Announcements
- HW1 due Monday
- No office hours Thursday
- No class Friday

Last Time
- Code Motion

Today
- Induction variables

Induction Variables

Announcements
- HW1 due Monday
- No office hours Thursday
- No class Friday

Last Time
- Code Motion

Today
- Induction variables

Induction variable identification
- Induction variables
- Variables whose values form an arithmetic progression
- Useful for strength reduction, induction variable elimination, and loop transformations

Why bother?
- Automatic parallelization, . . .

Simple approach
- Search for statements of the form, \(i = i + c \)
- Examine ud-chains to make sure there are no other defs of \(i \) in the loop
- Does not catch all induction variables. Examples?

Induction Variable Identification

Types of Induction Variables
- Basic induction variables (eg. loop index)
 - Variables that are defined once in a loop by a statement of the form, \(i = i + c \) or \(i = i - c \), where \(c \) is a constant integer
- Derived induction variables
 - Variables that are defined once in a loop as a linear function of another induction variable
 - \(k = j + c_1 \) or
 - \(k = c_2 \ast j \) where \(c_1 \) and \(c_2 \) are loop invariant

Example Induction Variables

```c
s = 0;
for (i=0; i<N; i++)
    s += a[i];
```
Induction Variable Triples

Each induction variable \(k \) is associated with a triple \((i, c_1, c_2)\)
- \(i \) is a basic induction variable
- \(c_1 \) and \(c_2 \) are constants such that \(k = c_1 + c_2 \cdot i \) when \(k \) is defined
- \(k \) belongs to the family of \(i \)

Basic induction variables
- their triple is \((i, 0, 1)\)
- \(i = 0 + 1 \cdot i \) when \(i \) is defined

Algorithm for Identifying Induction Variables

Input: A loop \(L \) consisting of 3-address instructions, ud-chains, and loop-invariant information.
Output: A set of induction variables, each with an associated triple.
Algorithm:
1. For each stmt in \(L \) that matches the pattern \(i = i+c \) or \(i = i-c \) create the triple \((i, 0, 1)\).
2. Derived induction variables: For each stmt of \(L \),
 - If the stmt is of the form \(k = j + c_1 \) or \(k = j \cdot c_2 \)
 - and \(j \) is an induction variable with the triple \((x, a, b)\)
 - and \(c_1 \) and \(c_2 \) are loop invariant
 - and \(k \) is only defined once in the loop
 - and \(j \) is a derived induction variable belonging to the family of \(i \) then
 - the only def of \(j \) that reaches \(k \) must be in \(L \)
 - and no def of \(i \) must occur on any path between the definition of \(j \) and \(k \)
 - then create the triple \((x, a + c_1, b)\) for \(k = j + c_1 \) or \((x, a \cdot c_2, b \cdot c_2)\) for \(k = j \cdot c_2 \)

Example: Induction Variable Detection

Picture from Prof David Walker’s CS320 slides

Algorithm for Strength Reduction

Input: A loop \(L \) consisting of 3-address instructions and induction variable triples.
Output: A modified loop with a new preheader.
Algorithm:
1. For each derived induction variable \(j \) with triple \((i, a, b)\)
 - create a new \(j' \)
 - put computation \(b \cdot i \cdot c \) in preheader
 - after each definition of \(i \) in \(L \), where \(i = i + c \) insert \(j' = j' + t \)
 - replace the definition of \(j \) with \(j = j' \cdot c_1 \)
 - initialize \(j' \) at the end of the preheader to \(j' = a \cdot b \cdot i \)

Note:
- \(j' \) also has triple \((i, a, b)\)
- multiplication has been moved out of the loop
Algorithm for Induction Variable Elimination

Input: A loop L consisting of 3-address instructions, ud-chains, loop-invariant information, and live-variable information.
Output: A revised loop.
Algorithm:
1. For each basic induction variable i
 - If only uses are to compute other induction variables in its family and in conditional branches
 - Use a triple (j, c, d) in family, preferably with $c = 0$
 - Modify each conditional involving i so that b is used instead
 - if $i \text{ relop } x \text{ goto } L#$ becomes
 - if $j \text{ relop } y \text{ goto } L#$ with $y = c + d\times x$
 - Delete all assignments to the eliminated induction variable
2. Apply copy propagation followed by dead code elimination to eliminate copies introduced by strength-reduction.
3. Remove any induction variable definitions where the induction variable is only used and defined within that definition.

Summary

Induction variable detection uses
- strength reduction and induction variable elimination
- data dependence analysis, which can then be used for parallelization

Strength reduction
- removes multiplications
- the definition for some derived induction variables no longer depend directly on a basic induction variable

Induction variable elimination
- removes unnecessary induction variables

Example: Strength Reduction

Example: Induction Variable Elimination
Next Time

Reading
- Ch 19 through 19.2

Lecture
- SSA