Loop Transformations for Parallelism & Locality

Last week
- Data dependences and loops
- Loop transformations
 - Parallelization
 - Loop interchange

Today
- Scalar expansion for removing false dependences
- Loop interchange
- Loop transformations and transformation frameworks
 - Loop permutation
 - Loop reversal
 - Loop skewing
 - Loop fusion

Review

Distance vectors
- Concisely represent dependences in loops (i.e., in iteration spaces)
- Dictate what transformations are legal
 - e.g., Permutation and parallelization

Legality
- A dependence vector is legal when it is lexicographically nonnegative

Loop-carried dependence
- A dependence $D = (d_1, ..., d_n)$ is carried at loop level i if d_i is the first nonzero element of D

Problem
- Loop-carried dependences inhibit parallelism
- Scalar references result in loop-carried dependences

Example

\begin{verbatim}
do i = 1,6
 t = A(i) + B(i)
 C(i) = t + 1/t
endo
\end{verbatim}

Can this loop be parallelized? No.
What kind of dependences are these? Anti dependences.

Scalar Expansion: Motivation

Idea
- Eliminate false dependences by introducing extra storage

Example

\begin{verbatim}
do i = 1,6
 T(i) = A(i) + B(i)
 C(i) = T(i) + 1/T(i)
endo
\end{verbatim}

Can this loop be parallelized? Yes.

Disadvantages?
Scalar Expansion Details

Restrictions
- The loop must be a countable loop
 i.e. The loop trip count must be independent of the body of the loop
- The expanded scalar must have no upward exposed uses in the loop
  ```
  do i = 1,6
    print(t)
    t = A(i) + B(i)
    C(i) = t + 1/t
  enddo
  ```
- Nested loops may require much more storage
- When the scalar is live after the loop, we must move the correct array value into the scalar

Loop Permutation

Idea
- Swap the order of two loops to increase parallelism, to improve spatial locality, or to enable other transformations
- Also known as loop interchange

Example
  ```
  do i = 1,n
    do j = 1,n
      x = A(2,j)
    enddo
  enddo
  ```
 This code is invariant with respect to the inner loop, yielding better locality

Case analysis of the direction vectors

\(=,>\)
The dependence is loop independent, so it is unaffected by interchange

\(=,<\)
The dependence is carried by the j loop.
After interchange the dependence will be \(<,=\), so the dependence will still be carried by the j loop, so the dependence relations do not change.

\(<,\)\
The dependence is carried by the i loop.
After interchange the dependence will be \(=,<\), so the dependence will still be carried by the i loop, so the dependence relations do not change.
Legality of Loop Interchange (cont)

Case analysis of the direction vectors (cont.)

(<,<)
The dependence distance is positive in both dimensions.
After interchange it will still be positive in both dimensions, so the dependence relations do not change.

(<,>)
The dependence is carried by the outer loop.
After interchange the dependence will be (>,<), which changes the dependences and results in an illegal direction vector, so interchange is illegal.

(>,*) (=*>)
Such direction vectors are not possible for the original loop.

Frameworks for Loop Transformations

Unimodular Loop Transformations [Banerjee 90],[Wolf & Lam 91]
– can represent loop permutation, loop reversal, and loop skewing
– unimodular linear mapping (determinant of matrix is + or - 1)
 – T i = i’, T is a matrix, i and i’ are iteration vectors
 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 i_1 \\
 i_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 i'_1 \\
 i'_2
 \end{bmatrix}
 \]
– transformation is legal if the transformed dependence vector remain lexicographically positive
– limitations
 – only perfectly nested loops
 – all statements are transformed the same

Loop Interchange Example

Consider the (<,>) case

\[
\begin{align*}
&\text{do } i = 1,n \\
&\text{do } j = 1,n \\
&\quad C(i,j) = C(i+1,j-1) \\
&\quad \text{endo} \\
&\text{endo} \\
&\text{do } j = 1,n \\
&\text{do } i = 1,n \\
&\quad C(i,j) = C(i+1,j-1) \\
&\quad \text{endo} \\
&\text{endo}
\end{align*}
\]

Before

(1,1) C(1,1) = C(2,0)
(1,2) C(1,2) = C(2,1)
...
(2,1) C(2,1) = C(3,0)

After

(1,1) C(1,1) = C(2,0)
(1,2) C(1,2) = C(3,0)
...
(2,1) C(2,1) = C(2,1)

Legality of Loop Interchange, Reprise

Reduced case analysis of the direction vectors

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
=
\begin{bmatrix}
i' \\
j'
\end{bmatrix}
\]

(=,=)
The dependence is loop independent, so it is unaffected by interchange

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
i \\
0
\end{bmatrix}
=
\begin{bmatrix}
i' \\
0
\end{bmatrix}
\]

(=,<)
The dependence is carried by the j loop.
After interchange the dependence will be (<,=), so the dependence will still be carried by the j loop, so the dependence relations do not change.

(<,>)
The dependence is carried by the outer loop.
After interchange the dependence will be (>,<), which changes the dependences and results in an illegal direction vector, so interchange is illegal.
Loop Reversal

Idea
– Change the direction of loop iteration
 (i.e., From low-to-high indices to high-to-low indices or vice versa)

Benefits
– Improved cache performance
– Enables other transformations (coming soon)

Example

```
do i = 6,1,-1
  A(i) = B(i) + C(i)
endo
```

```
do i = 1,6
  A(i) = B(i) + C(i)
endo
```

Loop Reversal and Distance Vectors

Impact
– Reversal of loop \(i \) negates the \(i \)th entry of all distance vectors associated with the loop
– What about direction vectors?

When is reversal legal?
– When the loop being reversed does not carry a dependence
 (i.e., When the transformed distance vectors remain legal)

Example

```
```

```
```

Dependence: [1 0 -1]
Distance Vector: (1)
Transformed Distance Vector: (1,1) legal

Loop Reversal Example

Legality
– Loop reversal will change the direction of the dependence relation

Is the following legal?

```
do i = 1,6
  A(i) = A(i-1)
endo
```

```
do i = 6,1,-1
  A(i) = A(i-1)
endo
```

Loop Skewing

Original code

```
do i = 1,6
  do j = 1,6
    A(i,j) = A(i-1,j+1)+1
  enddo
enddo
```

Distance vector: (1,1)

Can we permute the original loop?

Skewing:

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
Transforming the Dependencies and Array Accesses

Original code
```plaintext
do i = 1,6
  do j = 1,5
    A(i,j) = A(i-1,j+1)+1
  enddo
enddo
```

Dependence vector:
```
[ 1 0 ] [ 1 ] = [ 1 ]
[ 1 1 ] [ -1 ] [ 0 ]
```

New Array Accesses:
```
A([0 0; 1 0; 0 1; 1 0; 0 0; 1 0]) = A(i,j)
A([0 0; 1 0; 0 1; -1 1; 0 0; 1 0]) = A(i-1,j+1)
A([0 0; 1 0; 0 1; 0 0; 1 0; -1 1]) = A(i-1,j+1)
```

Transformed code
```plaintext
do i = 1,6
  do j = 1,5
    A(i,j) = A(i-1,j+1)+1
  enddo
enddo
```

Transforming the Loop Bounds

Original code
```plaintext
do i = 1,6
  do j = 1,5
    A(i,j) = A(i-1,j+1)+1
  enddo
enddo
```

Bounds:
```
[ -1 0 ] [ 0 ] [ -1 0 ] [ 0 ] [ -1 0 ] [ 0 ]
[ 0 1 ] [ -1 ] [ 0 1 ] [ -1 ] [ 0 1 ] [ -1 ]
```

Transformed code
```plaintext
do i = 1,6
  do j = 1,5
    A(i,j) = A(i-1,j+1)+1
  enddo
enddo
```

Loop Fusion

Idea
- Combine multiple loop nests into one

Example
```plaintext
do i = 1,n
  A(i) = A(i-1)
enddo
```
```plaintext
do j = 1,n
  B(j) = A(j)/2
enddo
```

Combined
```plaintext
do i = 1,n
  A(i) = A(i-1)
  B(i) = A(i)/2
enddo
```

Pros
- May improve data locality
- Reduces loop overhead
- Enables array contraction (opposite of scalar expansion)

Cons
- May hurt data locality
- May hurt icache performance
- May enable better instruction scheduling

Legality of Loop Fusion

Basic Conditions
- Both loops must have same structure
 - Same loop depth
 - Same loop bounds
 - Same iteration directions
- Dependences must be preserved
 e.g., Flow dependences must not become anti dependences

Can we relax any of these restrictions?

All cross-loop dependences
flow from body1 to body2

Ensure that fusion does not introduce
dependences from body2 to body1
Loop Fusion Example

What are the dependences?

\[
\begin{align*}
&\text{do } i = 1, n \\
&s_1 \quad A(i) = B(i) + 1 \\
&s_2 \quad C(i) = A(i)/2 \\
&s_3 \quad D(i) = 1/C(i+1)
\end{align*}
\]

Enddo

Is there some transformation that will enable fusion of these loops?

Loop Fusion Example (cont)

Loop reversal is legal for the original loops

- Does not change the direction of any dep in the original code
- Will reverse the direction in the fused loop: \(s_2 \delta s_3\) will become \(s_3 \delta s_2\)

\[
\begin{align*}
&\text{do } i = 1, n \\
&s_1 \quad A(i) = B(i) + 1 \\
&s_2 \quad C(i) = A(i)/2 \\
&s_3 \quad D(i) = 1/C(i+1)
\end{align*}
\]

Enddo

After reversal and fusion all original dependences are preserved

Concepts

Using direction and distance vectors
Transformation legality (from previous)
- must respect data dependences
- scalar expansion as a technique to remove anti and output dependences

Transformations:
- What is the benefit?
- What do they enable?
- When are they legal?

Unimodular transformation framework
- represents loop permutation, loop reversal, and loop skewing
- provides mathematical framework for ...
 - testing transformation legality,
 - transforming array accesses and loop bounds,
 - and combining transformations

Next Time

Lecture
- More loop transformations
- An even cooler transformation framework