Machinery for Placing ϕ-Functions

Recall Dominators
- $d \text{ dom } i$ if all paths from entry to node i include d
- $d \text{ sdom } i$ if $d \text{ dom } i$ and $d \neq i$

Dominance Frontiers
- The dominance frontier of a node d is the set of nodes that are "just barely" not dominated by d; i.e., the set of nodes n, such that
 - d dominates a predecessor p of n, and
 - d does not strictly dominate n

Notational Convenience
- $\text{DF}(S) = \bigcup_{s \in S} \text{DF}(s)$

Dom(5) = \{5, 6, 7, 8\}
DF(5) = \{4, 5, 13\}

In this new graph, node 4 is the first point of convergence between the entry and node 5, so do we need a ϕ-function at node 13?

Dominance Frontier Example

DF(d) = \{n | \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \neq \text{sdom } n\}

Dom(5) = \{5, 6, 7, 8\}
DF(5) = \{4, 5, 12, 13\}

What’s significant about the Dominance Frontier?
In SSA form, definitions must dominate uses

SSA Exercise

DF(8) = \{10\}
DF(9) = \{10\}
DF(2) = \{6\}
DF(8,9) = \{10\}
DF(10) = \{6\}
DF(\{2,8,9,10\}) = \{6,10\}

v := \ldots
v := \ldots
v := \phi(v_3, v_4)

v := \phi(v_3, v_2)

v := \phi(v_3, v_4)

v := \phi(v_3, v_2)
Dominance Frontiers Revisited

Suppose that node 3 defines variable x

$$\text{DF}(3) = \{5\}$$

Do we need to insert a ϕ-function for x anywhere else? Yes. At node 6. Why?

Dominance Frontiers and SSA

Let
- $$\text{DF}_x(S) = \text{DF}(S)$$
- $$\text{DF}_{x+1}(S) = \text{DF}(S \cup \text{DF}_x(S))$$

Iterated Dominance Frontier
- $$\text{DF}_x(S)$$

Theorem
- If S is the set of CFG nodes that define variable v, then $$\text{DF}_x(S)$$ is the set of nodes that require ϕ-functions for v

Algorithm for Inserting ϕ-Functions

for each variable v
- WorkList \leftarrow \emptyset
- EverOnWorkList \leftarrow \emptyset
- AlreadyHasPhiFunc \leftarrow \emptyset

for each node n containing an assignment to v
- Put all defs of v on the worklist
- WorkList \leftarrow WorkList \cup \{n\}
- EverOnWorkList \leftarrow WorkList
- while WorkList \neq \emptyset
- Remove some node n from WorkList
- for each d \in DF(n)
- if d \notin AlreadyHasPhiFunc
- Insert a ϕ-function for v at d
- Insert at most one ϕ-function per node
- AlreadyHasPhiFunc \leftarrow AlreadyHasPhiFunc \cup \{d\}
- if d \notin EverOnWorkList
- WorkList \leftarrow WorkList \cup \{d\}
- EverOnWorkList \leftarrow EverOnWorkList \cup \{d\}
- Process each node at most once

Variable Renaming

Basic idea
- When we see a variable on the LHS, create a new name for it
- When we see a variable on the RHS, use appropriate subscript

Easy for straightline code

- $x = x$
- $x = x$

Use a stack when there’s control flow
- For each use of x, find the definition of x that dominates it

- $x = x$
- $x_n = x_{n-1}$
- $x_{n-1} = x_{n-2}$

Traverse the dominance tree
The dominance tree shows the dominance relation

Variable Renaming Algorithm

```plaintext
procedure Rename(block b)
  if b previously visited return  // Call Rename(entry-node)
  for each 
    GenName(LHS(p)) and replace v with v_i, where i = Top(Stack[v])
  for each statement s in b (in order)
    for each variable v ∈ RHS(s)
      replace v by v_{i + Top(Stack[v])}
    for each variable v ∈ LHS(s)
      GenName(v) and replace v with v_i, where i = Top(Stack[v])
    for each s ∈ succ(b) (in CFG)
      j ← position in s’s \( \Phi \)-function corresponding to block b
      for each \( \Phi \)-function p in s
        replace the \( j \)th operand of RHS(p) by v_{j+1}, where i = Top(Stack[v])
        Rename(s)
      for each \( \Phi \)-function or statement t in b
        Recurse using Depth First Search
      Unwind stack when done with this node
  for each \( \Phi \)-function or statement t in b
    Pop(Stack[v])
```

Variable Renaming (cont)

Data Structures
- \(\text{Stacks}[v] \forall v \)
 - Holds the subscript of most recent definition of variable \(v \), initially empty
- \(\text{Counters}[v] \forall v \)
 - Holds the current number of assignments to variable \(v \); initially 0

Auxiliary Routine

```plaintext
procedure GenName(variable v)
  i := Counters[v]
  push i onto Stacks[v]
  Counters[v] := i + 1
```

Use the Dominance Tree to remember the most recent definition of each variable

Transformation from SSA Form

Proposal
- Restore original variable names (i.e., drop subscripts)
- Delete all \(\Phi \)-functions

Complications
- What if versions get out of order?
 (simultaneously live ranges)

Alternative
- Perform dead code elimination (to prune \(\Phi \)-functions)
- Replace \(\Phi \)-functions with copies in predecessors
- Rely on register allocation coalescing to remove unnecessary copies

Backward Analyses vs. Forward Analyses

For forward data-flow analysis, at phi node apply meet function.

For backward data-flow analysis?

\[v_2 := \phi(v_0, v_1) \]

\[\ldots v_2 \ldots \]

Static Single Information Form (SSI)

Ananian’s Masters Thesis, 1997 MIT

Concepts

SSA construction
- Place phi nodes
- Variable renaming

Transformation from SSA to executable code depends on the optimizations dead-code elimination and copy propagation

Backward data-flow analyses can use SSI modification to SSA

Next Time

Assignments
- HW1 due

Lecture
- Using SSA for program optimization