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Abstract

MAXSAT problems are notoriously diffi-
cult for genetic algorithms to solve. NK-
landscapes are often used as test problems
of scalable difficulty for genetic algorithms.
In this paper we exploit the similar structure
of the two problems to create an encompass-
ing class of problems called embedded land-
scapes. Then we use Walsh analysis to ex-
plore the nonlinear bit interactions of these
important test functions. We show that by
applying Walsh analysis to embedded land-
scapes, several important summary statistics
can be generated in polynomial time. We
then use these techniques to discuss the sta-
tistical “shape” of both MAXSAT and NK-
landscapes.

1 INTRODUCTION

MAXSAT problems are notoriously difficult for genetic
algorithms to solve. Even relatively old algorithms
such as Davis-Putnam [Davis and Putnam, 1960]
which are deterministic and exact are orders of mag-
nitude faster than GAs. Understanding what makes
MAXSAT so difficult for GAs gives us important clues
about mechanisms of problem difficulty in general.
NK-landscapes, a class of problems used in theoretical
biology[Kauffman, 1993], has become one of the clas-
sic problem classes used for testing genetic algorithms.
One of the reasons for this is they provide tunably dif-
ficult terrain for testing GA performance. The similar-
ity in structure between MAXSAT and NK-landscapes
has led to the development of generalization of these
two problems called embedded landscapes that con-
tains both problem classes. This new class has applica-
bility to a broad range of constraint satisfaction prob-
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lems and problems based on nonlinear bit interactions
known as epistasis.

Walsh analysis is often used to measure the nonlin-
ear relationships between bits in the domain of dis-
crete functions defined over bit strings. The heart of
Walsh analysis is the Walsh transform which allows
the quantification of all possible bit interactions. Un-
fortunately, the Walsh transform typically requires ex-
ponential time to compute with respect to the num-
ber of bits in the domain. However, recent work
has shown that both MAXSAT and NK-landscapes
have tractable Walsh analysis [Rana et al., 1998,
Heckendorn and Whitley, 1997]. In fact, all embed-
ded landscapes offer a polynomial time Walsh trans-
form if the maximum number of variable interactions
is bounded[Heckendorn et al., 1998].

We extend this work to show that Walsh analysis offers
a polynomial time method for computing summary
statistics for embedded landscapes and hence for both
MAXSAT and NK-landscapes. We apply this tech-
nique to computing summary statistics for a set of
randomly generated MAXSAT problems and discuss
our results.

2 MAXSAT, NK-LANDSCAPES
AND EMBEDDED LANDSCAPES

A SAT problem is stated as a logical expression in con-
junctive normal form (CNF). The problem is consid-
ered solved when an instantiation of variables is found
such that the expression is true or it can be proven that
no such instantiation exists. SAT can be transformed
into an optimization problem by summing the truth
values (0 or 1) of the disjunctive clauses rather than
ANDing them. This optimization counterpart to SAT is
known as MAXSAT[Papadimitriou, 1994]. A version
of MAXSAT which restricts the length of the clauses
to have k literals is called MAXkSAT. The truth value



assignments for an N variable MAXSAT problem can
be represented by a string of N bits. In this way
SAT becomes the optimization problem of maximiz-
ing the N-bit function f: BN —{0,1,...,C} where C
is the number of clauses in the CNF. For example: a
4-variable, 4-clause MAX2SAT problem might be:

f(z) =

where the values of the 4 variables are assigned by the
values of the bits in the bit string 2 € B*. Throughout
this paper we will assume the variables are labeled
right to left in the bit string. In the example the bits of
x would be associated with variables x3z2x129. Hence,
for the sample variable assignment string, 0101: z3 =
0, 2 = 1, and so on. The value of f(0101)is 1+ 1+
0+0=2.

(xo VITL) + (21 V22) + (Tg VT2) + (21 V 23)

In order to define MAXSAT problems more precisely,
we first define two functions. Let bc(i) be a bit count
function which returns the number of 1’s in ¢. Let
pack:BL x BL—BM where M < L be a function.
pack(z,m) takes the bits in = and masks them (us-
ing AND) with an L bit mask m : bc(m) = M and
packs the bits selected by the mask in the result. For
example: pack(10101,01101)—011. The pack function
will allow us to relate functions of different dimensions.
We use the term dimension of a function to mean the
number of bits in the domain.

The MAXSAT problem can now be expressed as:

c
Zc, (pack(z,m;))
i=1

where C' is the number of clauses in the problem, ¢; :
BPe(mi) B is the i t* disjunctive clause and m; is the
it mask selecting the variables needed by c;. m; is
referred to as an interaction mask. In the specific
4-variable, 4-clause MAX2SAT example, the clauses
are: ¢g = (zg VT1), ¢ = (1 V@), ¢o = (Tg V

T3), ¢z = (x1Vx3) and their corresponding masks are:
mo = 0011, my; = 0110, ms = 0101, mgz = 1010
respectively.

NK-landscapes are another important class of test
problems for genetic algorithms. They derive
from Stuart Kauffman’s work in theoretical biology
[Kauffman, 1993]. An NK-landscape, f : BY —R, can
be expressed as:

1 V=
=N Z (pack(x,m;))
=0

where N represents the number of the number of bits
in the domain of the function. For each of the N bits,

K other bits are chosen as influencing bits. Each of the
N combinations of K + 1 bits (a bit at its K influenc-
ing bits) can be represented by an interaction mask m;
such that the i** bit is set in m; and be(m;) = K + 1.
Each r; : BX+15[0,1) represents a table of 25+ ran-
dom values between 0 and 1. For example the following
tables completely define the 4 subfunctions and associ-
ated masks for an example NK-landscape with N =4,
K=1:

mo=0011 m;=0110 my=0101 m3=1010
y | ro(y) r1(y) r2(y) r3(y)
00 0.3 0.1 0.9 0.4
01 0.7 0.2 0.3 0.6
10 0.2 0.5 0.7 0.9
11 0.6 0.8 0.4 0.1

So, for example, f(0101)=1(0.740.5+0.4+0.4)=0.3.

NK-landscape [Kauffman, 1989] problems bare a strik-
ing resemblance to the general form of MAXSAT
[Heckendorn et al., 1998, Weinberger, 1990].  Both
problems are a summation of smaller subfunctions
that are defined over subsets of bits selected by interac-
tion masks. With this observation in mind we designed
an encompassing class of problems called embedded
landscapes. Embedded landscapes, f : BY —R,
model a broad class of combinatorial and constraint
satisfaction problems. They can be expressed as the
sum of @) subfunctions;

Q

= gj(pack(z, my)).

=1

There are no restrictions on the number of subfunc-
tions, @), or the number of 1 bits in each interaction
mask, m; € BY, or the values returned by the in-
teraction functions g; : BPe(mi) LR, The g; gener-
ally have lower dimensional domains than f and are
hence considered to be embedded in higher dimen-
sional space. In many cases we only consider functions
in which the maximum dimension of the g; is bounded
by some k. These problems form a difficult set of prob-
lems. In fact, the optimization problems posed by the
set of embedded landscapes, with the subfunctions of
bounded dimension of at least 3, have been shown to
be NP-complete [Heckendorn et al., 1998].

2.1 WALSH ANALYSIS

The Walsh transform is the analog to the discrete
Fourier transform but for functions whose domain is
a bit string. Every real valued function f over an L-
bit string, f : BE—R, can be expressed as a weighted
sum of a set of 27 orthogonal functions called Walsh



functions.
2l 1

fl@) = wivi(e) (1)

J=0

where the Walsh Functions are denoted 1;
BL—{—1,1}. The Walsh functions play the role that
sine and cosine play in the Fourier transform. The
weights w; € R are called Walsh coefficients. In
this paper, the indices of both Walsh functions and
coefficients may be expressed as either binary or the
numerical equivalent.

The 5 Walsh function can be defined:
y(z) = (~1)0)

where j,z € BL. Thus, if be(jAz) is odd, then 9;(z) =
—1 and if bce(j A z) is even, then 9;(z) = 1. The jt*
Walsh function looks at the parity of the bits selected
by j. Hence there are 2% Walsh functions.

An important property of Walsh coefficients is that
w; measures the contribution to the evaluation func-
tion by the interaction of the bits indicated by the
positions of the 1’s in j. Thus, wggo1 measures the
linear contribution to the evaluation function associ-
ated with bit position 0, while w191 measures the
nonlinear (multiple bit) interaction between the bits
in positions 0 and 2, and so on. Therefore Equation
1 says that any function over L bit space can be rep-
resented as a weighted sum of all possible 2¥ bit in-
teraction functions 1);. This nonlinearity is an impor-
tant feature in determining problem difficulty for ge-
netic algorithms [Goldberg, 1989a, Goldberg, 1989b,
Reeves and Wright, 1995].

The 2 Walsh coefficients can be computed by a Walsh
transform:

2l

w=op Y f@)s(a) @
z=0

The calculation of Walsh coefficients can be thought of
in terms of matrix multiplication. Let f be a column
vector of 2L elements where the 7" element is the
evaluation of function f(7). Similarly define a column
vector 0 for the Walsh coefficients. If M is a 2F x 2T
matrix where M; ; = 1;(4), also known as a Hadamard
matrix, then:

o1

For example, if we have a 3 bit function with the 23
function evaluations labeled fy..f7, then the Walsh co-

efficient calculation would be:

foq'r1 1 1 1 1 1 1 1

I 1 -1 1 -1 1 -1 1 -1

R 1 1 -1 -1 1 1 -1 -1

S s 1 -1 -1 1 1 -1 -1 1
w—g fa 1 1 1 1 -1 -1 -1 -1 (3)

s 1 -1 1 -1 -1 1 -1 1

e 1 1 -1 -1 -1 -1 1 1

1 1 -1 -1 1 -1 1 1 -1

3 WALSH ANALYSIS OF
EMBEDDED LANDSCAPES

Since understanding the bit interactions of both
MAXSAT and NK-landscapes will help us better un-
derstand the mechanisms of difficulty for these prob-
lems doing a Walsh Analysis of embedded landscapes,
which contain both problems, should be useful. Equa-
tion 2 suggests that computing the Walsh coefficients
of a function requires the complete enumeration of the
function space. In general, this makes Walsh analy-
sis impractical for analyzing bit interactions for prob-
lems of nontrivial size. This is not the case for em-
bedded landscapes. The fact that an embedded land-
scape is composed of a sum of generally much smaller
subfunctions will give us leverage in computing the
Walsh coefficients. If the dimension of the subfunc-
tions is bounded by some k then the Walsh trans-
form can be computed in polynomial time with respect
to the number of bits in the domain of the function
[Heckendorn et al., 1998].

We outline this process as follows: By definition, an
embedded landscape, f : BL—R, is a sum of subfunc-

tions:
Q

@) =Y gi(pack(z, m;)).

i=1
The Walsh coefficients for each subfunction g;
Bbe(mi) SR can be computed:

2bC(mj)_1

. 1
9i __
w;’ = 9bc(m;) Z

y=0

gi(y)bi(y) i € BP(ma)

where w9 are the Walsh coefficients of g;. It has been
shown [Heckendorn and Whitley, 1997] for a function
composed of just a single subfunction, that is:

f(z) = g(pack(z, m)),

that exactly the Walsh coefficients of g appear as
Walsh coefficients in the higher dimensional function,
f, and the remaining are all zero.

) C
=T e )

g .
of — | Yeack(im) 1
¢ 0 otherwise



where m is the interaction mask for the subfunction.
i C m, denotes that 7 is contained in m, which means
that all of the positions in ¢ that contain a 1 also have a
1in m. Said another way ¢ Am = i. Equation 4 shows
that the only possible nonzero Walsh coefficients are
those whose bit patterns are contained in the interac-
tion mask for the function. It is known that the Walsh
coeflicients for a k bit function g can be computed in
O(k2*) time using a fast Walsh transform. There-
fore, the Walsh coeflicients of function f above can be
computed in the same time.

Since the Walsh transform is a simple linear trans-
formation, the Walsh transform of a sum of functions
is the sum of the Walsh transform of the functions.
Therefore, the Walsh transform of an embedded land-
scape with @) subfunctions can be treated as a sum of
the Walsh transforms of each individual subfunctions
[Heckendorn et al., 1998]. Therefore:

Q
wz'f = Z wzick(i, m;) (5)

=1

It follows from Equations 4 and 5 that there are at
most 2¥(Q) nonzero Walsh coefficients. This means the
number of nonzero Walsh coefficients is linear in Q.
But () must be bounded by the number of possible sub-
sets of k£ bits. Hence for an L bit function: @ < (fc‘)
That is, () polynomially bounded by L for fixed val-
ues of k. Equation 5 tells us that all the Walsh coeffi-
cients for an embedded landscape, f, can be computed
in O(k2*Q) time by using the fast Walsh transform.
Hence the Walsh coefficients can be computed in poly-
nomial time with respect to L for fixed values of k.
For example: in the case of Walsh coefficients for a
MAX3SAT problem with C clauses, there are at most
8C nonzero Walsh coeflicients. They can be computed
in O(3 - 8C) time.

To show how these equations work, Table 1 shows an
example of Walsh coefficient calculations for a small

MAX3SAT function f : B*—R with f(z) = fi+fo+f3
and

N =($_2V$1 VJ}Q)
fo=(xz3 VT2V 1)
fs = (23 VT1 Vo).

Since each clause is defined over 3 variables, their cor-
responding Walsh coefficients can be computed using
Equation 3. When a clause is evaluated over all pos-
sible variable assignments, each clause will produce
seven 1’s and a single 0. This property can be exploited
to produce the Walsh coefficients for MAXSAT clauses
directly from the clause description[Rana et al., 1998].
The Walsh coefficients for each clause are listed in
Table 1 as W(f1), W(f2) and W(f5). According to

Table 1: Walsh Coefficients broken down by clause.

E wi | W(H) W) W(fs) | W(f(z))
0000 | wo 0.875 0.875 0.875 2.625
0001 | w1 | —0.125 0 0.125 0
0010 | w2 —0.125 —-0.125 0.125 —0.125
0011 | ws | —0.125 0 —-0.125 —0.250
0100 | w4 0.125 0.125 0 0.250
0101 | ws 0.125 0 0 0.125
0110 | we 0.125 0.125 0 0.250
0111 | wy 0.125 0 0 0.125
1000 | ws 0 -0.125 -0.125 —0.250
1001 | wo 0 0 0.125 0.125
1010 | wio 0 -0.125 0.125 0
1011 | w1 0 0 —0.125 —0.125
1100 | w12 0 0.125 0 0.125
1101 w13 0 0 0 0
1110 | wia 0 0.125 0 0.125
1111 w15 0 0 0 0

equation 5, we simply sum W (f1), W(f2) and W(f3)
to produce W(f(x)). Note that, unlike this example,
for most embedded landscapes & is much less than the
number of bits in the domain.

Since all nonzero Walsh coefficients for any MAX3SAT
problem can be computed in P-time with respect to
number of bits in the domain and MAX3SAT is NP-
complete [Papadimitriou, 1994], then if P # NP,
knowing the exact linear and nonlinear interactions of
a function cannot be sufficient for inferring the global
optimum.

We briefly discussed how Walsh coefficients can indi-
cate the bitwise nonlinearity in a problem that can lead
to problem difficulty for GAs. We have shown how the
Walsh coefficients can be quickly computed for any em-
bedded landscape with bounded subfunction size. In
the next section we show how Walsh analysis can also
probe the statistical nature of embedded landscapes
by calculating summary statistics in polynomial time.

4 STATISTICS FOR PROBLEM
INSTANCES

Walsh analysis can be used to compute summary
statistics for fitness distributions of discrete opti-
mization problems. Note that the fitness distribution
is the distribution formed by evaluating all possible
inputs to a problem. So, for a problem defined over
2L possible inputs, the distribution would be com-
posed of all 27 evaluations of the inputs. Clearly,
computing summary statistics for arbitrary fitness dis-
tributions would require exponential time. Goldberg
and Rudnick [Goldberg and Rudnick, 1991] have used



Walsh coefficients to calculate fitness variance for fit-
ness distributions and schemata; however, the calcula-
tions were intended for enumerable functions.

In this section, we show how higher order statistics
such as skew and kurtosis can be also be computed
from the Walsh coefficients by using a general formula
for computing the r * moment for any embedded land-
scape fitness distribution and for any other problem
where all nonzero Walsh coefficients are known. Since
Walsh analysis can be performed for embedded land-
scapes in polynomial time with respect to L, these
summary statistics can also be computed in polyno-
mial time.

Given the mean, the formula used to compute the rt*
moment, denoted p,., for a discrete random variable X
is:

pr = B(X —p)] = Y (z—p)p(e)

rzeX

where p(z) is the probability of z occurring. For our
purposes, the function p(z) = 2% since we are enumer-
ating a function over all L bit binary strings. Since
1o = 1 for all inputs we see from Equation 2 that
Walsh coeflicient wq is the mean of all fitnesses. The
function then becomes:

(z—p)"
=3, T oL
zeX

If X represents a real valued function over an L bit
domain then:

2l 1

b= 5p O (f(@) —u)"
z=0

We can substitute for f with the linear Walsh repre-
sentation of f from Equation 1:

T

1 2l_1 fol_1
pe=or Do | Do witki(@) — p
x=0 1=0

Since p = wp, and o(z) =1 Va:

T

1 2l_1 f2l 1
= gr 3 [ 3 wte)
z=0 =1

We can now expand the exponential creating a set of
r indices a; where a; € BL:

1 21 f2f 1 2L 1
Br = oL Z Wa, Vg, (2) Z Wa, Yo, (2)
=0 a1=1 as=1
2k 1
Z Wa, Y, (2)
ar=1

Since the Walsh coefficients do not depend on z, the
formula can be rewritten as:

ol_192f_1 2f_1

D 0D D S

a1=1 as=1 ar=1

2l 1

W, Y Yo (@ (2) -, ()
z=0

Using the fact that for arbitrary p and g: ¥,(z)9,(z) =
Vpaq(2):

ol 121 2L

b= op 303 e 3 g

a1=1 az=1 ar=1

2l 1

W, Z Vay ®a20..0a, (T)

z=0

Now using the fact that:

2k -1

3 ) {5

if i #0
if i=0

we see that only when ay @ as @ ... ® a, = 0 is the
inner sum nonzero. Therefore,

1 ,
pr=35F Z walwaz...waTQL, a; Z0Vi
219a2®...0a,=0
= Z Way Way - Wa, a; #0Vi (6)

a1®az®...®ar=0

To summarize, given the set of nonzero Walsh coeffi-
cients, we can compute the rt* moment for the fitness
distribution using products of the Walsh coefficients
such that the exclusive-or of the indices is zero.

This formula allows us to compute the variance, skew
and kurtosis for any fitness distribution provided we
are given the Walsh coefficients.

Ha

skew = ki kurtosis = —

. _ _ 2
variance = s = 0o 3 1
g g
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Figure 1: PDF of Fitness Distributions for 20 Variable
MAX3SAT Problems with Clause/Var from 2 to 8.

For example, since a; ® ay = 0 if and only if a; = as
then the variance for any function can be computed

2l 1

E WiW;
i=1

Of course, this computation of the moment around the
mean, if done directly, would take O(2F") time. How-
ever, in the case of an embedded landscape, only a
polynomial number of Walsh coefficients are nonzero
and only the nonzero coefficients need be considered.
Selecting the indices to have even parity would con-
sist of selecting the first » — 1 indices from the set of
nonzero Walsh coefficients. The exclusive-or of these
would be taken and would be used as the desired r**
index. The exclusive-or of the r indices would there-
fore be zero. Using this simple strategy it would take
O(n""1) time to compute the r** moment given the
Walsh coefficients, where n is the number of nonzero
Walsh coefficients. In the case of embedded landscapes
the nonzero Walsh coefficients can be identified and
computed in polynomial time. Since our moment com-
putation strategy is also polynomial time for fixed r,
all the summary statistics can be computed from for-
mula 6 in polynomial time.

4.1 SUMMARY STATISTICS FOR LARGE
MAXSAT PROBLEMS

This statistical analysis applies to any embedded land-
scape including both NK-landscapes and MAXkSAT
problems. So it is now possible to calculate summary
statistics for even high dimensional examples of these
important classes of GA test problems. As an exam-
ple, in this section we will compute summary statistics
for MAX3SAT problems including many that would

be too large to enumerate. We will compare the com-
puted skew versus a set of exhaustively enumerated
smaller MAXSAT problems and see that the computed
skew correctly predicts the shape of the distribution.
We will also look for statistical indicators of the well
known phase transition found in MAX3SAT problems
[Kirkpatrick and Selman, 1994]. The phase transi-
tion occurs when the clause to variable ratio for a
MAX3SAT problem approaches 4.3. At that point
there is a spike in problem difficulty relative to many
deterministic algorithms and the number of potential
solutions for MAX3SAT problems drops off exponen-
tially. We begin by discussing the mean and median
of MAX3SAT problems.

The Walsh analysis of MAXSAT problems is related
to polynomial time c-approximate algorithms (0 < ¢ <
1) for NP-complete problems[Papadimitriou, 1994].
Approximate algorithms are polynomial time algo-
rithms designed to guarantee solutions to NP-complete
optimization problems that are at least a 1 — ¢
times the optimal solution, assuming maximization.
The value for ¢ for MAX3SAT is g[Trevisan, 1997,
Papadimitriou, 1994].  Recently, Hastad has been
proven that it is an NP-hard problem to guarantee a
solution that is % +¢€, € > 0, of optimal[Héstad, 1997].
The basis of the % limit for MAXSAT is that % is sim-
ply the probability that each clause can be satisfied
by randomly setting the variables. Not surprisingly,
the mean (but not necessarily the median) of the fit-
ness distribution of any MAX3SAT problem is simply
g times the number of clauses in the problem.

To better understand how function values are dis-
tributed for MAX3SAT problems, the average fitness
distributions of all points in 50 randomly generated 20
variable MAX3SAT problems are examined as prob-
ability density functions. The probability distribu-
tion function (pdf) gives us insight into what kinds
of output we can expect for randomly generated in-
puts; namely, do most solutions lie to the left or right
of the mean (I optimal)? Figure 1 is the composite
pdf calculated by averaging the pdfs for 50 individ-
ual MAX3SAT problems. The figure shows four com-
posite pdfs for clause to variable ratios of 2, 4, 6, 8.
The x-axis corresponds to the ratio of satisfied to total
number of clauses while the y-axis represents the fre-
quency that particular ratio occurred. The optimum
occurs at a ratio of 1.0 and the mean fitness is % for
all problem sets.

The set of pdfs illustrates that the fitness distribu-
tions are skewed to the left of the mean fitness, %. As
the clause to variable ratio increases, the skew tends

towards 0 but still remains negative. So, the majority
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Figure 2: Counts of optimal solutions for 20-variable
MAX3SAT problems using a log scale.
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Figure 3: Variances of fitness distributions for

MAXS3SAT problems.

of fitness values are higher than % optimal. However,
the actual number of optimal solutions is decreasing
as the clause to variable ratio increases; in fact, the
number of solutions decreases at an exponential rate
as illustrated in Figure 2.

The histograms for 20 variable problems provide some
insight into the fitness distributions of higher dimen-
sional MAX3SAT problems. We can use the Walsh
formulas to compute the variance, skew and kurtosis
for fitness distributions that are too large to be enu-
merated. Figures 3 and 4 respectively illustrate the
average variance and skew of the fitness distributions
for 20, 50 and 100 variable MAX3SAT problems. The
plots for both the 20 and 50 variable problems were
averaged over 500 problem instances. We used 100
problem instances at each point for the 100 variable

Skew for MAXSAT Problems
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Figure 4: Skew of fitness distributions for MAX3SAT
problems.

problems. The region representing clause/variable ra-
tios between 4 and 5 was more heavily sampled by us-
ing increments of 0.1, while the remaining points were
computed at increments of 0.2. Since kurtosis calcula-
tions are O(n?), we limited our kurtosis calculations to
only the set of 500 20 variable problems. The kurtosis
was approximately 3 regardless of the clause/variable
ratio.

While no evidence of a phase transition is found in
these statistics, the skew of the randomly generated
MAXSAT problems was always negative which agreed
with the results in Figure 1. For this rather large set of
randomly generated MAXSAT problems, it would ap-
pear that the majority of solutions are actually greater
than % of optimal. This also implies that if randomly
generated SAT problems are being used to test search
algorithms, then we need to be aware of the biases that

exist in that set of fitness distributions.

The summary statistics for problem instances of ran-
domly generated MAX3SAT problems indicate that
the majority of solutions are actually higher than
average. For over one thousand MAX3SAT prob-
lem instances, the skew was negative. While there
are cases of other MAX3SAT problem instances with
positive skew, Crawford’s parity function learning
problems from the DIMACS benchmark problem set
[Dim, 1993], the randomly generated MAX3SAT prob-
lems have biased fitness distributions. While there
was no indication of phase transition behavior for the
MAX3SAT summary statistics, it is interesting to note
that the number of solutions drops exponentially with
the clause to variable ratio.



5 CONCLUSIONS

Embedded landscapes are a broad class of functions
encompassing both MAXSAT and NK-landscapes. As
with MAXSAT and NK-landscapes, the Walsh trans-
form can be performed on embedded landscapes in
polynomial time with respect the number of bits in
the function domain. Once obtained, the nonzero
Walsh coefficients can be used to compute the sum-
mary statistics (i.e. mean, variance, skew and kurto-
sis) in polynomial time. Using our polynomial time al-
gorithms we were able to compute the summary statis-
tics for large MAXSAT problems and use this to look
for statistical indicators of a phase transition.

The polynomial time Walsh analysis of embed-
ded landscapes also means that we can exactly
compute schema averages upto a fixed order in
polynomial time [Rana et al., 1998] [Goldberg, 1989a]
[Goldberg, 1989b]. Knowing exact schema averages
and exact summary statistics for any particular prob-
lem instance actually provides a significant amount of
information. On the other hand, despite having all
this information, the results of Hastad [Hastad, 1997]
indicates that in the general case, no search algorithm
or exact method can be guaranteed to generate a so-
lution that is better than u, the average evaluation,
unless P = NP.
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