
Dynamic Representations and Escaping Local Optima:
Improving Genetic Algorithms and Local Search

Laura Barbulescu, Jean-Paul Watson, and L. Darrell Whitley
Computer Science Department

Colorado State University
Fort Collins, CO 80523

e-mail: {laura,watsonj,whitley}@cs.colostate.edu

Abstract

Local search algorithms often get trapped in local
optima. Algorithms such as tabu search and simu-
lated annealing ’escape’ local optima by accepting non-
improving moves. Another possibility is to dynamically
change between representations; a local optimum un-
der one representation may not be a local optimum un-
der another. Shifting is a mechanism which dynamically
switches between Gray code representations in order to
escape local optima. Gray codes are widely used in con-
junction with genetic algorithms and bit-climbing algo-
rithms for parameter optimization problems. We present
new theoretical results that substantially improve our
understanding of the shifting mechanism, on the number
of Gray codes accessible via shifting, and on how neigh-
borhood structure changes during shifting. We show
that shifting can significantly improve the performance
of a simple hill-climber; it can also help to improve one
of the best genetic algorithms currently available.

Introduction
Given a representation and a neighborhood operator, local
search methods (Aarts & Lenstra 1997) proceed by gradual
manipulation of some initial solution. Because of its my-
opic nature, local search can become trapped in local op-
tima. Methods such as simulated annealing and tabu search
attempt to ’escape’ by accepting non-improving or inferior
neighbors, with the goal of moving out of the local opti-
mum’s basin of attraction. Local optima are induced by the
selected representation and neighborhood operator; a local
optimum under one representation may not be a local opti-
mum under another representation. Thus, dynamic represen-
tations are a potentially important, although relatively unex-
plored, class of escape mechanism.

We focus on parameter optimization. Functions are dis-
cretized so that search proceeds in a bit space, with L-bit
Gray or Binary encoded function inputs; this is common
with Genetic Algorithms (GAs). Empirically, Gray encod-
ings usually perform better than Binary encodings for many
real-world functions (Caruana & Schaffer 1988). Gray codes
preserve the neighborhood structure of the discretized real-
valued search space (Whitley et al. 1996). As a result, a

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Gray code can induce no more optima than exist in the orig-
inal function. Further, because there are more neighbors un-
der the Gray code (l bits for each dimension) than in the dis-
cretized real-valued function (2 for each dimension), there
are usually significantly fewer optima in the Gray code’s
search space. In contrast, Binary codes often create new op-
tima where none existed in the original function. Finally,
many distinct Gray codes exist, each inducing a different
neighborhood structure, and potentially different local op-
tima.

These properties motivated (Rana & Whitley 1997) to in-
troduce shifting as a mechanism for changing between a re-
stricted set of Gray codes in an effort to escape local optima.
A simple hill-climbing algorithm and a state-of-the-art GA
were augmented with the shifting mechanism, and evaluated
using test functions empirically proven to be both resistant to
simple hill-climbing algorithms, and still pose a challenge to
GAs.

We establish a new bound on the number of unique Gray
codes accessible via shifting. This allows us to focus on
a significantly smaller set of representations. We demon-
strate that similar Gray codes induce similar search spaces;
to escape optima, one must consider dissimilar Gray codes.
We use these results to improve the performance of a hill-
climbing algorithm, to the point where it is competitive with
a state-of-the-art GA.

On Dynamic Representations
For any function, there are multiple representations which
make optimization trivial (Liepins & Vose 1990). However,
the space of all possible representations is a larger search
space than the search space of the function being optimiz-
ing. Furthermore, randomly switching between representa-
tions is doomed to failure. Suppose we haveN unique points
in our search space and a neighborhood operator which ex-
plores k points before selecting a move. A point is con-
sidered a local optimum from a steepest-ascent perspective
if its evaluation is better than each of its k neighbors. We
can sort the N points in the search space to create a rank-
ing, R = r1, r2, ..., rN , in terms of their function evaluation
(where r1 is the best point in the space and rN is the worst
point in the space). Using this ranking, we can compute the
probability that a point ranked in the i-th position in R is a
local optimum under an arbitrary representation of the search

space:

P (i) =

(
N−i
k

)
(
N−1
k

) [1 ≤ i ≤ (N − k)] (1)

Using this result, one can prove that the expected number
of local optima under all possible representations for a search
space with N points and any neighborhood operator of size
k is given by

∑N−k
i=1 P (i) = N/(k + 1) (Whitley, Rana, &

Heckendorn 1997).
These equations make it clear that highly ranked points

in the search space are local optima under almost all rep-
resentations. To exploit dynamic representations we cannot
randomly change representations. So how do we proceed?
First, we assume that most real-world optimization prob-
lems have a complexity which is less than that expected from
random functions. Two measures of this complexity are:
smoothness and number of local optima. We have shown
empirically that many test functions and real-world problems
tend to be relatively smooth compared to random functions,
and that the number of induced local optima are fewer than
the expected number of local optima associated with random
functions (Rana & Whitley 1997).

It follows that one should use a form of dynamic repre-
sentation that respects and preserves smoothness and which
bounds the number of local optima that can result while
changing problem representation. Dynamic Gray codes have
these desirable properties.

Gray Codes and Shifting
A Gray code is any integer bit encoding such that adjacent
integers are Hamming distance-1 apart. The standard re-
flected Gray encoding of an integer is constructed by apply-
ing the exclusive-or operator to a) the standard Binary encod-
ing of the integer and b) the same Binary encoding, shifted
one position to the right; the last bit is then truncated. Gray
encoding and decoding can be concisely expressed through
matrix operations. Let x and y be L-bit Binary-encoded and
Gray-encoded integers, respectively, and let G be a trans-
form matrix containing 1’s on both the diagonal and up-
per minor diagonal and 0’s elsewhere. The Gray encoding
and decoding processes are then simply given by xTG and
yTG−1, respectively.

It can be shown that every permutation of the columns of
the G matrix results in another Gray code transform matrix.
Note that we can also treat the sequence of integers as a cir-
cular chain. Shifting the chain also results in a Gray code. In
practice, one can 1) de-Gray a bit string, 2) treat the resulting
string as a Binary coded integer and 3) add a constant offset
(i.e., a shift) to the integer, mod 2L (Rana & Whitley 1997).

There are 2L possible shifting values, andL! permutations
over the columns of the Gray transformation matrix. In this
paper we prove that all of the L! permutations of the G ma-
trix result in identical Hamming-1 neighborhoods, and only
2L/4 of the possible 2L shifts actually change the Hamming-
1 neighborhood.

Given a discretized real-valued function, the number of
optima in any Gray encoding under a Hamming-1 neighbor-
hood operator, is less than or equal to the number of optima

in the original function. Furthermore, the surface of the orig-
inal function is a subset of the set of paths induced by the
Gray encoding; hence the surface of the original function
is preserved and enhanced with greater connectivity by the
Gray code (Rana & Whitley 1997). In contrast, the standard
Binary coding actually increases the number of optima for
many test functions (Whitley 1999). This is consistent with
the fact that, in practice, search algorithms appear to work
better under Gray than Binary encodings.

We now better understand why shifting works. Reflected
Gray codes form a circuit. This circuit represents the inputs
to a real-valued function. In a Gray coded string of length
L, there are L folds, or reflections. As the circuit is shifted,
points pass by other points in different reflections. This can
be seen in Figure 1 for L = 4. The 4 neighbors are North-
South-East-West and the graph is a torus. At the order-3 re-
flection, strings differ only in the 3rd bit; this connects the
North-South neighbors in rows 1 and 2, as well as rows 3 and
4. The directional arrows show that these points move in op-
posite directions when shifting occurs, and hence neighbors
flow past each other. The order-4 reflection (where the 4th
bit differs) are the North-South connections between rows 2
and 3, as well as the toroidal North-South wrap around be-
tween rows 1 and 4. When two local optima “pass” one an-
other in the shifted Gray encoding, one of the two optima
must collapse. For example, in Figure 1 positions 4 and 9
are not neighbors in the normal integer mapping induced un-
der standard Gray code. However, when the integer space
is shifted by 1, positions 4 and 9 become neighbors. If there
are local optima at positions 4 an 9, one of these optima must
collapse when the search space is shifted.

We first prove that all permutations of the columns of the
Gray transform matrix G yields a transform matrix that in-
duces an identical neighborhood structure.

Theorem 1 Let G be the L-bit standard reflective Gray
transform matrix, and construct Gπ by applying a permuta-
tion π to the columns ofG. Let x be some integer, and let xG
and xGπ be the set of L neighboring integers under G and
Gπ, respectively. Then xG = xGπ .

Proof: The columns of G and Gπ independently produce
a single bit of xG and xGπ , respectively; viewing π as a per-
mutation of the bits of xG or the columns ofG is equivalent.
Permuting the bits of each element of xG does not change
the Hamming distance between any element in the set and x,
so the Hamming distance-1 neighbors of x under bothG and
Gπ are invariant.

�

Next, we show that for any given transform matrix G,
only 2L−2 shifts result in distinct neighborhood structures.
First, note that a reflected Gray code is a symmetric reflec-
tion. If we flip the leading bit of each string, the Hamming
neighborhood does not change. This is exactly what hap-
pens when one shifts by 2L−1. It follows that every shift
from i = 0 to 2L−1 − 1 is identical to the correspond-
ing shift at j = 2L−1 + i. As will be shown, shifting by
2L−2 also will not change the neighborhood structure, and
in general, shifting by 2L−k will result in a change of exactly
k − 2 neighbors. This can be seen by studying Figure 1: a
shift of 24−2 = 4 (or any multiple of 4) leaves the neighbor-

0000 0001 0011 0010

0110011101010100

1100 1101 1111 1110

1010101110011000

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

15 0 1 2

6 5 4 3

7 8 9 10

14 13 12 11

Integer Mapping Under Gray Gray Mapping Shifted by 1The Hamming Neighborhood

Figure 1: A simple example of shifting. Note that integers are associated with the corresponding positions in the Hamming
Neighborhood. Neighbors are N-S-E-W and the arrows map the surface of the real-valued function.

hood structure unchanged. For numbers that are powers of
2, smaller shifts change more neighbors. Note that a shift of
1 implies 1 = 20 = 2L−L, which changes L-2 neighbors.
This is the largest number of neighbors which can change in
a Gray code. Numbers that are not powers of 2 can be viewed
as a combination of large and small shifts.

Theorem 2 For any Gray encoding, shifting by 2L−k where
k ≥ 2 will result in a change of exactly k − 2 neighbors for
any point in the search space.

Proof: Consider an arbitrary Gray coding, and k ≥ 2.
Next, divide the 2L positions into 2k continuous blocks of
equal size, starting from position 0. Each block contains
exactly 2L−k positions (see Figure 2a). Consider an arbi-
trary block X and arbitrary position P within X . Exactly
L − k neighbors of P are contained in X . The periodic-
ity of both Binary and Gray bit encodings ensures that the
L− k neighbors of P in X do not change when shifting by
2L−k. Two of the remaining k neighbors are contained in
the blocks preceding and following X , respectively. Since
the adjacency between blocks does not change under shift-
ing, the two neighbors in the adjacent blocks must stay the
same.

The remaining k−2 neighbors are contained in blocks that
are not adjacent to X . We prove that the rest of these k − 2
neighbors change. Consider a block Y that contains a neigh-
bor of P . A fundamental property of a Reflected Gray code
is that there is a reflection point exactly halfway between any
pair of neighbors. For all neighbors outside of block X and
which are not contained in the adjacent blocks, the reflection
points must be separated by more than 2L−k positions. Shift-
ing X by 2L−k will move it closer to the Reflection point,
while Y is moved exactly 2L−k positions farther away from
the reflection point (see Figure 2b). Point P in X must now
have a new neighbor (also 2L−k closer to the reflection point)
in the block Z. If the reflection point betweenX and Z is at
location R, then for the previous neighbor in Y to still be a
neighbor of P in X it must have a reflection point at exactly
R+ 2L−k. This is impossible since for all neighbors outside
of block X which are not contained in the adjacent blocks,
the reflection points must be separated by more than 2L−k

positions. A similar argument goes for the case when shift-
ing by 2L−k movesX farther away from the reflection point
(while Y is moved closer). Thus, none of the previous k− 2
neighbors are neighbors after shifting by 2L−k.

�

To better understand how various shifts affect the neigh-

...

...

shift by 2L-k

a)

X YZ

X YZ

... ...

... ...

b)

2
L-k

R

Figure 2: Shifting by 2L−k. a). An unwound representation
of the Gray codes circuit. b). For an arbitrary position in
a block X , and an arbitrary neighbor of this position in the
block Y , after shifting by 2L−k, the neighbor moves from
block Y to block Z.

borhood structure, we consider a 1-dimensional version of
Rastrigin’s function (described in the experimental section).
In Table 1, we list all the function optima under the stan-
dard Reflective Gray Code, withL = 10. For each optimum,
each shift which collapses the optimum is recorded. Clearly,
worse optima are collapsible by a larger number of shifts
(minimization of F (X) is the objective), simply because
a large fraction of the domain (X) has a better evaluation.
However, the ’bands’ of collapsing shift values were unex-
pected; similar shifts result in similar neighborhood struc-
tures. Next, we formalize this observation by characterizing
the difference between neighbors under adjacent shift values;
the proof is somewhat lengthy, and is documented in (Bar-
bulescu 2000).

Theorem 3 For any Gray code, consider two alternative
shifts, i and i + 1 (0 ≤ i ≤ 2L − 2). Consider an inte-
ger point p in the search space such that its position is not a
multiple of 8 after shifting by i + 1. Then, L − 3 neighbors

X F (X) Collapsing Shifts
-2.0 3.9768 22-49, 102-113, 150-177, 201-212, 230-241
-1.0 0.9983 12-18, 76-82, 140-146, 204-210
0.0 0.0 None

-1.0 0.9983 47-53, 111-117, 175-181, 239-245
-2.0 3.9768 16-27, 45-56, 80-107, 144-155, 208-235

Table 1: Enumeration of shifts which collapse the optima of
the 1-D Rastrigin’s function

of p under the shift i+ 1 are obtained by subtracting 2 from
the neighbors under shift i.

Theorems 1 and 2 might suggest that only small shifts
are needed, since small shifts can change a large number of
neighbors. Theorem 3 proves that small shifts result in new
neighbors that are near to the old neighbors. Empirically,
we have found uniform sampling is the best a-priori mecha-
nism for selecting ’good’ shifting values. Intensive sampling
from the set of shift values can collapse inferior local optima
(more sampling increases the probability of collapsing op-
tima). However, not all local optima are collapsible under
shifting. The result is formalized in Theorem 4, below.

Theorem 4 Given an arbitrary Gray code G, let X and Y
be two distinct integers with encodings under G given byXG

and YG, respectively. Further assume that bothX and Y are
optima of a function F . If parity(XG) = parity(YG) then
no shift exists which allows hammingDistance(xG, yG) =
1.

Proof: If X 6= Y , and parity(XG) = parity(YG),
then hammingDistance(xG, yG) is clearly greater than 1.
Select an arbitrary shift T to produce a new Gray code G

′

from G, resulting in X
′
G and Y

′
G. Application of T pro-

duces identical changes in parity(X
′
G) and parity(Y

′
G).

Thus, parity(X
′
G) = parity(Y

′
G), and X 6= Y , implying

hammingDistance(X
′
G, Y

′
G) ≥ 2.

�

Theorem 4 asserts that there may exist optima which can-
not be ’collapsed’ by shifting. In the next section, we provide
an example of such a function.

Experiments
We investigate the utility of incorporating shifting into both
a simple hill-climbing algorithm, RBC, and a state-of-the-
art genetic algorithm, CHC. Shift values are uniformly sam-
pled from the set of unique shifts. We use the test func-
tions described in (Whitley et al. 1996), shown in Table
2 (along with the associated variable domains). These test
functions range from simple, separable functions which are
easily solved by hill-climbers to more complex non-linear,
non-separable functions.

RBC (Random Bit Climber) (Davis 1991) is a next-
descent hill-climbing algorithm. Search begins from a ran-
dom bit string, and proceeds by testing each of the L
Hamming-1 neighbors in some randomized order. Both
equal and improving moves are accepted. If the search is
stuck in a local optimum, it is re-started from a new random
bit string. Otherwise, a new random visitation sequence of
the L neighbors is generated.

Once a local optimum is detected by RBC, the representa-
tion can be shifted to try to escape the local optimum. Search
then proceeds from the new bit-string until convergence is re-
established. We use two types of restarts: ’soft’ and ’hard’.
The ’soft’ re-start merely changes the representation, with-
out changing the current point in the search space. A ’hard’
re-start reinitializes search from a new random point in the
search space. Depending on the experiment, we perform ei-
ther 10 or 50 soft re-starts before each hard re-start.

The Hamming-1 neighborhood at the bit-string level
translates into a neighborhood which is capable, in one step,
of altering only a single parameter value. This restriction
suggests that RBC should perform well on separable test
functions, and perform worse on non-separable, non-linear
test functions which may require simultaneous manipulation
of multiple parameters to yield improvements in the evalua-
tion function. These hypotheses are supported by our exper-
imental results.

The CHC genetic algorithm (Eshelman 1991) maintains
a parent population of size µ (= 50 in our experiments). CHC
randomly pairs members of the parent population for repro-
duction. Once paired, reproduction is only permitted if the
Hamming distance between the two parents is greater than
some threshold value, resulting in a child population of size
λ. The HUX crossover operator is used which ensures that
each child is of maximal Hamming distance from the parents.
The µ best of the µ+ λ individuals form the parent popula-
tion for the next generation. CHC guarantees survival of the
best µ individuals encountered during the search.

CHC also uses a re-start mechanism if the parent popu-
lation remains unchanged for some number of generations.
During a re-start, a population containingµ copies of the best
individual is formed; all but one copy undergo extensive mu-
tation (35% of the bits). Shifting can be applied each time
CHC converges. The best individual is re-encoded using a
new, randomly selected shift value.

Methodology
We ran 30 trials of both RBC and CHC on each test func-
tion, allowing a maximum of 500K evaluations per run. With
the exception of Powell’s function (whose dimension was
fixed at 4), 10-dimensional versions of each test function
were used, with each variable encoded using 10 bits except
for Powell’s function, which used 20-bit encodings. For the
Rana and Whitley functions, 10-dimension versions were
constructed using the Weighted-Wrap expansion method, de-
scribed in (Whitley et al. 1996). Two versions of CHC, both
with and without shifting, were considered. We tested RBC
without shifting, in addition to versions using both 10 and
50 soft re-starts between hard-restarts, denoted RBC-10 and
RBC-50 respectively.

Results and Discussion
The results for RBC and CHC are reported in Tables 3 and
4, respectively. The ’Number Solved’ column indicates the
number of times the algorithm found the optimal solution,
out of the 30 total trials. The statistics for both solution qual-
ity and number of evaluations are taken over all 30 trials. All
statistical comparisons between algorithms are made using
two-tailed t-tests (significance level p < 0.01).

For RBC (Table 3, RBC-10), shifting yields a statistically
significant improvement in both solution quality and number
of evaluations for the Rastrigin, Schwefel, and Whitley test
functions; for Rana’s function, the improvement applies only
to solution quality. For both the Powell and Griewangk test
functions, no difference in either measure was observed. For
CHC (Table 4), shifting fails to yield any significant differ-
ences in mean solution quality. However, shifting does sig-

xi ∈ [−5.12, 5.11]

Rastrigin F (xi|i=1,N) = (N ∗ 10) + [
∑N

i=1
(x2
i − 10cos(2πxi))]

xi ∈ [−512, 511]

Schwefel F (xi|i=1,N) =
∑N

i=1
−xisin(

√
|xi|)

Griewangk F (xi|i=1,N) = 1 +
∑N

i=1

x2
i

4000 −
∏N

i=1
(cos(xi√

i
))

Powell F (x1, x2, x3, x4) = (x1 + 10x2)2 + (
√

5(x3 − x4))2 + ((x2 − 2x3)2)2 + (
√

10(x1 − x4)2)2

Whitley F (x, y) = −xsin(
√
|x− y+47

2 |)− (y + 47)sin(
√
|y + 47 + x

2 |)
Rana F (x, y) = xsin(

√
|y + 1− x|)cos(

√
|x+ y + 1|) + (y + 1)cos(

√
|y + 1− x|)sin(

√
|x+ y + 1|)

Table 2: The test functions described in (Whitley et al. 1996).

Function Experiment Mean Sol. σ Mean Evals. σ Number Solved
Rastrigin no shift 6.35088 1.34344 500000 0.0 0

shift-10 0.0 0.0 38368 39201 30
shift-50 0.0 0.0 4488 1384 30

Schwefel no shift -3860.79 116.343 500000 0.0 0
shift-10 -4189.0 0.0 6888 5481 30
shift-50 -4189.0 0.0 3588 1058 30

Griewangk no shift 0.001894 0.007322 160318 150648 28
shift-10 0.000818 0.00448 93488 99037 29
shift-50 0.009069 0.013182 289021 193251 20

Powell no shift 0.000258 6.009e-5 500000 0.0 0
shift-10 0.000224 6.53e-5 500000 0.0 0
shift-50 0.000235 6.95e-5 500000 0.0 0

Whitley no shift -770.518 29.7811 500000 0.0 0
shift-10 -905.879 43.9736 351004 187004 14
shift-50 -909.183 45.014 303511 201526 19

Rana no shift -449.115 8.88101 500000 0.0 0
shift-10 -469.255 7.58475 500000 0.0 0
shift-50 -488.151 5.59812 500000 0.0 0

Table 3: RBC results on six test functions, with 10 and 50 shift attempts before a hard re-start is performed. Results are averaged
over 30 independent trials of 500K function evaluations apiece. All functions are being minimized.

nificantly reduce the number of evaluations required for the
Rastrigin, Griewangk, and Powell test functions. While sub-
stantially improving the performance of both RBC and CHC,
significant performance differences between the algorithms
still exist. Next, we increase the number of soft re-starts used
with RBC (RBC-50), and compare the resulting performance
with CHC.

On Rastrigin’s and Schwefel’s functions, both versions of
RBC (RBC-10 and RBC-50) and CHC found the global op-
timum in all trials. Both of these functions are separable.
While there was no statistical difference between RBC-10
and CHC, RBC-50 required significantly fewer evaluations
than CHC. Using 50 instead of 10 soft re-starts reduces the
variance of the RBC results. The performance improvement
can be explained, since all the local optima are collapsible
under some shift: Theorem 4 is not applicable. Ten and fifty
soft re-starts sample a maximum of 3.9% and 19.6% of the
possible (255) unique shifts, respectively. Thus, sampling
more shifts increases the chances of collapsing a particular
local optimum.

Griewangk’s function is the simplest non-separable test
function considered: (Whitley et al. 1996) show that the
function becomes easier (more parabolic) as the dimension-

ality is increased. Intuitively, a highly parabolic structure
should be easily solved by a hill-climbing algorithm. How-
ever, CHC significantly outperforms both versions of RBC
for the number of evaluations. Furthermore, increasing the
number of soft re-starts resulted in poorer RBC performance.
To explain this apparent anomaly, we examined the shifting
properties of a 1-dimensional version of Griewangk’s func-
tion. For each local optimum, we enumerated all possible
shifts and recorded which shifts were able to collapse the lo-
cal optimum. We found that Theorem 4 was directly appli-
cable: the two best local optima were not collapsible by any
shift - i.e., not collapsible with the global optimum. In ad-
dition, these local optima ’flank’ the global optimum; to find
the global optimum, the initial starting point of RBC must be
in its attraction basin to begin with, which is relatively small.
Here, shifting is futile - hard re-starts are the only way to find
the global optimum.

For both the Powell and Whitley functions, the perfor-
mance of RBC-10 and RBC-50 is indistinguishable (the in-
crease in the number of trials identifying the global opti-
mum of Whitley’s function is a statistical artifact), and both
were strongly outperformed by CHC. Although no run of ei-
ther CHC or RBC ever solved Rana’s function to optimal-

Function Experiment Mean Sol. σ Mean Evals. σ Number Solved
Rastrigin no shift 0.0 0.0 34998 14365 30

shift 0.0 0.0 22297 7299 30
Schwefel no shift -4189.0 0.0 9667 31579 30

shift -4189.0 0.0 7148 2224 30
Griewangk no shift 0.0 0.0 58723 52101 30

shift 0.0 0.0 24354 12890 30
Powell no shift 0.0 0.0 200184 80041 30

shift 0.0 0.0 96497 36756 30
Whitley no shift -939.88 0.0 23798 9038 30

shift -939.88 0.0 25331 12881 30
Rana no shift -497.10 5.304 500000 0.0 0

shift -494.50 5.207 500000 0.0 0

Table 4: CHC results on the six test functions, without and with a shifting attempt made each time the algorithm re-starts. Results
are averaged over 30 independent trials of 500K function evaluations apiece. All functions are being minimized, with the lowest
mean solution or lowest mean number of evaluations in bold.

ity, RBC-50 significantly outperformed RBC-10 in terms of
solution quality. While CHC does slightly outperform RBC-
50, the difference is minimal (though still statistically signif-
icant). This result is particularly interesting, as Rana’s func-
tion proved to be the most difficult for CHC.

Our results demonstrate that a deeper understanding of
shifting can be used to significantly improve the performance
of RBC. Looking at both solution quality and number of
evaluations, RBC statistically outperforms CHC on Rastri-
gin’s and Schwefel’s separable functions, and nearly equals
the performance of CHC on non-linear, non-separable prob-
lems (Griewangk and Rana’s). But on Powell’s and Whit-
ley’s function, CHC outperforms RBC.

Conclusions

Dynamic representations are an alternative to mechanisms
that escape local optima such as re-starts, tabu search, and
simulated annealing. Shifting uses multiple Gray code repre-
sentations to escape local optima. New upper bounds on the
number of unique Gray codes under shifting are established.
We also characterized neighborhood structures under similar
shifted Gray codes. We incorporated the shifting mechanism
into both a simple hill-climber and a genetic algorithm. On
a test suite containing problems shown to be resistant to hill-
climbing strategies, shifting significantly improves the per-
formance of both algorithms. Thus, by augmenting a sim-
ple hill-climber with a dynamic representation scheme, we
achieve improved performance on test functions which both
proved 1) difficult to a simple hill-climbing algorithm and 2)
a challenge to a state-of-the-art genetic algorithm.

Acknowledgments

This work was sponsored by the Air Force Office of Sci-
entific Research, Air Force Materiel Command, USAF, un-
der grant number F49620-97-1-0271. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon.

References
Aarts, E., and Lenstra, J. K. 1997. Local Search in Combi-
natorial Optimization. John Wiley and Sons.
Barbulescu, L. 2000. Shifting gray codes: The impact on
the neighborhoodstructure. Internal Technical Report, Col-
orado State University.
Caruana, R., and Schaffer, J. 1988. Representation and Hid-
den Bias: Gray vs. Binary Coding for Genetic Algorithms.
In Proceedings of the 5th International Conference on Ma-
chine Learning. Morgan Kaufmann.
Davis, L. 1991. Bit-climbing, representation bias, and test
suite design. In Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufmann.
Eshelman, L. J. 1991. The chc adapative search algorithm:
How to have safe search when engaging in non-traditional
genetic recombination. In Rawlins, G. J., ed., Foundations
of Genetic Algorithms-1. Morgan Kaufmann.
Liepins, G., and Vose, M. 1990. Representation Issues in
Genetic Algorithms. Journal of Experimental and Theoret-
ical Artificial Intelligence 2.
Rana, S. B., and Whitley, L. D. 1997. Bit representa-
tions with a twist. In Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms (ICGA-97). Mor-
gan Kaufmann.
Whitley, D.; Mathias, K.; Rana, S.; and Dzubera, J. 1996.
Evaluating evolutionary algorithms. Artificial Intelligence
Journal 85.
Whitley, L. D.; Rana, S.; and Heckendorn, R. 1997. Rep-
resentation issues in neighborhood search and evolutionary
algorithms. In Quagliarelli, D.; Periaux, J.; Poloni, C.; and
Winter, G., eds., Genetic Algorithms in Engineering and
Computer Science. John Wiley.
Whitley, L. D. 1999. A free lunch proof for gray versus
binary encodings. In Proceedings of the Genetic and Evo-
lutionary Computation Conference. Morgan Kaufmann.

