Compiling for Parallelism & Locality

Last time
- Dynamic compilation
- End of lectures on low level optimizations

Today
- Data dependences and loops
- Parallelism and locality

Example 1: Loop Permutation for Improved Locality

Sample code: Assume Fortran’s Column Major Order array layout

```
do j = 1,6
  do i = 1,5
    A(j,i) = A(j,i)+1
  enddo
enddo
```

```
poor cache locality
```

```
do i = 1,5
  do j = 1,6
    A(j,i) = A(j,i)+1
  enddo
enddo
```

```
good cache locality
```
Example 2: Parallelization

Can we parallelize the following loops?

```latex
\begin{align*}
\text{do } i = 1, 100 & \\
A(i) &= A(i)+1 & \rightarrow & \text{Yes} \\
\text{enddo} & \\
\text{do } i = 1, 100 & \\
A(i) &= A(i-1)+1 & \rightarrow & \text{No} \\
\text{enddo}
\end{align*}
```

Data Dependences

Recall
- A data dependence defines ordering relationship two between statements
- In executing statements, data dependences must be respected to preserve correctness

Example

```latex
s_1 \ a := 5; \quad s_1 \ a := 5; \\
s_2 \ b := a + 1; \quad \equiv \quad s_3 \ a := 6; \\
s_3 \ a := 6; \quad s_2 \ b := a + 1;
```
Data Dependences and Loops

How do we identify dependences in loops?

\[
\text{do } i = 1,5 \\
\quad A(i) = A(i-1)+1 \\
\text{enddo}
\]

Simple view

- Imagine that all loops are fully unrolled
- Examine data dependences as before

Problems

- Impractical
- Lose loop structure

Dependence Analysis for Loops

Big picture

- To improve data locality and parallelism we often focus on loops
- To transform loops, we must understand data dependences in loops
- Since we can’t represent all iterations of a loop, we need some abstractions
- The basic question: does a transformation preserve all dependences?

Today and Next Time

- Basic abstractions and machinery

Wednesday

- Its application to loop transformations
Data Dependence Terminology

We say statement s_2 depends on s_1

- **True (flow) dependence**: s_1 writes memory that s_2 later reads
- **Anti-dependence**: s_1 reads memory that s_2 later writes
- **Output dependences**: s_1 writes memory that s_2 later writes
- **Input dependences**: s_1 reads memory that s_2 later reads

Notation: $s_1 \delta s_2$

- s_1 is called the *source* of the dependence
- s_2 is called the *sink* or *target*
- s_1 must be executed before s_2

Dependences and Loops

Loop-independent dependences

```plaintext
do i = 1,100
   A(i) = B(i) + 1
   C(i) = A(i) * 2
enddo
```

Dependences within the same loop iteration

Loop-carried dependences

```plaintext
do i = 1,100
   A(i) = B(i) + 1
   C(i) = A(i-1) * 2
enddo
```

Dependences that cross loop iterations
Iteration Spaces

Idea
- Explicitly represent the iterations of a loop nest

Example

\[
\begin{align*}
\text{do } & i = 1, 6 \\
\text{do } & j = 1, 5 \\
& A(i, j) = A(i-1, j-1) + 1 \\
\end{align*}
\]

Iteration Space
- A set of tuples that represents the iterations of a loop
- Can visualize the dependences in an iteration space

Protein String Matching Example

\[
\begin{align*}
q &= k_1 \\
r &= k_2 \\
score &= 0 \\

\text{for } i &= 0 \text{ to } n1-1 \\
& h[0,-1] = p[0,-1] = 0 \\
& f[0,-1] = -q \\
\text{for } j &= 0 \text{ to } n0-1 \\
& f[i,j] = \max(f[i,j-1], h[i,j-1]-q)-r \\
& EE[i,j] = \max(EE[i-1,j], HH[i-1,j], -q)-r \\
& h[i,j] = p[i,j-1] + pam2[aa1[i],aa0[j]] \\
& h[i,j] = \max(0, EE[i,j]), \max(f[i,j], h[i,j]) \\
& p[i,j] = HH[i-1,j] \\
& HH[i,j] = h[i,j] \\
& score[i,j] = \max(score[i,j-1], h[i,j]) \\
\end{align*}
\]

\[
\text{return } score[n1-1,n0-1]
\]
Distance Vectors

Idea
– Concisely describe dependence relationships between iterations of an iteration space
– For each dimension of an iteration space, the distance is the number of iterations between accesses to the same memory location

Definition
– \(v = T - S \)

Example

\[
\begin{align*}
do & \ i = 1, 6 \\
& \quad do \ j = 1, 5 \\
& \quad \quad A(i, j) = A(i-1, j-2) + 1 \\
& \quad enddo \\
& enddo
\end{align*}
\]

Distance Vector: (2,1)

Distance Vectors and Loop Transformations

Idea
– Any transformation we perform on the loop must respect the dependences

Example

\[
\begin{align*}
do & \ i = 1, 6 \\
& \quad do \ j = 1, 5 \\
& \quad \quad A(i, j) = A(i-1, j-2) + 1 \\
& \quad enddo \\
& enddo
\end{align*}
\]

Can we permute the \(i \) and \(j \) loops?
Distance Vectors and Loop Transformations

Idea
– Any transformation we perform on the loop must respect the dependences

Example

\[
\begin{align*}
&\text{do } j = 1, 5 \\
&\quad \text{do } i = 1, 6 \\
&\quad \quad A(i, j) = A(i-1, j-2)+1 \\
&\quad \text{endo} \\
&\text{endo}
\end{align*}
\]

Can we permute the \(i\) and \(j\) loops?
– Yes