Control-Flow Analysis and Loop Detection

Last time
- PRE

Today
- Control-flow analysis
- Loops
- Identifying loops using dominators
- Reducibility

Why study control flow analysis?

Finding Loops
- most computation time is spent in loops
- to optimize them, we need to find them

Loop Optimizations
- Loop-invariant code hoisting
- Induction variable elimination
- Array bounds check removal
- Loop unrolling
- Parallelization
- ...

Identifying structured control flow
- can be used to speed up data-flow analysis

Context

Data-flow
- Flow of data values from defs to uses
- Could alternatively be represented as a data dependence

Control-flow
- Sequencing of operations
- Could alternatively be represented as a control dependence
- e.g., Evaluation of then-code and else-code depends on if-test

Representing Control-Flow

High-level representation
- Control flow is implicit in an AST

Low-level representation:
- Use a Control-flow graph
 - Nodes represent statements
 - Edges represent explicit flow of control

Other options
- Control dependences in program dependence graph (PDG) [Ferrante87]
- Dependences on explicit state in value dependence graph (VDG) [Weise 94]
What Is Control-Flow Analysis?

Control-flow analysis discovers the flow of control within a procedure (e.g., builds a CFG, identifies loops)

Example

1. \(a := 0 \)
2. \(b := a \times b \)
3. \(L1: \text{if } c < x \quad \text{ goto } \text{L2} \)
4. \(e := b / c \)
5. \(f := e + 1 \)
6. \(L2: \text{goto } \text{L1} \)
7. \(\text{if } e > 0 \text{ goto } \text{L3} \)
8. \(\text{goto } \text{L1} \)
9. \(\text{L3: return} \)

Loop Concepts

- **Loop**: Strongly connected subgraph of CFG with a single entry point (header)
- **Loop entry edge**: Source not in loop & target in loop
- **Loop exit edge**: Source in loop & target not in loop
- **Loop header node**: Target of loop entry edge. Dominales all nodes in loop.
- **Back edge**: Target is loop header & source is in the loop
- **Natural loop**: Associated with each back edge. Nodes dominated by header and with path to back edge without going through header
- **Loop tail node**: Source of back edge
- **Loop preheader node**: Single node that’s source of the loop entry edge
- **Nested loop**: Loop whose header is inside another loop

Picturing Loop Terminology

The Value of Preheader Nodes

Not all loops have preheaders
- Sometimes it is useful to create them

Without preheader node
- There can be multiple entry edges

With single preheader node
- There is only one entry edge

Useful when moving code outside the loop
- Don’t have to replicate code for multiple entry edges
Identifying Loops

Why?
- Most execution time spent in loops, so optimizing loops will often give most benefit

Many approaches
- Interval analysis
- Exploit the natural hierarchical structure of programs
- Decompose the program into nested regions called intervals
- Structural analysis: a generalization of interval analysis
- Identify dominators to discover loops

We’ll focus on the dominator-based approach

Identifying Natural Loops with Dominators

Back edges
A back edge of a natural loop is one whose target dominates its source

Natural loop
The natural loop of a back edge (m→n), where n dominates m, is the set of nodes x such that n dominates x and there is a path from x to m not containing n

Example
SCC with c and d not a loop because has two entry points

The target, c, of the edge (d→c) does not dominate its source, d, so (d→c) does not define a natural loop

Identifying Loops

Dominator Terminology

Dominator Terminology

Key Idea
If a node dominates all predecessors of node n, then it also dominates node n

Computing Dominators

Input: Set of nodes N (in CFG) and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Dom[s] = {s}
for each n ∈ N − {s}
 Dom[n] = N
 change = false
 for each p ∈ N − {s}
 D = [n] ∪ \{p\}_\text{pred} \cup \text{Dom}[p]
 if D ≠ Dom[n]
 change = true
 Dom[n] = D
until change
x ∈ Dom[p_i] ∧ x ∈ Dom[p_j] ∧ x ∈ Dom[p_k] ⇒ x ∈ Dom[n]
Computing Dominators (example)

Input: Set of nodes \(N \) and an entry node \(s \)
Output: \(\text{Dom}[i] = \text{set of all nodes that dominate node } i \)

\(\text{Dom}[s] = \{s\} \)

\[\text{for each } n \in N \setminus \{s\} \]
\[\text{Dom}[n] = N \]

repeat
\[\text{change} = \text{false} \]
\[\text{for each } n \in N \setminus \{s\} \]
\[D = \{n\} \cup \bigcap_{p \in \text{pred}(n)} \text{Dom}[p] \]
\[\text{if } D \neq \text{Dom}[n] \]
\[\text{change} = \text{true} \]
\[\text{Dom}[n] = D \]
until \(\text{change} \)

Initially
\[\text{Dom}[s] = \{s\} \]
\[\text{Dom}[q] = \{n, p, q, r, s\} \]

Finally
\[\text{Dom}[q] = \{q, s\} \]
\[\text{Dom}[r] = \{r, s\} \]
\[\text{Dom}[p] = \{p, s\} \]
\[\text{Dom}[n] = \{n, p, s\} \]

Reducibility

Definitions
- A CFG is reducible (well-structured) if we can partition its edges into two disjoint sets, the forward edges and the back edges, such that
 - The forward edges form an acyclic graph in which every node can be reached from the entry node
 - The back edges consist only of edges whose targets dominate their sources
- A CFG is reducible if it can be converted into a single node using T1 and T2 transformations.

Structured control-flow constructs give rise to reducible CFGs

Value of reducibility
- Dominance useful in identifying loops
- Simplifies code transformations (every loop has a single header)
- Permits interval analysis and it is easy to calculate the CFG depth

T1 and T2 transformations

T1 transformation
- remove self-cycles

T2 transformation
- if node \(n \) has a unique predecessor \(p \), then remove \(n \) and make all the successors for \(n \) be successors for \(p \)

Handling Irreducible CFG’s

Node splitting
- Can turn irreducible CFGs into reducible CFGs
Why Go To All This Trouble?

Modern languages provide structured control flow
– Shouldn’t the compiler remember this information rather than throw it away and then re-compute it?

Answers?
– We may want to work on the binary code in which case such information is unavailable
– Most modern languages still provide a goto statement
– Languages typically provide multiple types of loops. This analysis lets us treat them all uniformly
– We may want a compiler with multiple front ends for multiple languages; rather than translate each language to a CFG, translate each language to a canonical LIR, and translate that representation once to a CFG

Concepts

Control-flow analysis
Control-flow graph (CFG)
Loop terminology
Identifying loops
Dominators
Reducibility

Next Time

Lecture
– Loop invariant code motion