Control-Flow Analysis and Loop Detection

Last time
 – PRE

Today
 – Control-flow analysis
 – Loops
 – Identifying loops using dominators
 – Reducibility
 – Using loop identification to identify induction variables

Context

Data-flow
 – Flow of data values from defs to uses
 – Could alternatively be represented as a data dependence

Control-flow
 – Sequencing of operations
 – Could alternatively be represented as a control dependence
 – e.g., Evaluation of then-code and else-code depends on if-test
Why study control flow analysis?

Finding Loops
- most computation time is spent in loops
- to optimize them, we need to find them

Loop Optimizations
- Loop-invariant code hoisting
- Induction variable elimination
- Array bounds check removal
- Loop unrolling
- Parallelization
- ...

Identifying structured control flow
- can be used to speed up data-flow analysis

Representing Control-Flow

High-level representation
- Control flow is implicit in an AST

Low-level representation:
- Use a Control-flow graph
 - Nodes represent statements
 - Edges represent explicit flow of control

Other options
- Control dependences in program dependence graph (PDG) [Ferrante87]
- Dependences on explicit state in value dependence graph (VDG) [Weise 94]
What Is Control-Flow Analysis?

Control-flow analysis discovers the flow of control within a procedure (e.g., builds a CFG, identifies loops)

Example

1. \(a := 0 \)
2. \(b := a \times b \)
3. \(L1: \quad c := b/d \)
 - if \(c < x \) goto \(L2 \)
4. \(e := b / c \)
5. \(f := e + 1 \)
6. \(L2: \quad g := f \)
7. \(h := t - g \)
8. \(i \)f \(e > 0 \) goto \(L3 \)
9. goto \(L1 \)
10. \(L3: \quad return \)

Loop Concepts

Loop: Strongly connected subgraph of CFG with a single entry point (header)

Loop entry edge: Source not in loop & target in loop

Loop exit edge: Source in loop & target not in loop

Loop header node: Target of loop entry edge. Dominates all nodes in loop.

Back edge: Target is loop header & source is in the loop

Natural loop: Associated with each back edge. Nodes dominated by header and with path to back edge without going through header

Loop tail node: Source of back edge

Loop preheader node: Single node that’s source of the loop entry edge

Nested loop: Loop whose header is inside another loop
Picturing Loop Terminology

The Value of Preheader Nodes

Not all loops have preheaders
 – Sometimes it is useful to create them

Without preheader node
 – There can be multiple entry edges

With single preheader node
 – There is only one entry edge

Useful when moving code outside the loop
 – Don’t have to replicate code for multiple entry edges
Identifying Loops

Why?
– Most execution time spent in loops, so optimizing loops will often give most benefit

Many approaches
– Interval analysis
 – Exploit the natural hierarchical structure of programs
 – Decompose the program into nested regions called intervals
– Structural analysis: a generalization of interval analysis
– Identify dominators to discover loops

We’ll focus on the dominator-based approach

Dominator Terminology

Dominators
- \(d \) dom \(i \) if all paths from entry to node \(i \) include \(d \)

Strict dominators
- \(d \) sdom \(i \) if \(d \) dom \(i \) and \(d \neq i \)

Immediate dominators
- \(a \) idom \(b \) if a sdom \(b \) and there does not exist a node \(c \) such that \(c \neq a, c \neq b, a \) dom \(c, \) and \(c \) dom \(b \)

Post dominators
- \(p \) pdom \(i \) if every possible path from \(i \) to exit includes \(p \) (\(p \) dom \(i \) in the flow graph whose arcs are reversed and entry and exit are interchanged)
Identifying Natural Loops with Dominators

Back edges
A back edge of a natural loop is one whose target dominates its source.

Natural loop
The natural loop of a back edge \((m \rightarrow n)\), where \(n\) dominates \(m\), is the set of nodes \(x\) such that \(n\) dominates \(x\) and there is a path from \(x\) to \(m\) not containing \(n\).

Example
The target, \(c\), of the edge \((d \rightarrow c)\) does not dominate its source, \(d\), so \((d \rightarrow c)\) does not define a natural loop.

Identifying Natural Loops with Dominators

Computing Dominators

Input: Set of nodes \(N\) (in CFG) and an entry node \(s\)

Output: \(\text{Dom}[i] = \text{set of all nodes that dominate node } i\)

\[
\begin{align*}
\text{Dom}[s] &= \{s\} \\
\text{for each } n &\in N - \{s\} \\
\text{Dom}[n] &= N \\
\text{repeat} &\quad \text{change} = \text{false} \\
\text{for each } n &\in N - \{s\} \\
D &= \{n\} \cup (\cap_{p \in \text{pred}(n)} \text{Dom}[p]) \\
\text{if } D &\neq \text{Dom}[n] \\
\text{change} &= \text{true} \\
\text{Dom}[n] &= D \\
\text{until } !\text{change}
\end{align*}
\]

Key Idea
If a node dominates all predecessors of node \(n\), then it also dominates node \(n\).

\[
x \in \text{Dom}(p_1) \land x \in \text{Dom}(p_2) \land x \in \text{Dom}(p_3) \Rightarrow x \in \text{Dom}(n)
\]
Computing Dominators (example)

Input: Set of nodes N and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Initially
Dom[s] = {s}

Dom[q] = {n, p, q, r, s}...

Finally
Dom[q] = {q, s}
Dom[r] = {r, s}
Dom[p] = {p, s}
Dom[n] = {n, p, s}

Reducibility

Definitions

- A CFG is reducible (well-structured) if we can partition its edges into two disjoint sets, the forward edges and the back edges, such that
 - The forward edges form an acyclic graph in which every node can be reached from the entry node
 - The back edges consist only of edges whose targets dominate their sources
- A CFG is reducible if it can be converted into a single node using T1 and T2 transformations.

Structured control-flow constructs give rise to reducible CFGs

Value of reducibility

- Dominance useful in identifying loops
- Simplifies code transformations (every loop has a single header)
- Permits interval analysis and it is easy to calculate the CFG depth
T1 and T2 transformations

T1 transformation
- remove self-cycles

T2 transformation
- if node \(n \) has a unique predecessor \(p \), then remove \(n \) and make all the successors for \(n \) be successors for \(p \)

Handling Irreducible CFG’s

Node splitting
- Can turn irreducible CFGs into reducible CFGs
Why Go To All This Trouble?

Modern languages provide structured control flow
- Shouldn’t the compiler remember this information rather than throw it away and then re-compute it?

Answers?
- We may want to work on the binary code in which case such information is unavailable
- Most modern languages still provide a `goto` statement
- Languages typically provide multiple types of loops. This analysis lets us treat them all uniformly
- We may want a compiler with multiple front ends for multiple languages; rather than translate each language to a CFG, translate each language to a canonical LIR, and translate that representation once to a CFG

Induction variables

Induction variable identification
- Induction variables
 - Variables whose values form an arithmetic progression

Why bother?
- Useful for strength reduction, induction variable elimination, loop transformations, and automatic parallelization

Simple approach
- Search for statements of the form, \(i = i + c \)
- Examine reaching definitions to make sure there are no other defs of \(i \) in the loop
- Does not catch all induction variables. Examples?
Example Induction Variables

\[
s = 0; \\
\text{for (i=0; i<N; i++)} \\
\quad s += a[i];
\]

Induction Variable Identification

Types of Induction Variables

- **Basic** induction variables (eg. loop index)
 - Variables that are defined once in a loop by a statement of the form, \(i = i + c \) (or \(i = i - c \)), where \(c \) is a constant integer or loop invariant

- **Derived** induction variables
 - Variables that are defined once in a loop as a linear function of another induction variable
 - \(k = j + c_1 \) or
 - \(k = c_2 \times j \) where \(c_1 \) and \(c_2 \) are loop invariant
Induction Variable Triples

Each induction variable k is associated with a triple (i, c_1, c_2)
- i is a basic induction variable
- c_1 and c_2 are constants such that $k = c_1 + c_2 \times i$ when k is defined
- k belongs to the family of i

Basic induction variables
- their triple is $(i, 0, 1)$
- $i = 0 + 1 \times i$ when i is defined

Algorithm for Identifying Loop Invariant Code

Input: A loop L consisting of basic blocks. Each basic block contains a sequence of 3-address instructions. We assume reaching definitions have been computed.

Output: The set of instructions that compute the same value each time through the loop

Informal Algorithm:
1. Mark “invariant” those statements whose operands are either
 - Constant
 - Have all reaching definitions outside of L
2. Repeat until a fixed point is reached: mark “invariant” those unmarked statements whose operands are either
 - Constant
 - Have all reaching definitions outside of L
 - Have exactly one reaching definition and that definition is in the set marked “invariant”

Is this last condition too strict?
Algorithm for Identifying Loop Invariant Code (cont)

Is the Last Condition Too Strict?

- No
- If there is more than one reaching definition for an operand, then neither one dominates the operand
- If neither one dominates the operand, then the value can vary depending on the control path taken, so the value is not loop invariant

\[
\begin{align*}
\text{Invariant statements} & \quad \text{\(x = c_1\)} \quad \text{\(x = c_2\)} \\
... & = x
\end{align*}
\]

Algorithm for Identifying Induction Variables

Input: A loop \(L\) consisting of 3-address instructions, reaching defs, and loop-invariant information.

Output: A set of induction variables, each with an associated triple.

Algorithm:

1. For each stmt in \(L\) that matches the pattern \(i = i+c\) or \(i=i-c\) create the triple \((i, 0, 1)\).
2. Derived induction variables: For each stmt of \(L\),
 - If the stmt is of the form \(k=j+c\) or \(k=j*c\)
 - and \(j\) is an induction variable with the triple \((x, p, q)\)
 - and \(c_1\) and \(c_2\) are loop invariant
 - and \(k\) is only defined once in the loop
 - and if \(j\) is a derived induction variable belonging to the family of \(i\) then
 - the only def of \(j\) that reaches \(k\) must be in \(L\)
 - and no def of \(i\) must occur on any path between the definition of \(j\) and \(k\)
 - then create the triple \((x, p+c_1, q)\) for \(k=j+c\) or \((x, p*c_2, q*c_2)\) for \(k=j*c\)
Example: Induction Variable Detection

Algorithm for Strength Reduction

Input: A loop L consisting of 3-address instructions and induction variable triples.

Output: A modified loop with a new preheader.

Algorithm:

1. For each derived induction variable j with triple (i, p, q)
 - create a new j'
 - after each definition of i in L, where $i = i + c$ insert $j' = j' + t$
 - put computation $t = q * c$ in preheader
 - initialize j' at the end of the preheader to $j' = p + q * i$
 - replace the definition of j with $j = j'$

Note:
- j' also has triple (i, p, q)
- multiplication has been moved out of the loop
Algorithm for Induction Variable Elimination

Input: A loop L consisting of 3-address instructions, reaching definitions, loop-invariant information, and live-variable information.

Output: A revised loop.

Algorithm:

1. Apply copy propagation followed by dead code elimination to eliminate copies introduced by strength-reduction.
2. Remove any induction variable definitions where the induction variable is only used and defined within that definition. (useless vars)
3. For each induction variable i (almost useless vars)
 - If only uses are to compute other induction variables in its family and in conditional branches, then mark as eliminated
 - Use a triple (j, c, d) in family associated with variable k
 - Modify each conditional involving i so that k is used instead, uses relationships set up with triples
 - Delete all assignments to the eliminated induction variable
Concepts

Control-flow analysis, Control-flow graph (CFG), Loop terminology, Identifying loops, Dominators, Reducibility

Induction variable detection and elimination require loop identification

- Induction variable detection uses
 - strength reduction and induction variable elimination
 - data dependence analysis, which can then be used for parallelization
- Strength reduction
 - removes multiplications
 - the definition for some derived induction variables no longer depend directly on a basic induction variable
- Induction variable elimination
 - removes unnecessary induction variables

Next Time

Lecture

- SSA