Low-Level Issues

Last lecture
– Interprocedural analysis

Today
– Start low-level issues
– Register allocation

Later
– More register allocation
– Instruction scheduling

Register Allocation

Problem
– Assign an unbounded number of symbolic registers to a fixed number of architectural registers (which might get renamed by the hardware to some number of physical registers)
– Simultaneously live data must be assigned to different architectural registers

Goal
– Minimize overhead of accessing data
 – Memory operations (loads & stores)
 – Register moves
Scope of Register Allocation

Expression
Local
Loop
Global
Interprocedural

Granularity of Allocation

What is allocated to registers?
- Variables
- Live ranges/Web (i.e., du-chains with common uses)
- Values (i.e., definitions; same as variables with SSA & copy propagation)

```
<table>
<thead>
<tr>
<th>Block</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>t1: x := 5</td>
</tr>
<tr>
<td>b2</td>
<td>t1: x := y+1</td>
</tr>
<tr>
<td></td>
<td>t2: y := x</td>
</tr>
<tr>
<td></td>
<td>t3: t4: ... x ...</td>
</tr>
<tr>
<td></td>
<td>t4: x := 3</td>
</tr>
</tbody>
</table>

Variables: 2 (x & y)
Live Ranges/Web: 3 (t1→t2,t4; t2→t3; t3,t5→t6)
Values: 4 (t1, t2, t3, t5, φ(t3,t5))
```

What are the tradeoffs?

Each allocation unit is given a symbolic register name (e.g., s1, s2, etc.)
Global Register Allocation by Graph Coloring

Idea [Cocke 71], First allocator [Chaitin 81]

1. Construct interference graph $G=(N,E)$
 - Represents notion of “simultaneously live”
 - Nodes are units of allocation (e.g., variables, live ranges/webs)
 - \exists edge $(n_1, n_2) \in E$ if n_1 and n_2 are simultaneously live
 - Symmetric (not reflexive nor transitive)

2. Find k-coloring of G (for k registers)
 - Adjacent nodes can’t have same color

3. Allocate the same register to all allocation units of the same color
 - Adjacent nodes must be allocated to distinct registers

![Interference Graph Example (Variables)]
Interference Graph Example (Webs)

Consider webs (du-chains w/ common uses) instead of variables

Computing the Interference Graph

Use results of live variable analysis

for each symbolic-register \(s_i \) do
 for each symbolic-register \(s_j \) (\(j < i \)) do
 for each \(\text{def} \in \{\text{definitions of } s_i\} \) do
 if \(s_j \) is live at \(\text{def} \) then
 \(E \leftarrow E \cup (s_i, s_j) \)
Coalescing

Move instructions
- Code generation can produce unnecessary move instructions
 \texttt{mov t1, t2}
- If we can assign \(t1 \) and \(t2 \) to the same register, we can eliminate the move

Idea
- If \(t1 \) and \(t2 \) are not connected in the interference graph, coalesce them into a single variable

Problem
- Coalescing can increase the number of edges and make a graph uncolorable
- Limit coalescing to avoid uncolorable graphs

Allocating Registers Using the Interference Graph

\(K \)-coloring
- Color graph nodes using up to \(k \) colors
- Adjacent nodes must have different colors

Allocating to \(k \) registers \(\Rightarrow \) finding a \(k \)-coloring of the interference graph
- Adjacent nodes must be allocated to distinct registers

But...
- Optimal graph coloring is NP-complete
 - Register allocation is NP-complete, too (must approximate)
- What if we can’t \(k \)-color a graph? (must spill)
Spilling

If we can’t find a k-coloring of the interference graph
- Spill variables (nodes) until the graph is colorable

Choosing variables to spill
- Choose least frequently accessed variables
- Break ties by choosing nodes with the most conflicts in the interference graph
- Yes, these are heuristics!

Weighted Interference Graph

Goal
- Weight(s) = \(\sum_{\forall \text{references } r \text{ of } s} f(r)\)
 \(f(r)\) is execution frequency of \(r\)

Static approximation
- Use some reasonable scheme to rank variables
- One possibility
 - Weight(s) = 1
 - Nodes after branch: \(\frac{1}{2}\) weight of branch
 - Nodes in loop: 10 \times weight of nodes outside loop
Simple Greedy Algorithm for Register Allocation

for each $n \in N$ do
 { select n in decreasing order of weight }
 if n can be colored then
 do it
 { reserve a register for n }
 else
 Remove n (and its edges) from graph
 { allocate n to stack (spill) }

Example

Attempt to 3-color this graph (□, ▼, ▲)

What if you use a different weighting?
Example

Attempt to 2-color this graph ()

Weighted order:

\[
\begin{align*}
a \\
b \\
c
\end{align*}
\]

Improvement #1: Simplification Phase [Chaitin 81]

Idea

– Nodes with \(< k\) neighbors are guaranteed colorable

Remove them from the graph first

– Reduces the degree of the remaining nodes

Must spill only when all remaining nodes have degree \(\geq k \)
Algorithm [Chaitin81]

```plaintext
while interference graph not empty do
    while ∃ a node n with < k neighbors do
        { simplify }
            Remove n from the graph
            Push n on a stack
    if any nodes remain in the graph then
        { blocked with >= k edges }
            Pick a node n to spill
            Add n to spill set
            Remove n from the graph
    if spill set not empty then
        Insert spill code for all spilled nodes
        { store after def; load before use }
        Reconstruct interference graph & start over
while stack not empty do
    { color }
        Pop node n from stack
        Allocate n to a register
```

More on Spilling

Chaitin’s algorithm restarts the whole process on spill
- Necessary, because spill code (loads/stores) uses registers
- Okay, because it usually only happens a couple times

Alternative
- Reserve 2-3 registers for spilling
- Don’t need to start over
- But have fewer registers to work with
Example

Attempt to 3-color this graph (, ,)

Stack:
\[
\begin{array}{cccc}
\text{d} & \text{c} & \text{b} & \text{a}_2 \\
\text{a}_1 & \text{e} & & \\
\end{array}
\]

Weighted order:

\[
\begin{array}{cccc}
\text{e} & \text{a}_1 & \text{a}_2 & \text{b} \\
\text{c} & & & \text{d} \\
\end{array}
\]

Example

Attempt to 2-color this graph (,)

Spill Set:
\[
\begin{array}{cccc}
\text{e} & \text{a}_1 & \text{a}_2 & \text{b} \\
\end{array}
\]

Stack:
\[
\begin{array}{cccc}
\text{d} & \text{c} & & \\
\end{array}
\]

Weighted order:

\[
\begin{array}{cccc}
\text{e} & \text{a}_1 & \text{a}_2 & \text{b} \\
\text{c} & & & \text{d} \\
\end{array}
\]

Many nodes remain uncolored even though we could clearly do better.
The Problem: Worst Case Assumptions

Is the following graph 2-colorable?

Clearly 2-colorable
- But Chaitin’s algorithm leads to an immediate block and spill
- The algorithm assumes the worst case, namely, that all neighbors will be assigned a different color

Improvement #2: Optimistic Spilling [Briggs 89]

Idea
- Some neighbors might get the same color
- Nodes with \(k \) neighbors might be colorable
- Blocking does not imply that spilling is necessary
 - Push blocked nodes on stack (rather than place in spill set)
 - Check colorability upon popping the stack, when more information is available

Defer decision
Algorithm [Briggs et al. 89]

```plaintext
while interference graph not empty do
    while \( \exists \) a node \( n \) with \( < k \) neighbors do
        Remove \( n \) from the graph
        Push \( n \) on a stack
        if any nodes remain in the graph then \( \{ \text{blocked with } \geq k \text{ edges} \} \)
            Pick a node \( n \) to spill
            \( \{ \text{lowest spill-cost/highest degree} \} \)
            Push \( n \) on stack
            Remove \( n \) from the graph
    \}
    \}
    \}
    \}
    simplify
    defer decision
    make decision

while stack not empty do
    Pop node \( n \) from stack
    if \( n \) is colorable then
        Allocate \( n \) to a register
    else
        Insert spill code for \( n \) \( \{ \text{Store after def; load before use} \} \)
        Reconstruct interference graph & start over
```

Example

* Attempt to 2-color this graph (\(\quad \))

* Stack:
 - \(d \)
 - \(c \)
 - \(b^* \)
 - \(a_2^* \)
 - \(a_1^* \)
 - \(e^* \)

* Weighted order:
 - \(e \)
 - \(a_1 \)
 - \(a_2 \)
 - \(b \)
 - \(c \)
 - \(d \)

* blocked node
Improvement #3: Live Range Splitting [Chow & Hennessy 84]

Idea
- Start with variables as our allocation unit
- When a variable can’t be allocated, split it into multiple subranges for separate allocation
- Selective spilling: put some subranges in registers, some in memory
- Insert memory operations at boundaries

Why is this a good idea?

Improvement #4: Rematerialization [Chaitin 82] & [Briggs 84]

Idea
- Selectively re-compute values rather than loading from memory
- “Reverse CSE”

Easy case
- Value can be computed in single instruction, and
- All operands are available

Examples
- Constants
- Addresses of global variables
- Addresses of local variables (on stack)
Next Time

Lecture
- More register allocation
 - Allocation across procedure calls