Using Static Single Assignment Form

Announcements
- Project 2 schedule due today
- HW1 due Friday

Last Time
- SSA Technicalities

Today
- Constant propagation
- Loop invariant code motion
- Induction variables
Constant Propagation

Goal

– Discover constant variables and expressions and propagate them forward through the program

Uses

– Evaluate expressions at compile time instead of run time
– Eliminate dead code (e.g., debugging code)
– Improve efficacy of other optimizations (e.g., value numbering and software pipelining)
Roadmap

1. **Simple Constants**
 - Kildall [1973]
 - faster

2. **Sparse Simple Constants**
 - Reif and Lewis [1977]

3. **Conditional Constants**
 - Wegbreit [1975]
 - faster

4. **Sparse Conditional Constants**
 - Wegman & Zadeck [1991]
 - More constants

Description:
- Simple Constants
 - Kildall [1973]
 - Faster
- Sparse Simple Constants
 - Reif and Lewis [1977]
- Conditional Constants
 - Wegbreit [1975]
 - Faster
- Sparse Conditional Constants
 - Wegman & Zadeck [1991]
 - More constants
Kinds of Constants

Simple constants Kildall [1973]
- Constant for all paths through a program

Conditional constants Wegbreit [1975]
- Constant for actual paths through a program (when only one direction of a conditional is taken)

```
1
\text{c := 1}
\ldots
\text{if c=1}
```

```
2
\text{j := 3}
```
```
3
\text{j := 5}
```

4 j?
Data-Flow Analysis for Simple Constant Propagation

Simple constant propagation: analysis is “reaching constants”

- $D: 2^{\mathbb{N} \times c}$
- $\cap: \cap$
- $F:$
 - $\text{Kill}(x \leftarrow \ldots) = \{(x, c) \forall c\}$
 - $\text{Gen}(x \leftarrow c) = \{(x, c)\}$
 - $\text{Gen}(x \leftarrow y \oplus z) = \text{if } (y, c_y) \in \text{In} \land (z, c_z) \in \text{In}, \{(x, c_y \oplus c_z)\}$
 - \ldots
Data-Flow Analysis for Simple Constant Propagation (cont)

Reaching constants for simple constant propagation

- D: \{All constants\} \cup \{T, \bot\}
- \cap: c \cap T = c
 c \cap \bot = \bot
 c \cap d = \bot \text{ if } c \neq d
 c \cap d = c \text{ if } c = d
- F:
 \ - F_{x \leftarrow c}(\text{In}) = c
 \ - F_{x \leftarrow y \oplus z}(\text{In}) = \text{ if } c_y = \text{In}_y \text{ and } c_z = \text{In}_z, \text{ then } c_y \oplus c_z, \text{ else } T \text{ or } \bot
 \ - \ldots
Initialization for Reaching Constants

Pessimistic
- Each variable is initially set to \(\bot \) in data-flow analysis
- Forces merges at loop headers to go to \(\bot \) conservatively

Optimistic
- Each variable is initially set to \(\top \) in data-flow analysis
- What assumption is being made when optimistic reaching constants is performed?
Implementing Simple Constant Propagation

Standard worklist algorithm
- Identifies simple constants
- For each program point, maintains one constant value for each variable
- $O(EV)$ (E is the number of edges in the CFG; V is number of variables)

Problem
- Inefficient, since constants may have to be propagated through irrelevant nodes

Solution
- Exploit a sparse dependence representation (e.g., SSA)
Sparse Simple Constant Propagation

Reif and Lewis algorithm Reif and Lewis [1977]
- Identifies simple constants
- Faster than Simple Constants algorithm

SSA edges
- Explicitly connect defs with uses
- How would you do this?

Main Idea
- Iterate over SSA edges instead of over all CFG edges
worklist = all statements in SSA
while worklist ≠ ∅
 Remove some statement S from worklist
 if S is x = phi(c,c,...,c) for some constant c
 replace S with v = c
 if S is x = c for some constant c
 delete s from program
 for each statement T that uses v
 substitute c for x in T
 worklist = worklist union {T}
Sparse Simple Constants

Complexity

- $O(E') = O(EV)$, E' is number of SSA edges
- $O(n)$ in practice
Other Uses of SSA

Dead code elimination

while \(\exists\) a variable \(v\) with no uses and whose def has no other side effects

Delete the statement \(s\) that defines \(v\)

for each of \(s\)’s ud-chains

Delete the corresponding du-chain that points to \(s\)

\[
\begin{align*}
\text{x} & = \text{a} + \text{b} \\
\text{ud} & \quad \text{du} \\
\text{s} & \quad \text{y} = \text{x} + 3 \\
\end{align*}
\]

If \(y\) becomes dead and there are no other uses of \(x\), then the assignment to \(x\) becomes dead, too

- Contrast this approach with one that uses liveness analysis
 - This algorithm updates information incrementally
 - With liveness, we need to invoke liveness and dead code elimination iteratively until we reach a fixed point
Other Uses of SSA (cont)

Induction variable identification
- Induction variables
 - Variables whose values form an arithmetic progression
 - Useful for strength reduction and loop transformations

Why bother?
- Automatic parallelization, . . .

Simple approach
- Search for statements of the form, $i = i + c$
- Examine ud-chains to make sure there are no other defs of i in the loop
- Does not catch all induction variables. Examples?
Induction Variable Identification (cont)

Types of Induction Variables

- **Basic** induction variables
 - Variables that are defined once in a loop by a statement of the form, \(i = i + c \) (or \(i = i \times c \)), where \(c \) is a constant integer

- **Derived** induction variables
 - Variables that are defined once in a loop as a linear function of another induction variable
 - \(j = c_1 \times i + c_2 \)
 - \(j = i / c_1 + c_2 \), where \(c_1 \) and \(c_2 \) are loop invariant
Induction Variable Identification (cont)

Informal SSA-based Algorithm

– Build the SSA representation
– Iterate from innermost CFG loop to outermost loop
 – Find SSA cycles
 – Each cycle *may* be a basic induction variable if a variable in a cycle is a function of loop invariants and its value on the current iteration
 – Find derived induction variables as functions of loop invariants, its value on the current iteration, and basic induction variables
Induction Variable Identification (cont)

Informal SSA-based Algorithm (cont)

- Determining whether a variable is a function of loop invariants and its value on the current iteration
 - The ϕ-function in the cycle will have as one of its inputs a def from inside the loop and a def from outside the loop
 - The def inside the loop will be part of the cycle and will get one operand from the ϕ-function and all others will be loop invariant
 - The operation will be plus, minus, or unary minus
Next Time

Reading
– Ch 8.10, 12.4

Lecture
– Redundancy elimination