Data-flow Analysis

Idea
- Data-flow analysis derives information about the dynamic behavior of a program by only examining the static code

Example
- How many registers do we need for the program on the right?
- Easy bound: the number of variables used (3)
- Better answer is found by considering the dynamic requirements of the program

```
1   a := 0
2   L1: b := a + 1
3          c := c + b
4          a := b * 2
5           if a < 9 goto L1
6          return c
```

Liveness Analysis

Definition
- A variable is live at a particular point in the program if its value at that point will be used in the future (dead, otherwise).
 ∴ To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation
- A program contains an unbounded number of variables
- Must execute on a machine with a bounded number of registers
- Two variables can use the same register if they are never in use at the same time (i.e. never simultaneously live).
 ∴ Register allocation uses liveness information
Liveness by Example

What is the live range of \(b \)?
- Variable \(b \) is read in statement 4, so \(b \) is live on the \((3 \rightarrow 4)\) edge.
- Since statement 3 does not assign into \(b \), \(b \) is also live on the \((2 \rightarrow 3)\) edge.
- Statement 2 assigns \(b \), so any value of \(b \) on the \((1 \rightarrow 2)\) and \((5 \rightarrow 2)\) edges are not needed, so \(b \) is dead along these edges.

\(b \)'s live range is \((2 \rightarrow 3 \rightarrow 4)\).

Liveness by Example (cont)

Live range of \(a \)
- \(a \) is live from \((1 \rightarrow 2)\) and again from \((4 \rightarrow 5 \rightarrow 2)\).
- \(a \) is dead from \((2 \rightarrow 3 \rightarrow 4)\).

Live range of \(b \)
- \(b \) is live from \((2 \rightarrow 3 \rightarrow 4)\).

Live range of \(c \)
- \(c \) is live from \((\text{entry} \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2, 5 \rightarrow 6)\).

Variables \(a \) and \(b \) are never simultaneously live, so they can share a register.
Control Flow Graphs (CFGs)

Definition
- A CFG is a graph whose nodes represent program statements and whose directed edges represent control flow.

Example
1. \(\text{a} := 0 \)
2. \(L1: \text{b} := \text{a} + 1 \)
3. \(\text{c} := \text{c} + \text{b} \)
4. \(\text{a} := \text{b} \ast 2 \)
5. \(\text{if a < 9 goto L1} \)
6. \(\text{return c} \)

Terminology

Flow Graph Terms
- A CFG node has **out-edges** that lead to **successor** nodes and **in-edges** that come from **predecessor** nodes.
- \(\text{pred}[n] \) is the set of all predecessors of node \(n \).
- \(\text{succ}[n] \) is the set of all successors of node \(n \).

Examples
- Out-edges of node 5: (5→6) and (5→2)
- \(\text{succ}[5] = \{2,6\} \)
- \(\text{pred}[5] = \{4\} \)
- \(\text{pred}[2] = \{1,5\} \)
Uses and Defs

Def (or definition)
- An **assignment** of a value to a variable
- \(\text{def}[v] = \) set of CFG nodes that define variable \(v \)
- \(\text{def}[n] = \) set of variables that are defined at node \(n \)

Use
- A **read** of a variable’s value
- \(\text{use}[v] = \) set of CFG nodes that use variable \(v \)
- \(\text{use}[n] = \) set of variables that are used at node \(n \)

More precise definition of liveness
- A variable \(v \) is live on a CFG edge if
 1. \(\exists \) a directed path from that edge to a use of \(v \) (node in \(\text{use}[v] \)), and
 2. that path does not go through any def of \(v \) (no nodes in \(\text{def}[v] \))

The Flow of Liveness

Data-flow
- Liveness of variables is a property that flows through the edges of the CFG

Direction of Flow
- Liveness flows **backwards** through the CFG, because the behavior at future nodes determines liveness at a given node
- **Consider a**
- **Consider b**
- Later, we’ll see other properties that flow **forward**
Liveness at Nodes

We have liveness on edges

- How do we talk about liveness at nodes?

Two More Definitions

- A variable is **live-out** at a node if it is live on any of that node’s out-edges

- A variable is **live-in** at a node if it is live on any of that node’s in-edges

We have liveness on edges

![Diagram showing liveness on edges]

Computing Liveness

Rules for computing liveness

1. **Generate liveness:**
 - If a variable is in use[n], it is live-in at node n

2. **Push liveness across edges:**
 - If a variable is live-in at a node n then it is live-out at all nodes in pred[n]

3. **Push liveness across nodes:**
 - If a variable is live-out at node n and not in def[n] then the variable is also live-in at n

Data-flow equations

1. $\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])$
2. $\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]$
3. $\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]$
Solving the Data-flow Equations

Algorithm

```plaintext
for each node n in CFG
    in[n] = ∅; out[n] = ∅  \{ initialize solutions \}
repeat
    for each node n in CFG
        in'[n] = in[n]
        out'[n] = out[n]
        in[n] = use[n] ∪ (out[n] − def[n])  \{ solve data-flow equations \}
        out[n] = ∪ \_{s ∈ succ(n)} in[s]
    until in'[n] = in[n] and out'[n] = out[n] for all n  \{ test for convergence \}
```

This is **iterative data-flow analysis** (for liveness analysis)

Example

<table>
<thead>
<tr>
<th>node</th>
<th>use</th>
<th>def</th>
<th>1st in</th>
<th>1st out</th>
<th>2nd in</th>
<th>2nd out</th>
<th>3rd in</th>
<th>3rd out</th>
<th>4th in</th>
<th>4th out</th>
<th>5th in</th>
<th>5th out</th>
<th>6th in</th>
<th>6th out</th>
<th>7th in</th>
<th>7th out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>a b</td>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>bc</td>
</tr>
<tr>
<td>3</td>
<td>b c</td>
<td></td>
<td>b c</td>
</tr>
<tr>
<td>4</td>
<td>b a</td>
<td></td>
<td>b a</td>
<td>b a</td>
<td>b a</td>
<td>b a</td>
<td>ac</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>a</td>
<td>a ac</td>
<td>a ac</td>
<td>ac</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>c</td>
<td>c c</td>
</tr>
</tbody>
</table>

Data-flow Equations for Liveness

\[
in[n] = \text{use}[n] \cup (\text{out}[n] − \text{def}[n])
\]

\[
\text{out}[n] = \bigcup _{s ∈ \text{succ}[n]} \text{in}[s]
\]
Example (cont)

Data-flow Equations for Liveness
\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]
\[
\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]
\]

Improving Performance

Consider the \((3\rightarrow4)\) edge in the graph:
- \(\text{out}[4]\) is used to compute \(\text{in}[4]\)
- \(\text{in}[4]\) is used to compute \(\text{out}[3]\)...

So we should compute the sets in the order: \(\text{out}[4], \text{in}[4], \text{out}[3], \text{in}[3], \ldots\)

The order of computation should follow the direction of flow.

Iterating Through the Flow Graph Backwards

<table>
<thead>
<tr>
<th>Node</th>
<th>use</th>
<th>def</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>ac</td>
<td>bc</td>
<td>ac</td>
</tr>
<tr>
<td>3</td>
<td>bc</td>
<td>c</td>
<td>bc</td>
<td>bc</td>
<td>bc</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>bc</td>
<td>ac</td>
<td>ac</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
</tr>
</tbody>
</table>

Converges much faster!
Solving the Data-flow Equations (reprise)

Algorithm

```plaintext
for each node n in CFG
    in[n] = \emptyset;  out[n] = \emptyset  
```

Repeat

```plaintext
for each node n in CFG in reverse topsort order
    in'[n] = in[n]
    out'[n] = out[n]
```

```plaintext
out[n] = \bigcup_{s \in succ(n)} in[s]
```

```plaintext
in[n] = use[n] \bigcup (out[n] – def[n])
```

until in'[n]=in[n] and out'[n]=out[n] for all n

```
Test for convergence
```

Time Complexity

Consider a program of size N

- Has N nodes in the flow graph and at most N variables
- Each live-in or live-out set has at most N elements
- Each set-union operation takes O(N) time
- The for loop body
 - constant # of set operations per node
 - O(N) nodes \Rightarrow O(N^2) time for the loop
- Each iteration of the repeat loop can only make the set larger
- Each set can contain at most N variables \Rightarrow 2N^2 iterations

Worst case: O(N^4)

Typical case: 2 to 3 iterations with good ordering & sparse sets \Rightarrow O(N) to O(N^2)
More Performance Considerations

Basic blocks
– Decrease the size of the CFG by merging nodes that have a single predecessor and a single successor into basic blocks

One variable at a time
– Instead of computing data-flow information for all variables at once using sets, compute a (simplified) analysis for each variable separately

Representation of sets
– For dense sets, use a bit vector representation
– For sparse sets, use a sorted list (e.g., linked list)

Conservative Approximation

Solution X
– Our solution as computed on previous slides
Conservative Approximation (cont)

<table>
<thead>
<tr>
<th>node #</th>
<th>use</th>
<th>def</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>ed</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>bc</td>
<td>ac</td>
<td>bc</td>
<td>aed</td>
</tr>
<tr>
<td>3</td>
<td>bc</td>
<td>c</td>
<td>bc</td>
<td>bc</td>
<td>bed</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>bc</td>
<td>ac</td>
<td>b ed</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>ac</td>
<td>ac</td>
<td>aed</td>
<td>ac</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Solution Y

- Carries variable d uselessly around the loop
- Does Y solve the equations?
- Is d live?
- Does Y lead to a correct program?

Imprecise conservative solutions ⇒ sub-optimal but correct programs

Non-conservative solutions ⇒ incorrect programs
The Need for Approximations

Static vs. Dynamic Liveness
- In the following graph, $b \times b$ is always non-negative, so $c \geq b$ is always true and a’s value will never be used after node 2

Rule (2) for computing liveness
- Since a is live-in at node 4, it is live-out at nodes 3 and 2
- This rule ignores actual control flow

No compiler can statically know all a program’s dynamic properties!

Concepts

Liveness
- Use in register allocation
- Generating liveness
- Flow and direction
- Data-flow equations and analysis
- Complexity
- Improving performance (basic blocks, single variable, bit sets)

Control flow graphs
- Predecessors and successors

Defs and uses

Conservative approximation
- Static versus dynamic liveness
Next Time

Reading
– Muchnick Ch. 7-7.5

Think about . . .
– Other data-flow analyses

Lecture
– Control-flow analysis
– Basic blocks and control-flow graphs