented to the inducer. The fitness of the chromosome
is based on the accuracy of the evolved subset of features to
predict class values for unseen cases. Different fitness func-
tions for this task have been studied. In Bala et al. [3] [4],
Vafaie et al. [26] [25] and Turney [24] a decision tree genera-
tor is used, in [12] a variant of a decision table is used and in
[19] the authors used a modified version of K-nearest neigh-
bor. In every case the fitness function is an inducer that clas-
sifies cases according to the features presented in a particular
chromosome.

2.1 Classification and Classifiers

A classifier is a system that classifies instances based primar-
ily in trained data from which the classifier infers a classifica-
tion rule. A set of unseen cases are used to test the accuracy
of the classification rule.

2.1.1 Decision Table Majority: DTM

Decision tables have been largely used as a tool for expert sys-
tems [27] and as a method of classification [16]. Kohavi [15]
presents a different view of a decision table making them even
simpler. He established a majority-class approach for unlisted
cases. If an unseen case is not present in the table, the majority
class of the table is returned as the class for the unseen case.
Kohavi has called this approach � �� ��� ������� ��� � �� �����������
	
or ����� . A DTM has two components.

1. A set of features that are included in the table.

2. A sample consisting of labeled instances (each entry)
from the space defined by the features selected.

Given an unlabeled instance, the DTM classifier searches for
an exact match among the samples in the table. If no match is
found the most common class of the elements stored in the ta-

ble is returned as the class for the instance to be labeled. Oth-
erwise, the most common class of all matching instances is re-
turned.
An example of DTM for an artificial 2-class learning task is
presented in Tables 1 and 2. Table 1 shows the task before
selecting any features and in Table 2 the features have already
been selected. Note the differences in feature size as well as
the examples considered for each class.

��
 � � ��� � � Class�

1 1 0 0 +� � 1 1 0 1 +� �
1 1 1 1 +� � 1 0 0 0 -���
0 1 0 1 -���
1 1 1 0 +���
1 1 0 1 +���
1 1 0 1 +���
1 0 1 0 -�
��
0 1 0 1 -

Table 1: Training examples for an artificial 2-class learning
task with four Boolean attributes.

��
 � � Class Examples� � ����	
 1 1 +
�

,
� � , � � , � � , � � , ���� � ����	 � 1 0 -

� � , ���� � ����	 � 0 1 -
� �

,
��� �

Table 2: Simple Decision Table for feature subset ������
�"!�#
for the examples given in Table 1. For row $&%('*),+-� the class
is . applying 2. The global default class would be +, as there
are 6 examples for this class versus only 4 for the other one.

When comparing DTM vs. C4.5, Kohavi shows two im-
portant results [15]. The average accuracy of DTM on the
real-world datasets tested was equivalent to C4.5 and the av-
erage accuracy of DTM on artificial datasets tested was higher
than C4.5. These results are based on experiments using
datasets taken from the UCI repository [7]. Kohavi ([16] page
140) states that

Decision tables can be improved in some ways.
The weakest point of the hypothesis space is the
use of the training set’s majority label when a per-
fect match is not found. This can be replaced with
something more sensible, such as finding a match
on fewer features.

2.1.2 Euclidean Decision Tables

We propose the use of Euclidean Decision Tables (EDT) that
are based on DTMs and nearest-neighbor classifiers. The
way decision tables are used in the EDT algorithm differ
slightly from those used in DTM algorithm [16]. The main

characteristic of EDTs is that they use a Euclidean distance
measure as the measure between an unseen case and a case
presented in the table. They also are constructed using a
hashed-based table in which instances with same values are
grouped and a majority-class approach is used. The algorithm
for creating and using EDTs is presented next.

� For any feature subset construct a Euclidean Decision
Table by simply projecting all given training examples
in the feature subset selected as header for the table.

� For all “after projection” identical examples count class
frequencies and assign the majority class to every entry.

� When classifying new examples, look up the projected
example in the decision table using the Euclidean dis-
tance measure. Return as the classification result, the
appropriate majority class of the entry with the mini-
mum Euclidean distance between the entry and the un-
seen case.

2.1.3 Learning : Comparison Between C4.5 and EDTs

In order to empirically justify the use of EDTs instead of
C4.5 we ran different sets of experiments using the LandSat
dataset assessing the accuracy of EDTs as classifiers vs. the
accuracy of C4.5. We show that EDTs perform well even
when the features are selected randomly from the complete
set of features (i.e., no search engine is used). The following
algorithm describes our approach.

� The feature space (36) was divided in 15 sets. EDT
classifiers were constructed using the amount of fea-
tures described in each set. A total of 270 classifiers
were constructed for each particular number of features;
features were randomly selected. The first set of classi-
fiers corresponds to those constructed using 36 features,
the second set to classifiers constructed using 33 fea-
tures, the third using 30 features. From the fourth to the
fifteenth sets of classifiers the number of features used
were: 28, 25, 23, 20, 18, 16, 14, 11, 9, 7, 5 and 3.

� Each group of 270 classifiers was divided into 27
groups of 10 independent classifiers each. Each classi-
fier was trained with randomly selected data instances.
The first group corresponds to classifiers trained with
49 samples, the second group corresponds to classifiers
trained with 69 samples, the third represents classifiers
trained with 93 samples. From the fourth to the twenty
seventh group the number of samples used to train each
group were 147, 229, 309, 397, 499, 597, 697, 765, 819,
987, 1130, 1285, 1447, 1653, 1755, 1863, 2265, 2545,
2725, 3315, 3525, 3885, 4255 and 4419.

� Each classifier was tested using the set of 2000 unseen
cases. The standard deviation and average accuracy are
reported. A total number of 4050 (15 x 27 x 10) exper-
iments were performed.

The same experiments were carried out using C4.5 instead of
EDT and using exactly the same files as with EDT. The results
are summarized in Figure 1. EDT seems to be better than C4.5
except for three and five features in which the difference be-
tween them is in the order of 2% and 0.03% respectively.

60

65

70

75

80

85

90

95

0 5 10 15 20 25 30 35
%

 A
cc

ur
ac

y

Number of Features

EDT and C4.5 Learning With Randomly Selected Features

EDT_learning
C4_learning

Figure 1: EDT and C4.5 Learning, no search engine proce-
dure employed. 4050 experiments performed. Each point on
the line is the average of 270 experiments (10 classifiers for
each one of the 27 possible choices of training elements).

2.2 Genetic Algorithms Review

Genetic Algorithms (GAs) are stochastic search mechanisms
based on natural selection concepts [13]. GAs have been ap-
plied to a wide variety of problems, including search problems
[21], optimization problems [23], and in many problems in in-
dustry, economics, social science and drug design.

2.2.1 CHC

CHC [11] is a generational genetic search algorithm that uses
truncation selection. The CHC algorithm randomly pairs par-
ents, but only those string pairs which differ from each other
by some number of bits (i.e., a mating threshold) are allowed
to reproduce. The initial threshold is set to � ��� , where � is the
length of the string. When no offsprings are inserted into the
new population during truncation selection, the threshold is
reduced by 1. The crossover operator in CHC performs uni-
form crossover that randomly swaps exactly half of the bits
that differ between the two parent strings.

No mutation is applied during the recombination phase
of the CHC algorithm. When no offspring can be inserted
into the population of a succeeding generation and the mat-
ing threshold has reached a value of 0, CHC infuses new di-
versity into the population via a form of restart known as cat-
aclysmic mutation. Cataclysmic mutation uses the best indi-

vidual in the population as a template to re-initialize the popu-
lation. The new population includes one copy of the template
string; the remainder of the population is generated by mutat-
ing some percentage of bits (e.g 35%) in the template string.

2.3 Random Bit Climbing

A random bit climber is a hill climber based on a binary repre-
sentation of the search space [9] [22]. Usually it begins with a
randomly generated possible solution and starts by changing
one bit at a time. If an improvement if found, it is accepted. In
Random Bit Climbing (RBC) a random permutation is gener-
ated to determine the order in which bits flips are tested. After
flipping every bit in the initial solution string, a new random
sequence is chosen for testing the bits and the bit climber again
checks every bit for an improvement. If the bit climber has
tested every bit and no improvement is found, a local optimum
has been reached. For the experiments reported in the paper
we use a hybrid bit climber called Common Features/Random
Sample Climbing (CF/RSC).

2.3.1 Common Features/Random Sample Climbing
CF/RSC

CF/RSC is a two stage algorithm. It uses a population of in-
dividuals (usually small, e.g., 10 individuals.) Common Fea-
tures (CF) is exploited when recombining two individuals in
the population. Random sample climbing (RSC) is applied
as a local improvement operator used to heuristically improve
the individuals in the population. In generation 0, all individ-
uals in the population are initialized to strings of all zeroes.

Random sample climbing (RSC) is applied to each indi-
vidudal in the population. For each individual, � bits are ran-
domly mutated. Usually � is a small number less than 10.
This is done � times, thus generating � new solutions for each
member of the population. In the experiments used here, ���� �

. If the best solution found among the � new solutions is
better than the original member of the population from which
it was generated, then the new solutin replaces the original
member of the population.

In subsequent generations, recombination is applied. By
the commonality hypothesis [8], common features are be-
lieved to be the most important for classification. Thus, when
two strings are recombined, commonly selected features in the
two parents are passed on to offspring. All other features are
set to zero. Then RSC is applied to the entire population.

3 Datasets

It is important to characterize a feature subset selection prob-
lem using a database of cases to construct the classifier. A
set of unseen cases are useful to test the classifier. In this re-
search we have focus our attention on two types of datasets,
real datasets and artificially generated datasets. Real datasets
are datasets in which cases belong to a real-world problem
(for example cloud classification or satellite-imagery classifi-

cation). On the other hand, artificially generated datasets are
datasets in which cases are generated using a test case gen-
erator. For this research three real-world datasets were em-
ployed and one artificially generated classification problem.
The real-world classification problems are: satellite classifi-
cation dataset (LandSat), a DNA classification dataset and a
Cloud classification dataset. On the other hand, the artificially
generated classification problem rely on a LED identification
problem. LED cases are artificially generated using a test case
generator. All datasets were chosen for this research because
of their size in terms of number of cases, their length in terms
of number of features and the interaction between features. A
brief description of each dataset follows.

3.1 LandSat Images dataset

The first data set is the LandSat dataset. The LandSat dataset
consists of 4435 train cases and 2000 test cases. Each case
represents a satellite image with 36 features. Each feature has
been discretized, its values ranging from 0 to 255. The data
can be categorized in six different classes. The classes and the
distribution of available data is presented in Table 3. Previous
results with this dataset, and the use of genetic algorithms as
a search space engine, can be found in Bala et al.[4] [3].

Class Name Learning Set

Red Soil 1072 (24.17%)
Cotton Crop 479 (10.80%)
Gray Soil 961 (21.67%)
Damp Gray Soil 415 (09.36%)
Soil w/ Veget. Stubb. 470 (10.60%)
Very Damp Gray Soil 1038 (23.40%)

Class Name Unseen Cases

Red Soil 461 (23.05%)
Cotton Crop 224 (11.20%)
Gray Soil 397 (19.85%)
Damp Gray Soil 211 (10.55%)
Soil w/ Veget. Stubb. 237 (11.85%)
Very Damp Gray Soil 470 (23.50%)

Table 3: Classes and Data Distribution of the LandSat
Dataset. The learning set represents the number and percent-
age of the total of cases for the learning data file. Unseen cases
represents the number and percentage of the total of cases for
the test data file.

3.2 Cloud Classification dataset

The second data set is a cloud dataset1 used for developing
an automated system for cloud classification [1] [2] [5] [6].
There are 1633 cases (no training and test distinction), each
case represents a cloud with 204 features on a continuous-
based range belonging to one of 10 different cloud types. The

1Provided by Richard Bankert from the Naval Research Laboratory.

classes and the distribution of available data is presented in
Table 4.

Class Name Data Available

Cirrus 212 (12.98%)
Cirrocumulus 72 (04.40%)
Cirrostratus 166 (10.16%)
Altostratus 154 (09.43%)
Nimbostratus 59 (03.61%)
Stratocumulus 251 (15.37%)
Stratus 225 (13.77%)
Cumulus 123 (07.53%)
Cumulonimbus 149 (09.12%)
Clear 222 (13.59%)

Table 4: Classes and Data Distribution of the Cloud Dataset.
The data represents the number and percentage of the total
number of cases in the data file

3.3 DNA dataset

The third data set is a DNA dataset. The dataset represents Pri-
mate splice-junction gene sequences (DNA). There are 2000
training cases, 1186 test cases, and 180 binary features for
each case. Three different classes exist in this dataset. The
task is to recognize exon/intron boundaries referred as EI sites
(25%); intron/exon boundaries referred to as IE sites (25%);
or neither (50%).

Splice junctions are points on a DNA sequence at which
“superfluous” DNA is removed during protein creation. The
IE borders are referred to as “acceptors” and the EI borders
are “donors”. The instances were taken the UCI repository.
The features provide a window of 60 nucleotides, each repre-
sented as a three binary indicator features that represent the
value A,C,G or T, thus giving 180 features. The classifica-
tion is the middle point of the window, thus providing 30 nu-
cleotides at each side of the junction.

3.4 LED generation problem

The idea is to identify a LED representation of a digit (a seven
segment representation) in each instance of the dataset. All
the instances are artificially generated. This is a Binary-based
dataset in which a one represents a segment on and zero rep-
resents the segment is off. Every instance in the dataset may
be constructed by significant features and spurious features.
A significant feature is such that it represents a segment in a
valid LED representation. A spurious feature does not play a
role in the representation and its randomly generated. In order
to make the classification problem harder, the use of spurious
features and the possibility of noise in the significant features
have been added.

There is another alternative form of representing digits us-
ing only five segments instead of seven. Both seven-segment
and five-segment representations are depicted in Figure 2.

Figure 2: Seven and Five segment representations of a digit.
Dashed lines represent unused features

There are several options in the generator program that we
exploit for our experiments. The different problems generated
for this research were the following:

1. A problem with 24 features in which the first 7 features
are significant and the rest are spurious. There is no
noise added.

2. A problem with 100 features in which the first 7 fea-
tures are significant and the rest are spurious. There is
no noise added.

3. A problem with 30 features in which the significant fea-
tures are not contiguous. Features corresponding to a
LED representation are separated for three spurious fea-
tures. No noise was added to the problem.

4. A problem with 70 features in which three replications
of the same valid LED number are found. significant
features for each replication are separated from each
other by four features. The four features are either valid
or spurious. There is no noise added.

5. Same as problem 4 but with 10% of noise added to each
valid feature.

4 Preliminary Results

In this section we present the preliminary results of our re-
search. We have been using CHC and CF/RSC as genetic
search engines and EDT as inducer. All the work done so far
is based on the data sets described in the previous section.

4.1 Experimental Setup. Real-world Datasets

For all experiments the following setup applied: For CHC a
population size of 50 and a total number of function evalua-
tions of 15000 were used. For CF/RSC the initial population
has size 10, the pool of random solutions has 30 elements, five
climbings for element in the pool are allowed and 10 genera-
tions were used (15000 trials total).

We posed each experiment as a minimization problem, try-
ing to find the subset of features that minimized the number of
misclassification errors of the classifier constructed.

From the LandSat training file (4435 cases) 700 training
cases and 500 test cases were chosen randomly to generate 30
independent datasets. The cases in the test file are different
than the cases in the training file. The features were selected
from the 700 available training elements and a classifier was
constructed. The accuracy of the classifier when tested on the
500 test cases was used as the evaluation for the chromosome.
At the end, a classifier was constructed using the features de-
picted by the final chromosome and trained with the original
train set and tested with the original test set.

From the Cloud file (1633 cases) 30 sets of 400 training
cases and 500 test cases were generated randomly. Instances
in the test file are different than the cases in the training file.
Each feature selection vector was evaluated by constructing
an EDT classifier using 400 training elements and tested on
500 test cases in order to evaluate each chromosome. At the
end, a classifier was constructed with the features depicted by
each chromosome and tested using 10-fold Cross Validation.

From the DNA training file (2000 cases) 700 training cases
and 500 test cases were chosen randomly to generate 30 in-
dependent datasets. Each feature selection vector was evalu-
ated by constructing an EDT classifier. At the end, a classi-
fier was constructed with the features depicted by each chro-
mosome using the original training file and tested using the
original testing file. The accuracy results are summarized in
table 5.

Problem Algorithm Best Worst Avg Avg. Number
Type Used Acc. Acc. Features

LandSat CHC 88.9% 86.4% 87.56% 12.62
CF/RSC 89.8% 84.4% 87.6% 12.8

DNA CHC 92.5% 85.6% 89.38% 11.24
CF/RSC 93.8% 88.0% 91.2% 8.5

Cloud CHC 80.8% 78.0% 79.3% 42.13
CF/RSC 84.4% 78.4% 80.9% 14.0

Table 5: Accuracy results for CHC and CF/RSC on differ-
ent real datasets. The results represent the accuracy of a clas-
sifier constructed with the features depicted in the final chro-
mosome, trained with the original train set and tested with the
original test set (except in Cloud dataset in which 10 fold CV
were used).

CF/RSC found better subsets for each real-problem. The idea
of starting with a solution with all zeroes and add features is
a good approach. CHC uses a crossover operator called HUX
(Half Uniform Crossover) that randomly swaps exactly half
of the bits that differ between the two strings. HUX seems to
be not very suitable for this particular problem specially when
features are sparsed.

4.2 Experimental Setup. Artificial Datasets

For each of the five different problems two files (train and test)
with 1250 elements each were generated (to be used as origi-

nal training and testing files). From the training file 400 train-
ing instances and 400 test instances were chosen randomly to
generate 30 independent datasets. The features were selected
from the 400 available training cases and a classifier was con-
structed. The accuracy of the classifier when tested on the
400 test cases was used as the evaluation for the chromosome.
At the end, a classifier was constructed using the features de-
picted by the final chromosome and trained with the original
train set and tested with the original test set. The setups for
both CHC and CF/RSC are the same as the ones described in
previous section. The results are summarized in Table 6.

Problem Algorithm Best Worst Avg Avg. Number
Type Used Acc. Acc. Features

Problem 1 CHC 100% 100% 100% 5.0
CF/RSC 100% 100% 100% 5.0

Problem 2 CHC 100% 100% 100% 6.8
CF/RSC 100% 100% 100% 5.0

Problem 3 CHC 100% 100% 100% 5.0
CF/RSC 100% 100% 100% 5.0

Problem 4 CHC 100% 100% 100% 5.0
CF/RSC 100% 100% 100% 5.0

Problem 5 CHC 88.2% 84.6% 86.4% 24.2
CF/RSC 87.5% 79.8% 84.1% 17.9

Table 6: Accuracy results for CHC and CF/RSC on different
real datasets. The results represent the accuracy of a classi-
fier constructed with the features depicted in the final chro-
mosome, trained with the original train set and tested with
the original test set. The problem number corresponds to the
problem numbering in the explanation of the experiments.

In this type of problems the accuracy of solutions obtained by
CHC and by CF/RSC were almost the same except in prob-
lems two and five. In problem two there are 100 features in-
volved and the optimal solution has only five bits. The main
difference in the accuracy seems to be HUX again. CHC is
trapped with a seven-bits solution and its hard for it to jump to
a better solution (five-bits). In problem five, the correct fea-
tures are highly related with each other, CHC seems to take
advantage of this fact. CF/RSC random flipping does not pro-
duce very good solutions to combine with.

4.3 Evaluating the Accuracy of the Solutions

In order to test the accuracy of the subsets obtained by CHC
and CF/RSC a statistical test was performed. Feature-subset
accuracy analysis was performed for each subset obtained by
both algorithms. The basic idea of feature-subset accuracy
analysis was proposed by McFarland et al [17] in 1986. They
developed a technique for cluster analysis called Cluster Sig-
nificance Analysis or CSA. CSA is based on definition of the
tightness of a cluster. The easiest way of computing tightness
is by using the mean squared distance of a cluster. Suppose
we have a cluster ��� with three elements and each element has
two dimensions. The Mean Squared Distance (MSD) of � � is

defined as :

��� ��� � ��� � �
���
	��
�
 ��� �
 �

��� �
������� ��� � 	 ��� 	���� � (1)

MSD is calculated by taking the squared distance between
each pair of points in the cluster. The significance of a cluster
� � composed of � elements, given the fact that there are � el-
ements available (��� �) is calculated as follows. Compute
��� ��� ����� , there are ��� ��� different clusters of � elements.
Generate randomly M clusters of n elements each out of ��� ���
features and compute their MSDs. The number of groups (in-
cluding � �) that have MSDs equal to or less than ��� ��� � � �
is designated as A. The probability � that a cluster at least
as tight as � � would have arisen by chance alone is given by
� � � � � . This significance probability or p-value indicates
the significance of the relationships between the elements in
� � .

Instead of comparing MSDs, we compared accuracies of
classifiers. There are � features in a classification problem.
Once that a subset of � features has been found by the genetic
search, there are � � � � possible classifiers with � features. Us-
ing all the available training instances and the � features se-
lected in the chromosome with the best performance a classi-
fier � � � was constructed. The accuracy

� � � � � � � � was com-
puted using the original test file. After that, 100000 subsets of
� features (in all cases �!� ��� � � � �-� � �

) were randomly gen-
erated. For each subset � a classifier � � � was constructed us-
ing all the available training instances and

� � � � � � �"� was com-
puted.

The number of classifiers (including � � �) that have accu-
racy equal to or better than

� � �#� � � � � is designated as A. The
probability � that a classifier at least as accurate as � � � would
have been created by chance alone is given by � � � � � � �-� � �

.
This significance probability or p-value indicates the signifi-
cance of the relationships between the features in � � � . Also,
the p-value gives us an idea of how difficult it is to generate a
particular subset of features randomly. For each different ex-
periment, the p-values calculated using the features obtained
by either CHC or CF/RSC were 0.00001.

5 Discussion

This paper presents research results applying genetic search
methods to the problem of feature subset selection. Although
some genetic-based systems for feature subset selection have
been previously studied, the work presented produces much
better results than previous works using the same approach.
The paper also presents a novel bit climber technique called
CF/RSC. The results for real-world classification problems
using CF/RSC were better than the results obtained by CHC
(so far known as one of the most efficient and effective ge-
netic algorithms for feature subset selection problems). The
system proposed in this research uses an accurate and easy-
to-implement classifier called Euclidean Decision Tables.

Based on the results presented in this paper, it seems that CHC
is a very powerful search algorithm for problems in which
noise has been added.

We are also proposing a technique for evaluate the accu-
racy of a subset of features based on the probability of ran-
domly generate such subset.

Acknowledgments

César Guerra-Salcedo is a visiting researcher at Colorado
State University supported by CONACyT under registro No.
68813 and by ITESM.

Stephen Chen and Stephen Smith were sponsored in part
by the Advanced Research Projects Agency and Rome Lab-
oratory, Air Force Material Command, USAF, under grant
numbers F30602-95-1-0018 and F30602-97-C-0227, and the
CMU Robotics Institute. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of the Advanced Research Projects Agency and Rome
Laboratory or the U.S. Government.

Bibliography

[1] David W. Aha and Richard L. Bankert. Feature Selec-
tion for Case-Based Classification of Cloud Types: An
Empirical Comparison. In Proceedings of the AAAI-94
Workshop on Case-Based Reasoning, 1994.

[2] David W. Aha and Richard L. Bankert. A Comparative
evaluation of Sequential Feature Selection Algorithms.
In Proceedings of the Fifth International Workshop on
Artificial Intelligence and Statistics, pages 1–7, 1995.

[3] J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wech-
sler. Hybrid Learning Using Genetic Algorithms and
Decision Trees for Pattern Classification. In 14th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 1995.

[4] J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wech-
sler. Visual Routine for Eye Detection Using Hybrid Ge-
netic Architectures. In 14th Int. Joint Conf. on Artificial
Intelligence (IJCAI)Proceedings of ICPR 96, 1996.

[5] Richard L. Bankert. Cloud classification of avhrr im-
agery in maritime regions using a probabilistic neural
network. Applied Metheorology, 33(8):909–918, 1994.

[6] Richard L. Bankert and David W. Aha. Improvement to
a neural network cloud classifier. Applied Metheorology,
35(11):2036–2039, 1996.

[7] E. Keogh C. Blake and C.J. Merz. UCI repository of ma-
chine learning databases, 1998.

[8] Stephen Chen and Stephen Smith. Experiments on Com-
monality in Sequencing Operators. In Proceedings of the
third annual Genetic Programming Conference. Morgan
Kaufmann, 1998.

[9] Lawrence Davis. Bit-Climbing, Representational Bias,
and Test Suite Design. In L. Booker and R. Belew, ed-
itors, Proc. of the 4th Int’l. Conf. on GAs, pages 18–23.
Morgan Kaufmann, 1991.

[10] P. Devijver and J. Kittler. Pattern recognition: A Statis-
tical Approach. Prentice Hall, 1982.

[11] Larry Eshelman. The CHC Adaptive Search Algorithm.
How to Have Safe Search When Engaging in Nontradi-
tional Genetic Recombination. In G. Rawlins, editor,
FOGA -1, pages 265–283. Morgan Kaufmann, 1991.

[12] Cesar Guerra-Salcedo and Darrell Whitley. Genetic
Search For Feature Subset Selection: A Comparison
Between CHC and GENESIS. In Proceedings of the
third annual Genetic Programming Conference. Morgan
Kaufmann, 1998.

[13] John Holland. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, 1975.

[14] G John, R Kohavi, and K Pfleger. Irrelevant Features and
the Subset Selection Problem. In William W. Cohen and
haym Hirsh, editors, Machine Learning: Proceedings of
the Eleventh International Conference, pages 121–129.
Morgan Kauffmann, 1994.

[15] Ron Kohavi. The Power of Decision Tables. In
N. Lavrac and S. Wrobel, editors, Proceedings of the Eu-
ropean Conference on Machine Learning, pages 174–
189. Springer Verlag, 1995.

[16] Ron Kohavi. Wrappers for Performance Enhancement
and Oblivious Decision Graphs. PhD thesis, Stanford
University, 1995.

[17] James McFarland and Daniel Gans. On the Signifi-
cance of Clusters in the Graphical Display of Structure-
Activity Data. Journal of Medicinal Chemistry, 29:505–
514, 1986.

[18] Tom M. Mitchell. Machine Learning. Mc. Graw Hill,
1997.

[19] W.F. Punch, E.D. Goodman, Min Pei, Lai Chia-Shun,
P. Hovland, and R. Enbody. Further Research on Feature
Selection and Classification Using Genetic Algorithms.
In Stephanie Forrest, editor, Proc. of the 5th Int’l. Conf.
on GAs, pages 557–564. Morgan Kaufmann, 1993.

[20] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[21] S. Rana, D. Whitley, and R. Cogswell. Searching in
the Presence of Noise. In H.M. Voigt, W. Ebeling,
Ingo Rechenberg, and H.P. Schwefel, editors, Paral-
lel Problem Solving from Nature, 4, pages 198–207.
Springer/Verlag, 1996.

[22] Soraya B. Rana and L. Darrell Whitley. Bit Representa-
tions With A Twist. In Proceedings of the 7th Interna-
tional Conference on Genetic Algorithms. Morgan Kauf-
mann, 1997.

[23] J. David Schaffer, Richard A. Caruana, Larry J. Eshel-
man, and Rajarshi Das. A Study of Control Param-
eters Affecting Online Performance of Genetic Algo-
rithms for Function Optimization. In J. D. Schaffer, ed-
itor, Proc. of the 3rd Int’l. Conf. on GAs, pages 51–60.
Morgan Kaufmann, 1989.

[24] Peter Turney. How to Shift Bias: Lessons from the Bald-
win Effect. Evolutionary Computation, 4(3):271–295,
1997.

[25] Haleh Vafaie and Ibrahim Imam. Feature Selection
Methods: Genetic Algorithms vs. Greedy-like Search.
In Proceedings of the International Conference on Fuzzy
and Intelligent Control Systems, 1994.

[26] Haleh Vafaie and Kenneth A. De Jong. Improving a Rule
Learning System Using Genetic Algorithms. In Ma-
chine Learning: A Multistrategy Approach, pages 453–
470. Morgan Kaufmann, 1994.

[27] J. Vanthienen and G. Wets. From Decision Tables to Ex-
pert System Shells. Data and Knowledge Engineering,
13(3):205–220, 1994.

