
FacePerf: Benchmarks for Face Recognition
Algorithms

David S. Bolme, Michelle Strout, and J. Ross Beveridge
Colorado State University

Fort Collins, Colorado 80523-1873
Email: {bolme,ross,mstrout}@cs.colostate.edu

Abstract—In this paper we present a collection of C and C++
biometric performance benchmark algorithms called FacePerf.
The benchmark includes three different face recognition algo-
rithms that are historically important to the face recognition
community: Haar-based face detection, Principal Components
Analysis, and Elastic Bunch Graph Matching. The algorithms are
fast enough to be useful in realtime systems; however, improving
performance would allow the algorithms to process more images
or search larger face databases. Bottlenecks for each phase in the
algorithms have been identified. A cosine approximation was able
to reduce the execution time of the Elastic Bunch Graph Matching
implementation by 32%.

I. INTRODUCTION

Computer vision is a growing field in computer science that
requires the use of many different computationally intensive
algorithms. Recently, processor performance and digital camera
improvements have enabled realtime face recognition systems.
Performance bottlenecks do occur, so often these systems
achieve realtime performance by sacrificing data throughput
(dropping video frames), reducing the problem size, or reducing
the accuracy of the image analysis. More efficient algorithm im-
plementations could mitigate these issues and allow engineers
to produce better realtime vision systems.

FacePerf is a collection of three face recognition algorithms
that attempts to cover the major components of automatic face
recognition systems. These specific algorithms were selected
because they are important algorithms to the biometrics com-
munity, each one performs very different types of computa-
tions, and they have open source implementations. The test
scripts included with FacePerf provide a standardized testing
methodology by running the algorithms on well known face
recognition datasets.

The first step of face recognition is face detection, which
determines where in the image a face is located. Face detection
algorithms typically work by scanning an image at different
scales and looking for simple patterns that indicate the presence
of a face. Once the face is located, a sub-image (or image
chip) is produced at the appropriate location and scale such
that the face appears centered and is presented at a uniform
size. The second step is to compute a similarity score between
the detected face and one or more face image chips stored in
a database. If the goal of recognition is identification, then the
identity of the person in the new image is assumed to be the
same as the identity stored with the image in the database most
similar to the new image.

TABLE I
WALL CLOCK TIMES FOR THE THREE ALGORITHMS IN THE PERFORMANCE

BENCHMARK.

Phase Time.
Face Detection 5.9s
PCA Train 220.4s
PCA Test 47.0s
EBGM Locate 177.2s
EBGM Extract 148.2s
EBGM Similarity 72.4s

FacePerf includes one face detection algorithm and two face
identification algorithms. The OpenCV Haar-based Cascade
Classifier (Haar Classifier)[1][2]1 is an implementation of a face
detection algorithm that locates faces in images or video. This
algorithm outputs a bounding box for every face detected in
the imagery. The two identification algorithms are Principal
Components Analysis (PCA) [3] and Elastic Bunch Graph
Matching (EBGM) [4], which have both been implemented
by the CSU Face Recognition Evaluation Project2[5]. The
algorithms produce similarity scores between the image chips
provided by a face detector.

In this paper, we give a brief description of each algorithm
included in the performance benchmark set. We describe how
to obtain the source code and datasets needed to run the
benchmarks. We discuss example runtimes and GNU Profiler
(gprof) information for each benchmark. Finally, we present
a test case that shows how automatic and manual optimizations
were used to improve the performance of the EBGM similarity
computation.

II. ALGORITHMS

A. OpenCV Cascade Classifier

The Intel OpenCV cascade classifier is based on a face
detection algorithm developed by Viola and Jones [1][2]. The
algorithm scans an image and returns a set of locations that are
believed to be faces. The algorithm uses an Ada-Boost based
classifier that aggressively prunes the search space to quickly
locate faces in the image. Figure 1 shows an example of the
Haar Classifier applied to an image, where the squares indicate

1http://www.intel.com/technology/computing/opencv
2http://www.cs.colostate.edu/evalfacerec



Fig. 1. This image illustrates the ouput of the Haar Classifier.

face detections and circles indicate ground truth. Circles with
no corresponding square indicate false negatives (or undetected
faces).

The accuracy of this algorithm can be evaluated using a
standard configuration that ships with the OpenCV source code.
The accuracy is tested by detecting a set of faces in the
CMU Frontal Face Dataset3, which is designed for testing face
detectors. A script compares the detections to manually selected
ground truth, and the results are reported as the ratio of true
detections to the total number of faces.

Because the Haar Classifier is part of the OpenCV library,
the source code should be well optimized. OpenCV is a
popular open source image library that was originally created
by Intel. The data structures and algorithms in OpenCV have
been carefully tuned to run efficiently on modern hardware.
It is evident from the code of the Haar Classifier that hand
optimization was used to improve the performance of that
algorithm.

B. CSU Principal Components Analysis

PCA [6][3] begins by representing face images as vectors
where each element in the vector corresponds to a pixel value
in the image (see Figure 2). Typically feature vectors contain at
least 1024 pixels and often more. Computing a similarity score,
such as correlation, between two vectors of this size is slow. The
PCA process is therefore used to determine basis vectors for
a subspace in which almost all common facial variation is ex-
pressed in a much smaller dimensionality. Both new images and
images stored in a database of faces are represented in this more
compact form. This step considerably reduces the amount of
computation required to compare two images. Some researchers
also conjecture that projecting imagery into the PCA subspace
removes noise and leads to better identification; however, the
evidence for this conjecture is not always compelling.

3http://vasc.ri.cmu.edu/idb/html/face/frontal images

By its very nature, PCA does eliminate statistical covariance,
at least with respect to a set of canonical training imagery.
This has useful properties when measuring the similarity of
the transformed feature vectors. It allows techniques such as
whitening and L1 distance to be used to compute similarity.
Whitening the data typically improves identification accuracy.

Most of the work performed in the PCA algorithm is com-
puting matrix multiplications and solving eigenvector problems.
This specific implementation of PCA was developed as a
baseline for accuracy evaluations of face recognition algorithms
and was never required to run in realtime. Simple hand-tuned
optimizations have been applied to the matrix multiplication
routines to reduce function calls and improve data locality. The
eigen-solver is from the OpenCV library and should be fairly
efficient. The performance of this algorithm would probably be
improved by using linear algebra subroutines that are optimized
for the underlying hardware.

C. CSU Elastic Bunch Graph Matching

The EBGM algorithm[4][7] identifies a person in a new
image face by comparing it to other faces stored in a database.
The algorithm extracts feature vectors (called Gabor jets) from
interest points on the face and then matches those features to
corresponding features from the other faces. The algorithm first
has to extract a simplified representation of the face and then
compare that representation to other images in the database.

The EBGM algorithm operates in three phases. First, impor-
tant landmarks on the face are located by comparing Gabor
jets extracted from the new image to Gabor jets taken from
training imagery. Second, each face image is processed into a
smaller description of that face called a FaceGraph. The last
phase computes the similarity between many FaceGraphs by
computing the similarity of the Gabor jet features. Figure 3
shows the landmark locations for three faces. The FaceGraphs
with the highest similarity will hopefully belong to the same
person. While all of these phases effect the performance of
the algorithm, this example focuses on the performance of the
similarity comparison computations.

Like PCA, the EBGM algorithm was also designed for
accuracy and had no need to run in realtime. The execution
of this algorithm is currently performed by running three
separate executables on the data. The algorithm has some
hand optimized code; however there is probably still room for
improvement. We tried a number of simple hand optimizations
intended to reduce the running time of the algorithm. The
only modification that significantly improved the running time
of the benchmark was the cosine approximation described in
Section IV-C.

III. SOURCE CODE AND DATASETS

A. Source Code

The source code for these performance benchmarks can be
obtained from the following website:

http://www.cs.colostate.edu/˜vision/faceperf



Novel Database

Fig. 2. These are examples of normalized images used for PCA identification. Each 150X130 image is flattened into a feature vector of length 19500. The
PCA basis vectors are used to project this vector from <19500 to <300. Finally, the faces are compared to a database of known subjects, and the most similar
face is selected.

Fig. 3. Landmarks used for the EBGM algorithm.

The distribution contains source code for the CSU Face
Identification Evaluation System version 5.1 and OpenCV
version 1.0.0. This collection of source code is intended for
performance benchmarking only and has been modified for this
purpose. For biometric and computer vision research, we would
suggest you obtain original copies of the source codes from
their official websites. Links to these original sites are available
through our site above.

The performance benchmark was originally developed for
systems running gcc 4 and the GNU make utilities. It is known
to compile and run using gcc on Mac OS X, linux, Solaris,
and cygwin. The CSU code is written in C, and the OpenCV
code is written in C++. The following supporting utilities are
required to convert imagery and perform analyses: python4,
ImageMagick5, and bash6.

B. Datasets

The distribution contains a small face dataset (csuScrap-
Shots) compiled by us from CSU yearbook photos dating prior
to 1927. This dataset can be distributed freely because the
copyright for the imagery has expired. It is included as a way to
test the performance benchmarks and verify that the system was
downloaded and compiled correctly. This dataset is of much

4http://www.python.org
5http://www.imagemagick.org/script/index.php
6http://www.gnu.org/software/bash

lower quality than is typical of face recognition datasets, and
it is unclear how this will effect the performance of the Face
Detection and EBGM algorithms. It is provided solely to test
that the code executes without errors; it should never be used
to assess face detection or recognition performance.

Two better datasets can be obtained for free from other
sources. The first is a standard dataset for evaluating face
detection algorithms made available through Carnegie Mellon
University (CMU):

http://vasc.ri.cmu.edu/idb/html/face/frontal images

The second dataset is the FERET database, which is a
standard dataset used to evaluate face recognition algorithms.
This dataset can be requested through the National Institute
of Standards and Technology: Information Technology Labo-
ratory.

http://www.itl.nist.gov/iad/humanid/feret/

IV. RESULTS

By analyzing profiles of the three algorithms, we determined
the performance bottlenecks for each algorithm implementa-
tion. A summary of the results are shown in Table II. We
profiled the three algorithms with gprof. All of the timings
reported in this paper are based off of the CMU and FERET



TABLE II
THIS TABLE SHOWS A SUMMARY OF THE BOTTLENECKS IN THE PROGRAMS, THE TIME SPENT IN THOSE FUNCTIONS, AND THE NUMBER OF CALLS TO THAT

FUNCTION.

Algorithm Bottleneck Function BN Time
Face Detection Cascade Classifier cvRunHaarClassifierCascade 88.0%
PCA Training Matrix Multiply multiplyMatrix & transposeMultiplyMatrixL 41% & 52%
PCA Test Matrix Multiply transposeMultiplyMatrixL 90%
EBGM Locate Convolution convolvePoint 93%
EBGM Extract Convolution convolvePoint 96%
EBGM Similarity Similarity DEPredictiveIter & cos 63% & 30%

datasets. Unless otherwise indicated, the code was compiled
with the GNU Compiler Collection (GCC) -O3 settings and
run on an Apple MacBookPro 2Gz Intel Core Duo with 2GB
667Mhz DDR2 SDRAM of memory.

A. Haar Classifier Profile

The performance bottleneck for the Haar Classifier imple-
mentation is the cvRunHaarClassifierCascade func-
tion, found in opencv-1.0.0/cv/src/cvhaar.cpp. In
this function, a series of tests are perform for detecting a face
within a particular window. An explanation of this bottleneck
is found in Figure 4.

B. PCA Profile

Matrix multiply and a variant on matrix multiply are the
bottlenecks when training the PCA algorithm and comput-
ing similarities. The transposeMultiplyMatrixL func-
tion takes two matrices A and B as input and computes
AT B as output. Neither transposeMultiplyMatrixL
nor multiplyMatrix uses any blocking or unrolling.
The implementation for both functions can be found in
src/csuCommonMatrix.c.

C. EBGM Performance

In the EBGM algorithm, a similarity computation function
called DEPredictiveIter was identified as the perfor-
mance bottleneck when classifying faces. Performance was
tuned using various optimization settings for the GCC compiler,
using scalar replacement for a set of reused memory references,
and substituting an approximation for an expensive cosine op-
eration. It was found that the GCC -O3 optimization setting and
cosine approximation had the largest effects on performance.

Execution timings are reported as the lowest user time mea-
sured from three runs of the program. The manually optimized
code was compiled with the GCC -O3 automatic optimizations.
A summary of the results can be found in Table III.

The simplest method for improving the performance of an
application is to turn on automatic compiler optimizations. This
work tests three different optimization settings for GCC : -O0,

-O3, and Profile Guided(PG)7.
The profile guided optimizations uses runtime profiling in-

formation to better determine which paths are more frequently
traveled and perform better optimizations along those fre-
quently traveled paths. To produce the profile information, the
program was compiled and linked with the -fprofile-generate
flag. The program was then run on a subset of the problem to
produce profile information. Finally, the program was recom-
piled using the profiling information and the runtimes were
recorded. This method only produced a modest improvement
in the total runtime.

The gprof profiling tool showed that much of the compu-
tation time of the DEPredictiveIter function was spent
computing a cosine. Improved performance is observed using
either of two cosine approximations (see Figure 5).

The first approximation (COS_A) computes the 4th order
Taylor expansion of the cosine function for both the top lobe
and the bottom lobe. The approximation is similar to the
full cosine function except for a slight discontinuity where
cos(x) = 0. The face identification accuracy of the algorithm
was indistinguishable from the same algorithm using the libm
implementation of cosine.

The second approximation (COS_B) exploits the fact that the
algorithm is specifically concerned with the positive values of
the cosine function when x is close to zero. This approximation
is a second order Taylor expansion for just the top lobe. The
minimum value for the cosine function is clamped at zero. The
algorithm accuracy for this approximation is slightly better than
the original algorithm.

V. SUMMARY

FacePerf is a collection of three open source face recognition
algorithms. These algorithms span two major components of
face recognition systems: face detection and face identification.
Scripts have been included with FacePerf to run the bench-
mark on small freely downloaded datasets. Scripts that run
the benchmarks on the standardized FERET dataset are also
included. The source code combined with the scripts provides

7-O3 -fprofile-use -falign-loops-max-skip=15
-falign-jumps-max-skip=15 -falign-loops=16
-falign-jumps=16 -falign-functions=16 -malign-natural
-ffast-math -funroll-loops -ftree-loop-linear
-fsched-interblock -fgcse-sm



TABLE III
THIS SHOWS THE MINIMUM RUNTIME FOR THE EBGM ALGORITHM USING VARIOUS AUTOMATIC AND AND MANUAL OPTIMIZATION TECHNIQUES. THE

NORMALIZED TIME IS BASED ON THE GCC -O3 SETTING. THE MANUALLY OPTIMIZED TESTS WERE ALSO RUN USING GCC -O3 OPTIMIZATION.

Optimization Execution Time (sec) Normalized Time
GCC -O0 159.975 2.205
GCC -O3 72.539 1.000
GCC Profile Guided 78.969 1.088
Manual Cosine Replacement A (COS_A) 50.175 0.692
Manual Cosine Replacement B (COS_B) 49.198 0.678
Manual Scaler Replacement 73.184 1.008

a standardized methodology for performance evaluation of the
face recognition algorithms.

This paper describes the three algorithms that make up the
FacePerf benchmarks. Bottlenecks have been identified using
gprof and we have shown one method for improving the
performance of the EBGM Similarity computation.

These algorithms perform different computations and provide
a variety of different performance problems. The algorithms are
taken from two well established sources. The first is OpenCV
which is a popular computer vision library. The second is the
Evaluation of Face Recognition Project which is a baseline for
comparing the accuracy of identification algorithms.

REFERENCES

[1] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput.
Vision, vol. 57, no. 2, pp. 137–154, 2004.

[2] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid
object detection,” in Proceedings of the 2002 International Conference on
Image Processing (P. of the 2002 International Conference on Image Pro-
cessing, ed.), vol. 1, pp. 900–903, 2002.

[3] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in
Proc. of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 586 – 591, June 1991.

[4] L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, pp. 775–779, July
1997.

[5] D. S. Bolme, J. R. Beveridge, M. L. Teixeira, and B. A. Draper, “The CSU
face identification evaluation system: Its purpose, features and structure,” in
Proc. 3rd International Conf. on Computer Vision Systems, (Graz, Austria),
Apr. 2003.

[6] M. Kirby and L. Sirovich, “Application of the karhunen-loeve procedure
for the characterization of human faces,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 12, pp. 103 – 107, January 1990.

[7] D. S. Bolme, “Elastic bunch graph matching,” Master’s thesis, Colorado
State University, May 2003.



Feature 1

Feature 2

Feature N

FALSENo

Yes

FALSE

FALSE

Yes

TRUE

No

No

Yes

a) b)

Fig. 4. a) The Haar Classifier scans an image by positioning small windows at multiple locations and scales. b) At each location, a decision tree is evaluated
based on simple Haar-based features computed in the sub-window. The most discriminating features are considered first; so if a sub-window is not a face, it
is rejected after considering only a small fraction of the features. The large number of sub-windows needed to cover all pixels in many scales is the primary
reason for the bottleneck.

−6 −4 −2 0 2 4 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

co
s_
a(
x)

−6 −4 −2 0 2 4 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

co
s_
b(
x)

Fig. 5. These are plots of the two cosine approximations that were tested with the EBGM algorithm. The dotted gray line is the true cosine function. The red
line is the cosine approximation used in the experiments.


