Lattice-Theoretic Framework for Data-Flow Analysis

Last time
- Generalizing data-flow analysis

Today
- Finish generalizing data-flow analysis
- Reaching Constants introduction
- Introduce lattice-theoretic frameworks for data-flow analysis

Reaching Constants

Goal
- Compute value of each variable at each program point (if possible)

Flow values
- Set of (variable,constant) pairs

Merge function
- Intersection

Data-flow equations
- Effect of node $n \ x = c$
 - kill$[n] = \{ (x,d) | \forall d \}$
 - gen$[n] = \{ (x,c) \}$
- Effect of node $n \ x = y + z$
 - kill$[n] = \{ (x,c) | c = valy + valz \}$
 - gen$[n] = \{ (x,c) | c = valy + valz, (y, valy) \in in[n], (z, valz) \in in[n] \}$

Defining Available Expressions Analysis

Must or may Information?
- Must

Direction?
- Forward

Flow values?
- Sets of expressions

Initial guess?
- Universal set

Kill?
- Set of expressions killed by statement s

Gen?
- Set of expressions evaluated by s

Merge?
- Intersection

Reality Check!

Some definitions and uses are ambiguous
- We can’t tell whether or what variable is involved
e.g., *p = x; /* what variable are we assigning?! */
- Unambiguous assignments are called strong updates
- Ambiguous assignments are called weak updates

Solutions
- Be conservative
 - Sometimes we assume that it could be everything
e.g., Defining *p (generating reaching definitions)
 - Sometimes we assume that it is nothing
e.g., Defining *p (killing reaching definitions)
- Try to figure it out: alias/pointer analysis (more later)
Context

Goals
- Provide a single formal model that describes all data-flow analyses
- Formalize the notions of “safe,” “conservative,” and “optimistic”
- Correctness proof for IDFA
- Place bounds on time complexity of data-flow analysis

Approach
- Define *domain* of program properties (flow values) computed by data-flow analysis, and organize the domain of elements as a *lattice*
- Define flow functions and a merge function over this domain using lattice operations
- Exploit lattice theory in achieving goals

Data-Flow Analysis via Lattices

Relationship
- Elements of the lattice (V) represent flow values (in[] and out[] sets)
 - e.g., Sets of live variables for liveness
- \(\top \) represents “best-case” information (initial flow value)
 - e.g., Empty set
- \(\bot \) represents “worst-case” information
 - e.g., Universal set
- \(\cap \) (meet) merges flow values
 - e.g., Set union
- If \(x \subseteq y \), then \(x \) is a conservative approximation of \(y \)
 - e.g., Superset

\[S = \{ \{v1,v2,v3\}, \{v1,v2\}, \{v1,v3\}, \{v2,v3\}, \{v1\}, \{v2\}, \{v3\}, \emptyset \} \]

\[\Omega = \{ v1, v2, v3 \} \]

Data-Flow Analysis Frameworks

Data-flow analysis framework
- A set of *flow values* (V)
- A binary *meet operator* (\(\cap \))
- A set of *flow functions* (F) (also known as *transfer functions*)

Flow Functions
- \(F = \{ f : V \rightarrow V \} \)
 - \(f \) describes how each node in CFG affects the flow values
 - Flow functions map program behavior onto lattices

Visualizing DFA Frameworks as Lattices

Example: Liveness analysis with 3 variables

\[\Omega = \{ v1, v2, v3 \} \]

\[V = 2^S = \{ \{v1,v2,v3\}, \{v1,v2\}, \{v1,v3\}, \{v2,v3\}, \{v1\}, \{v2\}, \{v3\}, \emptyset \} \]

- \(\cap \): \(\Omega \)
- \(\cup \)
- Top(\(\top \)): \(\emptyset \)
- Bottom (\(\bot \)): \(\Omega \)
- \(f \): \(\{ f_n(X) = Gen_n(X - Kill_n) \} \)

Inferior solutions are lower on the lattice
More conservative solutions are lower on the lattice
More Examples

<table>
<thead>
<tr>
<th>Reaching definitions</th>
<th>Reaching Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V: \mathcal{2}^S) ((S = \text{set of all defs}))</td>
<td>(V: \mathcal{2}^{\infty}, \text{variables } v \text{ and } \text{constants } c)</td>
</tr>
<tr>
<td>(\cap: \mathcal{U})</td>
<td>(\cap: \mathcal{U})</td>
</tr>
<tr>
<td>(\cup: \emptyset)</td>
<td>(\cup: \emptyset)</td>
</tr>
<tr>
<td>Top ((\top)): (\emptyset)</td>
<td>Top ((\top)): (\mathcal{U})</td>
</tr>
<tr>
<td>Bottom ((\bot)): (\mathcal{U})</td>
<td>Bottom ((\bot)): (\emptyset)</td>
</tr>
<tr>
<td>F: \ldots</td>
<td>F: \ldots</td>
</tr>
</tbody>
</table>

Tuples of Lattices

Problem
- Simple analyses may require very complex lattices (e.g., Reaching constants)

Solution
- Use a tuple of lattices, one per variable

\[L = (V, \cap) \equiv (L_T = (V_T, \cap_T)) \]
- \(\cap = (\cap_T)^N \)
- Meet (\(\cap \)): point-wise application of \(\cap_T \)
- \((\ldots, v_i, \ldots) \subseteq (\ldots, u_i, \ldots) \equiv v_i \subseteq u_i, \forall i \)
- Top (\(\top \)): tuple of tops (\(\top_T \))
- Bottom (\(\bot \)): tuple of bottoms (\(\bot_T \))
- Height (\(L \)) = \(N \times \text{height}(L_T) \)

Examples of Lattice Domains

Two-point lattice (\(\top \) and \(\bot \))
- Examples?
- Implementation?

Set of incomparable values (and \(\top \) and \(\bot \))
- Examples?

Powerset lattice (\(2^S \))
- \(\top = \emptyset \) and \(\bot = S \), or vice versa
- Isomorphic to tuple of two-point lattices

Tuples of Lattices Example

Reaching constants (previously)
- \(P = v \times c \), for variables \(v \) & constants \(c \)
- \(V: \mathcal{2}^P \)

Alternatively
- \(V = c \cup \{ \top, \bot \} \)

The whole problem is a tuple of lattices, one for each variable

Examples of Lattice Domains

Two-point lattice (\(\top \) and \(\bot \))
- Examples?
- Implementation?

Set of incomparable values (and \(\top \) and \(\bot \))
- Examples?

Powerset lattice (\(2^S \))
- \(\top = \emptyset \) and \(\bot = S \), or vice versa
- Isomorphic to tuple of two-point lattices
Solving Data-Flow Analyses

Goal
- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together
- Meet-over-all-paths (MOP) solution at each program point
- \(\bigwedge \) all paths \(n_1, n_2, \ldots, n_i \)

\[f_n \circ \cdots \circ f_1 (v_{\text{entry}}) \]

Solving Data-Flow Analyses (cont)

Problems
- Loops result in an infinite number of paths
- Statements following merge must be analyzed for all preceding paths
- Exponential blow-up

Solution
- Compute meets early (at merge points) rather than at the end
- Maximum fixed-point (MFP)

Questions
- Is this correct?
- Is this efficient?
- Is this accurate?

Correctness

"Is \(v_{\text{MFP}} \) correct?" = "Is \(v_{\text{MFP}} \subseteq v_{\text{MOP}} \)?

Look at Merges
- \(v_{\text{MOP}} = F(v_{p_1}) \cap F(v_{p_2}) \)
- \(v_{\text{MFP}} = F(v_{p_1} \cap v_{p_2}) \)
- \(v_{\text{MFP}} \subseteq v_{\text{MOP}} = F(v_{p_1} \cap v_{p_2}) \subseteq F(v_{p_1}) \cap F(v_{p_2}) \)

Observation
- \(\forall x, y \in V \)
 - \(x \sqsubseteq y \implies f(x) \sqsubseteq f(y) \)
- \(v_{\text{MFP}} \) legal when \(F \) (really, the flow functions) are monotonic

Monotonicity

Monotonicity: \((\forall x, y \in V) [x \sqsubseteq y \implies f(x) \sqsubseteq f(y)] \)
- If the flow function \(f \) is applied to two members of \(V \), the result of applying \(f \) to the “lesser” of the two members will be under the result of applying \(f \) to the “greater” of the two
- Giving a flow function more conservative inputs leads to more conservative outputs (never more optimistic outputs)

Why else is monotonicity important?

For monotonic \(F \) over domain \(V \)
- The maximum number of times \(F \) can be applied to self w/o reaching a fixed point is \(\text{height}(V) - 1 \)
- IDFA is guaranteed to terminate if the flow functions are monotonic and the lattice has finite height
Efficiency

Parameters
- \(n \): Number of nodes in the CFG
- \(k \): Height of lattice
- \(t \): Time to execute one flow function

Complexity
- \(O(nkt) \)

Example
- Reaching definitions?

Accuracy

Distributivity
- \(f(u ▩ v) = f(u) ▩ f(v) \)
- \(v_{MFP} ▩ v_{MOP} = F_u(v_{MOP} ▩ v_{MFP}) \subseteq F_u(v_{MFP}) ▩ F_u(v_{MOP}) \)
- If the flow functions are distributive, \(MFP = MOP \)

Examples
- Reaching definitions?
- Reaching constants?

\[
\begin{align*}
 f(u ▩ v) &= f(\{x=2,y=3\} ▩ \{x=3,y=2\}) \\
 &= f(\emptyset) = \emptyset \\
 f(u) ▩ f(v) &= f(\{x=2,y=3\}) ▩ f(\{x=3,y=2\}) \\
 &= \{x=2,y=3,w=5\} ▩ \{x=2,y=2,w=5\} = \{w=5\} \\
 \Rightarrow & \ MFP \neq MOP
\end{align*}
\]

Concepts

Lattices
- Conservative approximation
- Optimistic (initial guess)
- Data-flow analysis frameworks
- Tuples of lattices

Data-flow analysis
- Fixed point
- Meet-over-all-paths (MOP)
- Maximum fixed point (MFP)
- Legal/safe (monotonic)
- Efficient
- Accurate (distributive)