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This paper presents a method for unsupervised learning and recognition of human actions in video. Lacking any
supervision, there is nothing except the inherent biases of a given representation to guide grouping of video clips
along semantically meaningful partitions. Thus, in the first part of this paper, we compare two contemporary
methods, Bag of Features (BOF) and Product Manifolds (PM), for clustering video clips of human facial expres-
sions, hand gestures, and full-body actions, with the goal of better understanding how well these very different
approaches to behavior recognition produce semantically relevant clustering of data.
We show that PM yields superior results when measuring the alignment between the generated clusters and
the nominal class labeling of the data set. We found that while gross motions were easily clustered by both
methods, the lack of preservation of structural information inherent to the BOF representation leads to limita-
tions that are not easily overcome without supervised training. This was evidenced by the poor separation of
shape labels in the hand gestures data by BOF, and the overall poor performance on full-body actions.
In the second part of this paper, we present an unsupervised mechanism for learning micro-actions in contin-
uous video streams using the PM representation. Unlike other works, our method requires no prior knowledge
of an expected number of labels/classes, requires no silhouette extraction, is tolerant to minor tracking errors
and jitter, and can operate at near real-time speed. We show how to construct a set of training “tracklets,”
how to cluster them using the Product Manifold distance measure, and how to perform detection using exem-
plars learned from the clusters. Further, we show that the system is amenable to incremental learning as anom-
alous activities are detected in the video stream. We demonstrate performance using the publicly-available
ETHZ Livingroom data set.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Although there is a great deal of research relating to the recogni-
tion of human behaviors and actions in video, much of the research
to date has focused on the problem of classifying short video seg-
ments according to a small, fixed set of labels. Benchmark data sets
typically include pre-segmented clips that show only a single behav-
ior from less than a dozen possibilities. The performance task is to
classify the clips. While the forced-choice paradigm has led to notable
performance gains over the past five years, it leaves many questions
unanswered regarding the larger challenge of detecting and recogniz-
ing human behaviors in less structured contexts and in continuous
streams of input.

Action recognition is hard, and it is reasonable to attempt to simplify
the problem using controlled data sets. However, in deference to the

no-free-lunch theorem [3], the techniques used to push performance
to the highest levels on classification benchmarks may not yield sub-
stantial gains in addressing the more general challenges relating to ac-
tion recognition in less controlled, streaming data sources. Recent
results from the Contest on Semantic Description of Human Activities
(SDHA Challenge) [4] indicate that existing space-time feature-based
approaches perform well on classification, yet detection in continuous
videos remains difficult.

Additionally, it is desirable to develop learningmethods that require
minimal supervision because of the difficulty in curating and labeling
large data sets and because of the difficulty in generalizing many
forced-choice algorithms to uncontrolled environments. Human behav-
ior recognition in streaming video, under real world conditions, is the
challenge facing those trying to detect suspicious pedestrian behavior
in subway stations, trying to automatically annotate a movie, trying to
build household robotics to assist the elderly, and so on.

One aspect of the larger challenge is the unsupervised grouping of
behaviors outside of closed-world assumptions. In the first part of this
article, we seek to understand how contemporary action recognition
techniques lend themselves to open-ended clustering, where even
the number of clusters is unknown. Lacking any supervision, there
is nothing except the inherent biases of a given technique to guide
grouping of video clips. One might expect poor alignment between
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the unsupervised clustering and the desired labels (classes) of a given
data set. Perhaps surprisingly, this is not always so. In fact, a recent
Product Manifold technique (from Lui et al. [5]) for measuring the
distance of videos generates clusters on the KTH Actions benchmark
that are over 90% aligned with the nominal class labels, as we show
in Part 1. We also show that over three different data sets, the Product
Manifold distance measure consistently clusters the data more accu-
rately with respect to the nominal class labeling than a competing
Bag of Features method. To understand how algorithm biases impact
clustering, we explore alternative labelings of the data to measure
how well they align with a given aspect of similarity among the
video clips, as measured by either manifold-based or features-based
representations.

A second aspect of the larger challenge is the ability to learn and
recognize actions from continuous video streams. In realistic applica-
tions of human action recognition, the temporal and spatial localiza-
tion of the actions will be unknown and the people being observed
are likely to exhibit several different actions over time. In Part 2 of
this article, we present a method of unsupervised learning of
human micro-actions from long duration videos, based on computing
distances between short track segments (called “tracklets”) using a
Product Manifold mapping. There is some variation in the use of the
term micro-action in the literature. Here, we use it to mean a short-
duration, single-entity action that can be recognized by a human ob-
server with only a few seconds of video. Our method is efficient, can
be trained relatively quickly, and can perform detections in near-
real-time. We require that the entities of interest be detected and
tracked over enough frames to observe any given micro-action, yet
our tracklet extraction strategy mitigates minor tracking accuracy is-
sues that are commonly encountered. We do not require any silhou-
ette extraction or part detections of the subjects. We make no
assumption on the number of micro-actions an entity may exhibit
in any given length of time, and we allow for multiple labels to be ap-
plied simultaneously.

The rest of this paper is organized as follows. First we provide
background material covering related work and the Product Manifold
distance measure. Following the background, we divide the article
into two parts, each addressing one of the two challenges outlined
above. Part 1 presents our comparison of the Product Manifold dis-
tance to Bag of Features for unsupervised clustering of human actions,
gestures, and expressions. Part 2 presents our approach to unsuper-
vised recognition of human micro-actions in streaming video using
the Product Manifold distance. We end with our conclusions and fu-
ture work.

2. Background

This section provides relevant background on action recognition
approaches and provides an overview of the Product Manifold

distance measure. A recent survey on human action recognition [6]
can provide additional background.

2.1. Related work

The Bag of Features approach has become one of the most popular
methods for human action recognition in short video clips [7–14]. As
adapted from similar methods of image classification and retrieval,
Bag of Features approaches represent video clips as unordered sets
of local space-time features. Features are quantized into discrete vo-
cabularies, or codebooks. The space-time features in a video are
assigned to their nearest neighbors in the codebook. The Bag of Fea-
tures representation is typically a normalized histogram. Activity
classification is often done by applying Support Vector Machines
with appropriate kernels (χ2 is common) to the Bag of Features
representations.

There are many choices involved when implementing a Bag of
Features approach. One must decide how to sample the video to ex-
tract localized features. Possible sampling strategies include space-
time interest point operators, grids/pyramids, or random sampling.
Each strategy comes with parameters including space and temporal
scales, overlap, and other settings. From the sampled regions, an ap-
propriate descriptor must be chosen to provide a balance between
discrimination, robustness to small photometric and geometric per-
turbations, and compactness of representation. Wang et al. provide
an evaluation of popular space-time interest point detectors and fea-
tures [15], yet there is no conclusive result indicating which combina-
tion of detector and descriptor is best. The results are data-set
dependent. Beyond feature detection and extraction, other design
choices include codebook size, quantization method (e.g. K-Means),
and distance function to be used in nearest-neighbor assignments.

Advantages of the Bag of Features approach include the relative
simplicity of the representation compared to graphical or constella-
tion models, and the lack of any requirement to pre-process the
videos to perform segmentation, track moving objects, or any other
image processing task beyond feature detection. As such, they are at-
tractive for use in unsupervised systems that are designed to sample
their environment and learn patterns without prior knowledge. The
disadvantages include the difficulty in knowing precisely why two
videos are considered similar, as there is little semantic meaning in
the representation. For example, it is possible to correctly classify
videos due to co-varying, but semantically irrelevant, background ar-
tifacts in the data set.

Departing from the bag-of-features works are silhouette motion
methods such as those from Lin et al., Nater et al., and Guo et al.
[16–18]. Lin employs joint likelihoodmaximization between the current
observation and learned shape-motion prototypes. Nater clusters silhou-
ettes andmotion patterns and recognizes anomalous activities via outlier
thresholding. Guo uses a sparse representation framework for action
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Fig. 1. Illustration of the Product Manifold Distance.
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recognition. The sparse representations of actions are derived from co-
variance matrices of silhouette tunnel features.

Manifold-based methods [19,5] present an alternative approach to
those based upon localized sampling or silhouette matching. Manifold-
based approaches often attempt to map the high-dimensional video
data into a lower dimensional space with some regular structure, such
as a differentiable manifold. If a video can be represented as a point on
a manifold, then the distance between two videos is the geodesic dis-
tance between the points. Assuming that the geodesic distance can be ef-
ficiently computed or approximated, it can be used to classify or cluster
the corresponding videos. A state-of-the-art example of this approach
is from Lui et al. [5], where the Product Manifold distance is introduced.
Lui shows that the Product Manifold distance coupled with a simple
nearest neighbor classifier outperforms competing methods on
Cambridge Gestures and KTH Actions data sets. For an overview of the
application ofmatrixmanifolds to a variety of computer vision problems,
we refer the reader to a contemporary survey by Lui [20].

There have been other investigations of unsupervised learning of
actions. Niebles et al. [21] use probabilistic Latent Semantic Analysis
(pLSA) to learn actions using a Bag of Features representation. Their
method is not completely unsupervised because it takes advantage
of a validation stage to select an optimal codebook and uses the num-
ber of classes to constrain an expectation maximization procedure.
Nater et al. [17] employs unsupervised hierarchical learning of action

silhouettes and motion patterns. Gilbert et al. [22] present a user-in-
the-loop method of weakly supervised image and video clustering.

2.2. Product Manifold Distance

In this section, we provide an overview of Lui's Product Manifold
Distance (PM Distance). Fig. 1 illustrates the process of computing the
PM Distance between a pair of videos. A video can be represented as a
stack of sequential images forming a data cube of dimension (x,y, t),
where x and y are the width and height of the images and t is the num-
ber of frames. This data cube is a 3-mode tensor, which can be flattened
from 3D to 2D along each of the dimensions: (x,yt),(y, tx),(t,xy). Each
tensor flattening is a matrix which can be factored using SVD to gener-
ate an orthonormal matrix, which defines a subspace represented by a
point on a Grassmann manifold. Thus, the data cube of the video be-
comes three points, one on each of three separate Grassmann mani-
folds. The distance between two points on a single Grassmann
manifold is the subspace distance represented by a set of canonical an-
gles (also called principal angles) between the spaces. Computing the
canonical angles requires some simple linear algebra. If A and B are or-
thogonal matrices, the singular values of svd(ATB) are the cosines of
the canonical angles between the column spaces spanned by A and B,
respectively.

There exists a Product Manifold which is the product of the three
Grassmann manifolds. Each video is a point in the Product Manifold
structure. The distance between video clips is the geodesic distance
on the Product Manifold, which can be computed using the Cartesian
product of the canonical angles between the points on the factor man-
ifolds. Given canonical angles Θ=(θ1,θ2,…,θn), the chordal distance is
the L2 norm of the component-wise sine function, ||sinΘ||2. The chord-
al distance on the Cartesian product of the three sets of canonical an-
gles is the PM Distance.

The advantages of the Product Manifold approach include the rel-
atively small number of design choices, the lack of any training or
lengthy codebook generation process, and its computational speed.
The disadvantage of this method is the requirement to use fixed-
size cubes in the representation. The video clips from the data sets
must be cropped or scaled to a uniform-sized cube. The method
works best when the activity in the videos is roughly aligned, al-
though it is important to note that Lui's reported results on the KTH
dataset includes classes where the actor is moving in different direc-
tions and undergoing scale changes, etc.

Fig. 2. From top to bottom: Expressions [8], Cambridge Gestures [23], and KTH Actions
[7] data sets.
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3. Part 1: unsupervised learning

In Part 1 of this article, we compare a mainstream Bag of Features
approach to Lui's Product Manifold based method [5] in terms of how
well they cluster data.

3.1. Method

At a high-level, our experimental method is to generate a pair-
wise distance matrix using both methods over three data sets relating
to human expressions, gestures, and full-body actions. We apply a
well-known hierarchical agglomerative clustering routine to the dis-
tance matrices to produce dendrograms of the similarity structure be-
tween the samples. The dendrogram can be cut at varying levels in
the hierarchy to produce different numbers of clusters, from coarser
to finer-grained grouping. We vary the number of clusters, K, over a
range of values and observe how well the unsupervised grouping of
the video clips compares to the desired labels. While we use labels
to evaluate the clustering, the formation of the distance matrices
and subsequent hierarchical clustering is entirely unsupervised.
More details of each of these aspects can be found below.

Our intent with this study is to provide a comparison of the rela-
tive strengths and applicability of two popular approaches to unsu-
pervised grouping of human behaviors. We selected Piotr Dollár's
Bag of Features implementation [8], popularly known as the “Cu-
boids” algorithm, because the well-documented code is readily avail-
able upon request from the author, can be used to generate a number
of feature descriptors, and generates competitive results. We used
Lui's MATLAB implementation of the Product Manifold algorithm.

3.1.1. Data sets
We selected the following data sets for this study: Facial Expressions

[8], Cambridge Gestures [23], and KTH Actions [7]. The samples in each
data set are short video clips that exemplify a given expression, gesture,
or action, respectively. Fig. 2 provides an illustration of each data set.

The Expressions data consists of 6 classes {anger, disgust, fear, joy,
sadness, surprise}, repeated in 4 sets. The four sets are comprised of
two subjects under two different lighting conditions performing
8 repetitions of all expressions, for a total of 192 videos. Each video
clip starts with the subject in a neutral expression, then transitions
into one of the expressions, and then back to neutral.

The Cambridge Gestures data consists of 9 classes, repeated in 5 sets
of varying lighting, with 20 samples per class per set, for a total of 900
video clips. Each sample is a close-up of a single hand on a uniform
background performing one gesture. The nine classes are divided into
three shapes combined with three motions, as illustrated in Fig. 2.

The KTH Actions data consists of 6 classes {walking, jogging, run-
ning, boxing, handwaving, handclapping}, demonstrated by25 subjects,
each in 4 different scenes, for a total of 600 video clips. The first three
scenes are taken outdoors, with a fairly uniformbackground. The fourth
scene is taken indoors, also with a uniform background. Scene 2 varies
the scale or angle from Scene 1. Scene 3 varies the clothing of the sub-
ject. Three of the classes involve a human gait, while the other three in-
volve stationary actions. The subject varies direction of travel (for the
gait classes), and is not always well-centered in the stationary actions.

All three data sets were designed to evaluate forced-choice classi-
fication algorithms. For the sake of familiarity within the action and
gesture recognition community, we elected to use these same data
sets, but in an evaluation scheme that measures unsupervised clus-
tering and how the clusters align with different potential labelings
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Fig. 4. The Product Manifold Distance performs better in terms of cluster accuracy than any single factor.
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of the data. Video samples may be similar along different aspects than
the externally applied class label, and our evaluation helps illustrate
which of those aspects the algorithm is sensitive to.

3.1.2. Bag of Features
For the Expressions data, we used the code provided by Dollár, es-

sentially unmodified, because it was developed in conjunction with
this data set. Our minor changes were those required to use the Bag of
Features representations to generate a distance matrix instead of as
input to supervised classification. The code employs the Cuboids detec-
tor (separable linear filters, as described in [8]) coupled with the
Cuboids descriptor, which is a flattened vector of gradients reduced
via PCA to 100 dimensions.

For the Gestures and Actions data sets, we employ the Cuboids de-
tector coupled with Histogram of Oriented Flow (HoF) features. We
found this combination to generate the best performance in our
tests, and it has been shown to generate good classification accuracy
on KTH Actions, as demonstrated by Wang et al.'s evaluation of
space-time features [15]. The HoF descriptor has 440 dimensions,
which we employ with no dimensionality reduction. For the Cuboids
detector, we set the spatial scale σ=2 and the temporal scale τ=3
for Gestures and τ=4 for KTH Actions, which agree with the settings
in Wang's evaluation.

We use a vocabulary of size 150 for all experiments, selected em-
pirically among sizes ranging from 50 to 1000. The vocabulary was
generated by K-Means over a random sample of 10% of all the fea-
tures extracted from the data set. The Bag of Features representation
was formed for each video and a pair-wise distance matrix generated
using the χ2 histogram distance function. Due to the randomness

inherent in the vocabulary creation, we repeated the process 20
times and chose the vocabulary that generated the best results. For
the remainder of this paper, this approach will be labeled “BOF.”

3.1.3. Product Manifold
We used the code provided by Lui with no modifications beyond

those required to generate pair-wise distance matrices on different
data sets. Each video clip is rescaled to a 20×20×32 tensor. Through
the HOSVD, the tensors are projected onto the Product Manifold, and
the pair-wise distances computed. For the remainder of this paper,
this approach will be labeled “PM.”

3.1.4. Cluster accuracy
We define cluster accuracy as the percentage of samples that were

of the majority in their respective clusters. The minimum score al-
ways occurs when K=1, in which case the cluster accuracy is the
ratio of the number of samples in the largest class to the total number
of samples in the data set, N. At the other extreme, when K=N, the
cluster accuracy will be 1.0, as all samples will be assigned unique
clusters and thus there will be no cluster “impurity.” The computation
is shown formally in Eq. (1), where C is the set of K clusters, xi are the
data points being clustered, and |⋅ | indicates set cardinality.

C ¼ C1;C2;…;CK
n o

XK
L ¼ xif jxi∈CK∧Label xið Þ ¼ Lg

XK

k¼1

max
L∈Labels

Xk
L

!!!
!!!=jCkj

ð1Þ
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3.1.5. Hierarchical clustering
We use an agglomerative hierarchical clustering method to group

similar video clips. We tested several linkage methods and found that
Ward's algorithm, which seeks to minimize the incremental increase
in cluster variance, had superior clustering results. In addition to
Ward's method, we evaluated Single linkage (nearest neighbor be-
tween cluster members), Complete linkage (furthest neighbor), Aver-
age linkage (average distance), and McQuitty's linkage (weighted
average based on recursive agglomerations).

Fig. 3 shows a comparison of different linkage methods when
employing the Bag of Features algorithm for measuring the similarity
of Gestures. In this figure, we plot the cluster accuracy of the Gesture
class label against the number of clusters, K, which was varied from 1
to 30. We perform a single hierarchical clustering per curve, and we
vary K by selecting the cut in the hierarchy that yields the appropriate
number of clusters. When K is unknown, the full curve may be more
indicative than any single point in measuring performance. Regarding
the selection of linkage method, Fig. 3 is representative of the results
over all data sets and with both BOF and PM implementations —
Ward's linkage is the best choice in all cases.

Hierarchical clustering is used because it produces deterministic
results and it is easy to vary the number of clusters. In a completely
unsupervised learning environment, the number of class labels is un-
known, so the different levels of similarity/generalization provided by
hierarchical clustering are appropriate.

3.1.6. PM Distance vs. Factors
One question that might arise regarding the PM Distance is

whether it is any better than simply computing the subspace distance
on a single unrolling of the tensor. To answer that question, we per-
formed an experiment comparing the clustering performance of the
Product Manifold distance to the performance of each factor consid-
ered separately. Recall that each factor manifold is a Grassmann man-
ifold where the points are the subspaces spanned by a particular
flattening of the video tensors (see Fig. 1).

For convenience, we label the Grassmann factor manifold arising
from the (x,yt) flattening as “Factor 1”, and similarly, “Factor 2”
from (y,xt), and “Factor 3” from (t,xy). In Fig. 4, we see that the PM
Distance outperforms any single factor subspace distance in both
KTH and Gestures data sets, which is an important validation for
using all three unrollings in a single measure.

3.2. Results

We compared Bag of Features and Product Manifold methods for
clustering facial expressions, hand gestures, and full-body actions.
Each set of experiments is described below. A summary comparison
of the relative performance of BOF and PM is illustrated in Fig. 5.
This figure presents the performance curve when the generated clus-
ters are compared against the nominal class labels provided by the
data set. There are 6 classes in KTH Actions and Expressions, and 9
classes for Gestures, indicated by the vertical dotted black line. The
solid red curve shows the cluster accuracy of PM over all K, the
amber dotted curve shows BOF.

From this figure, PM strongly outperforms BOF on two of the three
data sets, while Expressions yields comparable results. This may be in
part because Dollár developed both the Expressions data set and the
BOF implementation we adapted for this study, and thus the imple-
mentation may have a level of tuning for this data set not present in
the others. However, we believe other factors are involved, which
we present later.

A key result shown in Fig. 5 is the performance of PM on KTH Ac-
tions. At K=6, the cluster accuracy is 90.7%, suggesting that the KTH
data set is intrinsically separable along the class labels using PM, and
that one could discover the classes if they were not known a-priori. In
[5], Lui reports nearest-neighbor classification results on KTH Actions

using the Product Manifold representation, 96% using Schuldt's proto-
col ([7]) and 97% using leave-one-out. There are features-based ap-
proaches that have classification accuracies on KTH in the mid-to-
upper 90's, but they employ strong supervised classifiers (for exam-
ple [14] scores 94.5% using hierarchical features and multiple kernel
learning). As with KTH Actions, the cluster accuracy on Gestures
shows a big gap between PM and BOF.

In our work we desire representations for unsupervised learning,
so the difference between the PM representation and the BOF repre-
sentation, in terms of how much supervision is required to separate
the data along semantically-meaningful partitions, is important. Our
results suggest that BOF requires more supervision for high classifica-
tion accuracy because clustering alone does not effectively separate
the data. We explore these and other aspects in more detail, pre-
sented according to data set, below.

3.2.1. Expressions
We compared the clusters generated on the Expressions data to four

labelings: the nominal Expression label from the data set (6 classes), the
Set label (4 sets), and labels for Subject (2) and Lighting (2). Fig. 6
shows the results. Although the performance of the twomethods is sim-
ilar for Expression, Set, and Lighting labels, BOF clustering ismuchmore
closely aligned to subject identity than PM, as evidenced by the signifi-
cantly higher curve.

With BOF, the Subject labeling generates less cluster impurity than
Expressions. While the higher curve is indicative of the fact that there
are only two subjects as opposed to six expressions, it is also true that
with PM, the Subject labeling does not behave the same way. The sub-
ject identity is seemingly less useful to PM when grouping the

Table 1
Gesture labels compared to 3 clusters. Gesture labels compared to X clusters.

BOF cluster ID PM cluster ID

Label 1 2 3 1 2 3

F. Lft 99 0 1 100 0 0
S. Lft 100 0 0 100 0 0
V. Lft 100 0 0 100 0 0
F. Rgt 0 98 2 0 100 0
S. Rgt 1 99 0 0 100 0
V. Rgt 1 97 2 0 100 0
F. Cnt 0 4 96 0 0 100
S. Cnt 0 6 94 0 0 100
V. Cnt 0 2 98 0 0 100

Table 2
Gesture labels compared to 9 clusters.

Label 1 2 3 4 5 6 7 8 9

Cluster ID — BOF representation
F. Lft 95 4 0 0 0 0 0 1 0
S. Lft 46 54 0 0 0 0 0 0 0
V. Lft 26 74 0 0 0 0 0 0 0
F. Rgt 0 0 24 35 9 13 17 2 0
S. Rgt 0 1 30 25 20 6 18 0 0
V. Rgt 0 1 25 26 18 4 24 2 0
F. Cnt 0 0 1 2 0 0 1 92 4
S. Cnt 0 0 2 3 0 0 1 40 54
V. Cnt 0 0 1 0 1 0 0 52 46

Cluster ID — PM representation
F. Lft 93 0 0 0 0 0 0 7 0
S. Lft 3 0 0 0 94 0 0 3 0
V. Lft 0 0 0 0 0 0 0 100 0
F. Rgt 0 43 57 0 0 0 0 0 0
S. Rgt 0 85 15 0 0 0 0 0 0
V. Rgt 0 62 38 0 0 0 0 0 0
F. Cnt 0 0 0 100 0 0 0 0 0
S. Cnt 0 0 0 0 0 80 20 0 0
V. Cnt 0 0 0 17 0 0 41 0 42
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expression video clips than it is with BOF. This leads to the specula-
tion that if this small data set were expanded to include many more
subjects, the sensitivity to subject identity evidenced by BOF may
lead to decreased cluster accuracy when labeling by Expression,
while PM performance might be less affected.

3.2.2. Gestures
We evaluated BOF and PM clustering against the following labels

applied to the Cambridge Gestures data set: Gesture (the nominal
class label, 9 classes), Set (5 sets with varying lighting conditions), Di-
rection of motion (3 motions as per Fig. 2), and Shape (Flat, Spread,
and V-Shape). Results are shown in Fig. 7.

One immediately obvious aspect of Fig. 7 is that both methods
generate clusters that are nearly completely separable along direction
of motion (98% accuracy at all K ranges for BOF and 100% for PM). At
the same time, Gesture class labeling is nearly identical in perfor-
mance to Shape labeling for both methods. We hypothesize that the
hierarchical clustering groups the data first by motion direction, and
later by shape. Further, because the overall performance of BOF is
much lower than PM, it may be that PM is doing a much better job
differentiating shape, while BOF struggles in this regard. This would
not be surprising because BOF discards locations of features in the
representation. As such, the histogram of space-time features located
near the fingertips of the spread hand and flat hand may look very
similar, and thus difficult to differentiate. The Product Manifold meth-
od, however, treats all pixels equally, preserving location information,
and thus having less confusion between the hand shapes. To test this
hypothesis, we further investigate the details of how clusters align to
labels in the Gesture data set.

Given the strong affinity for both methods with the three gesture
directions, we investigated the cluster accuracy when comparing the
nominal class labels (Gesture) to clusters when K=3. The result in
Table 1 shows that both methods nearly perfectly cluster along mo-
tion direction, as expected from Fig. 7.

When we raise K from 3 to 9, the number of nominal classes in the
Gesture data set, we see that the two algorithms behave differently, as
shown in Table 2. While PM begins to differentiate based on shape,
BOF struggles to do so. BOF maintains its confusion between shapes
within the same direction, while PM manages to cleanly separate Left-
ward motion into the three Shapes, and partially separate the Contrac-
tionmotion aswell. This evidence supports our hypothesis that shape is
a secondary aspect of the clustering behind motion, and it proves to be
the limiting factor on the overall agreement between the class labels
and the clusters.

Restating an earlier point, with no supervision it is the inherent
biases of the two methods that dictate which generates clusters that
are better aligned with semantically-meaningful partitions. In this

case, the bias of BOF to ignore relative spatio-temporal positions
causes it to fail in many instances to match the nominal gesture label.

3.2.3. Actions
We chose the following labels to apply to the KTH Actions data

set: Action (the nominal class label, 6 classes), Scene (4 scene
types), Gait (2 types: gait or non-gait actions, as per Fig. 2), Location
(2 types: indoors and outdoors, 75% are outdoors), and Subject (25
people). Results are shown in Fig. 8. We did not expect either method
to align clusters against the Subject label, as the individuals can be
hard to discern, and Scene 3 uses changes of clothing to further
make identifying the subject difficult. Separating the actions based
on Gait labeling proved easy for both methods. Although the perfor-
mance curve for Location appears high, the base rate is 75% outdoors,
and the results did not rise much above that minimum score. Cluster-
ing based on PM distances was very closely aligned to the nominal
class labels, as shown by the 90.7% cluster accuracy at K=6.

Unlike with Gestures, we did not find a semantic labeling that best
explains the performance of the nominal class labels. Given the high
performance of PM clustering on the class labels, one is led to believe
that the classes are inherently separable in most cases when using the
PM representation, but not when using BOF.

Given that Support Vector Machines trained with similar BOF rep-
resentations achieve classification accuracies in the upper 80's to
lower 90's%, it is revealing that the clustering performance is compar-
atively poor on KTH Actions. Because of this, we believe that super-
vised training may be more important for achieving high accuracy
with BOF representations of full-body actions than it is for PM
representations.

Fig. 9. Example of an activity detection from ETHZ Seq1.
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4. Part 2: streaming video

The results of Part 1 suggest that the Product Manifold representa-
tion may be better than Bag of Features for unsupervised action rec-
ognition. We now demonstrate an approach to applying the PM
Distance to action detection in continuous video streams.

4.1. Method

We propose an unsupervised learning method for micro-action
recognition based on clustering short duration video clips, called
tracklets, that are extracted from entity tracks in longer duration
videos. Each tracklet captures the appearance and motion of an entity
for a second or two of time. We cluster the tracklets using the Product
Manifold distance. In grouping similar tracklets, we find the repeated
micro-actions in the video. We perform clustering with no foreknowl-
edge of either the expected types or numbers of micro-actions pre-
sent in the data. The idea is to discover the micro-actions, not to
force-choice classify the activities into predefined classes.

The set of clusters may be given labels by the users of the system, a
process we call “Selective Guidance.” It is important to note that the
system would work with internally generated identifiers, although
it would be challenging for the user to know the significance of a ge-
neric output like “action12” instead of “walking.” From each labeled
cluster, we identify a small number of exemplar tracklets that best
represent the group. Not all clusters are easily described with a con-
cise label. For those that are easily described, we can apply that
label to the cluster's exemplar(s). For those clusters that are semanti-
cally meaningless, we apply no label and extract no exemplar for run-
time matching.

The set of exemplars is used in a nearest-neighbor matching strat-
egy to detect and label micro-actions on previously unseen test video.
We perform detection on streaming video without pre-segmenting
the space-time regions of interest. As an entity being tracked changes
behavior, the system will detect the change and apply a new label
when appropriate.

At times, a tracklet from the test video may not be a good match to
any of the exemplars. In such instances, the systemwill apply no label
to the tracklet, and it will be remembered as a novel detection. The set
of novel detections can be evaluated to produce additional exemplars,
and thus the system can learn over time, boot-strapped from an initial
training set. Further details on the various aspects of our approach are
presented below.

4.1.1. Data
We use the publicly-available ETHZ Living Room data set for our

evaluation [17]. We selected this data set because it represents the
continuous surveillance problem better than many of the more popu-
lar action recognition benchmarks. Many action recognition data sets
are designed to support forced-choice classification of segmented
video clips. The ETHZ Living Room data, however, provides three

video sequences. The first, over 7000 frames long, is a continuous re-
cording of a person moving about a room and performing a few se-
lected behaviors (walking, sitting, bending down). The first video
(Seq1) is intended to allow an unsupervised system to learn the nom-
inal behavior of the room's occupant. The second two videos (Seq2
and Seq3) are shorter, and are used to present novel behaviors,
such as falling down or panicked gesticulations, to measure a system's
ability to detect anomalous events. Fig. 9 shows a sample image from
the first video of the data set. For brevity, in the remainder of this
paper we refer to this data set as ETHZ.

4.1.2. Tracks and tracklets
To generate the tracks on ETHZ video sequences, we perform

background subtraction using the median image of the first 2000
frames as the background model. We use the bounding box of the
foreground mask to track the subject in the video. Processing is per-
formed using grayscale imagery.

Action recognition approaches that rely on silhouette extraction
[16,17] can be negatively impacted when the foreground mask is in-
accurate. An important advantage to our method is that it processes
all pixels within the bounding box, requiring no silhouette mask,
and is therefore less sensitive to foreground/background segmenta-
tion challenges.

We define a tracklet to be a short contiguous section of a track that
has been reshaped into a fixed-size data cube of dimension: (x,y, t),
where the unit of time, t, is the frame number. The tracklet duration
is chosen to be appropriate for capturing the motion of micro-
actions, and thus is typically less than a few seconds long. A single
track of a person over time will give rise to numerous tracklets,
some of which may clearly contain a micro-action, and others may
represent transitions between micro-actions and thus have no clear
semantic label (see Fig. 12 for an example). The size of each frame
in the tracklet is kept small in order to capture only large-scale

Fig. 10. Example tracklet created without (top) and with (bottom) stabilization strategy. Top tracklet uses the bounding rectangles from the track to clip tiles from the source. Bot-
tom uses the full spatial extent of the track within the temporal window to define a single clipping region, and thus stabilizes the images and corrects for minor track drift. In both
cases, the clipped tiles are rescaled to fit the fixed tracklet dimensions.
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structure, eliminate high-frequency features, and de-emphasize indi-
vidual appearance. In this investigation, we create tracklets of size
(32×32×48).

We employ a sliding temporal window strategy, overlapping by
16 frames, for slicing tracks into tracklets. The bounding box of a
track typically varies from frame-to-frame, and so the resulting track-
let can suffer from significant instability that negatively impacts the
PM distance computation. To stabilize the tracks, we compute the
bounding box that contains the spatial extent of the entire tracklet,
and we use that box to clip tracklet tiles from corresponding frames
in the video. The benefit of this simple stabilization strategy is illus-
trated in Fig. 10.

4.1.3. Clustering and exemplar selection
Given a set of tracklets extracted from the training video, we com-

pute the pair-wise PM distances to form a distance matrix. As in Part
1, we use agglomerative hierarchical clustering with Ward's linkage
to generate a cluster tree. The tree can be cut at a particular linkage
threshold value to generate a set of clusters. With no prior knowledge
of the expected number of clusters, it can be challenging to select the
appropriate cut. It is an open question on how best to measure the
clustering quality lacking any prior information. However, we have
observed that the performance of our method rises quickly as K is in-
creased, and then plateaus at a high level for K greater than approxi-
mately ten percent of the training sample size.

To convince ourselves that this is true, we measured the Cluster
Accuracy against the choice of K, illustrated in Fig. 11. Generating
this plot requires labeling the training data, but this is not an integral
part of our method. Instead, for the experiments described later, we
blindly chose values of K equal to 5, 10, 15, and 20% of the training
set size.

The PM distance measure is non-Euclidean, and there is no closed-
form computation for the mean value of the samples in a cluster. In-
stead, exemplars (medoids) can be selected from within each cluster
that minimizes the sum of the distances to the other cluster members.

More than one exemplar can be selected from within a cluster by re-
moving the best medoid and repeating the process. Interestingly, we
found that pulling two exemplars from clusters that represent “sit-
ting” or “bending” resulted in one of the samples exhibiting the
downward aspect of the motion and the other exemplar exhibiting
the upward aspect (e.g., bending down vs. straightening back up.)

4.1.4. Detection
After exemplars have been trained, we use them to match against

tracklets in the test videos. This process occurs in near-real-time on
the streaming video. We compute the K-Nearest-Neighbors using
the PM distance between each new tracklet and the exemplars. For
the experiments reported herein, unless otherwise mentioned, we
use 3 neighbors. Soft weighting is used so that selected exemplars
contribute their labels to the new tracklet based on how close they
are. A standard Gaussian decay is used with σ determined from the
distribution of distances in the training samples.

We allow for multiple labels. Each tracklet maintains a bit vector
of length equal to the cardinality of the label set. In the bit-vector, a
1 indicates the corresponding label applies to the tracklet, and a
0 means it does not. The weighted label vectors from the nearest ex-
emplars are summed component-wise to produce the raw label vec-
tor of the new tracklet. A score threshold is applied to each
component to generate the label bit vector. It is possible, even desir-
able, that the label vector will result in all zeros should none of the
nearest exemplars be close enough to the sample.

Formally, the scoring computation is shown in Eq. (2), where ωi is
the weight based on the PM distance d(i,x) between exemplar i and
tracklet x, Li is the label vector for exemplar i, P is the number of la-
bels, sp is the component score computed as the weighted sum of
the corresponding components from the K nearest exemplars, and
Lx is the computed label for tracklet x by comparing the component
scores to a constant threshold t.

ωi ¼ e−d i;xð Þ2=2σ2

Li ¼ l1i ; l
2
i ;…; lPi

" #

sp¼
XK

i¼1

ωil
p
i ;∀p∈ 1…Pf g

Lx ¼ s1≥t; s2≥t;…; sp≥t
" #

ð2Þ

4.1.5. Anomalies and incremental learning
An anomaly is a tracklet that is too far from the exemplars to pro-

duce a non-zero label set. After the initial exemplars have been pro-
duced from the training data, we can run the system with a
relatively high score threshold in order to generate a set of anomalous
samples. We combine the anomalous tracklets with the current ex-
emplar set, and then recompute the clustering over only the com-
bined set (i.e. omitting all of the original training tracklets), yet
keeping the K-value the same. In the resulting clusters, we look for
any of the anomalous samples that are not grouped in the same clus-
ters with current exemplars. This subset of the anomalous samples is
selected to be added to the updated exemplar set, and selective

Fig. 12. Example of a tracklet labeled from multiple exemplars. This tracklet captures the transition between multiple states, and is thus correctly described by the unordered label
set {walk, site, recline}. Sample frames on right are from the 48 frame, 32×32 pixel tracklet.
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guidance is used to generate labels where appropriate, or to assign
the new exemplar to an existing label if it represents a novel aspect
of a known micro-action.

4.2. Results

4.2.1. Experiment 1
The first experiment demonstrates the variation in performance

when selecting different values for K, the number of clusters, and vari-
ous score threshold values, as described previously. We chose four
values of K to use in our initial clustering, where we blindly selected a
number of clusters equal to 5%, 10%, 15%, and 20% of the number of
training tracklets. Having extracted 283 tracklets from a sampling of
video Seq1 for training, the values for Kwere 14, 28, 42, and 56, respec-
tively. We selected one exemplar per cluster.

Fig. 13 shows the results. The accuracy is measured in terms of the
average F1 score between the predicted and ground truth label bit vec-
tors. The F1 score is the harmonic mean between precision and recall,
which we apply to the multi-label bit-vectors to measure both the
false positives (incorrect assignment of a 1) and false negatives (incor-
rect assignment of a 0). It is not surprising that having more exemplars
leads to better overall performance, yet the performance dropwhen de-
creasing from 56 to 42 exemplars is not severe. When using the best
score threshold of 0.8, the performance drops by 3% from 56 to 42,
and 8% from 56 to 28. This adds support to our belief that performance
is not sensitive to the choice of K, as long as K is beyond the steep rising
curve, as described earlier (see Fig. 11).

Fig. 12 shows an example of a single tracklet that was given mul-
tiple labels. The detection was on a tracklet from Seq2 where the
tracklet duration happened to contain the transition between three
micro-actions. The advantage of allowing multiple labels is that
such interstitial observations may be described as a set of appropriate
labels. There are no exemplars that were learned that had more than
two labels. This result required the contribution from two or more ex-
emplars that, while different from each other, all had a similarity to
the novel tracklet, as measured by the PM distance.

4.2.2. Experiment 2
The second experiment was performed to gauge how well the sys-

tem can incrementally learn based on anomalous detections.We select-
ed an exemplar set trained from Seq1, and used it to detect anomalous
micro-actions from Seq2, which contains never-seen behaviors includ-
ing falling down, jumping, reclining on the couch, and panicking. Fig. 14
shows a set of fourteen new exemplars identified from Seq2 using the
procedure described in the Methods section.

After folding in the new exemplars with the original set, we per-
formed detection on Seq3. We repeated this procedure, but reversed
the roles of Seq2 and Seq3. The results are shown in Fig. 15. There is
nearly a 10% performance improvement after incorporating the new
exemplars.

5. Conclusion

5.1. Discussion

Lacking any supervision, and outside a forced-choice paradigm, it
is important to design representations that are amenable to clustering
human activities along semantically meaningful aspects. In Part 1 of
this paper, we presented performance differences between Product
Manifold and Bag of Features representations over three data sets
representing, respectively, human expressions, hand gestures, and
full-body actions. The pair-wise distance matrices generated by Prod-
uct Manifold representations of the video clips led to superior cluster-
ing accuracy when compared with the nominal class labels of each
data set.

We also found that while gross motions were easily clustered by
both methods, the lack of preservation of structural information in-
herent to the BOF representation leads to limitations that are not eas-
ily overcome without supervised training. This was evidenced by the
poor separation of shapes in the hand gestures data by BOF, and the
overall poor performance on full-body actions. There are BOF-based
action recognition approaches that add additional spatial information
to the representation, such as by using pyramid structures [14]. While
it may be likely that clustering performance would improve with the
added spatial information, the cost is in increased design and compu-
tational complexity. That said, we encourage other researchers to fol-
low the protocol we presented in this article to facilitate comparative
evaluations for unsupervised action learning.

We believe that to make progress on the fundamental challenge of
human behavior recognition in continuous video, more research is re-
quired on open-world, incremental learning methods that require a
minimum of supervision. In Part 2 of this paper, we presented a
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Fig. 15. Detection accuracy with and without incremental learning. With incremental
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Fig. 14. Fourteen new exemplars were learned from the ETHZ Seq2 video, representing
the novel micro-actions of jumping, reclining, falling, and panicking. Images are repre-
sentative frames from the 48 frame, 32×32 pixel tracklets.
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step in this direction by showing how the Product Manifold represen-
tation for measuring similarity between video tensors can be applied
to unsupervised, incremental learning of micro-actions.

In addition to those described earlier, our approach has the addi-
tional advantage of not requiring a large number of parameters and
design choices. This is a clear improvement over many approaches
that require parameter selection and design optimizations for feature
detection, feature extraction, dimensionality reduction, codebook
size, and so on. As an unsupervised method, we require no extensive
training and validation stages. Offline training time required for com-
puting the distance matrix is modest, because the PM distance com-
putation between a pair of tracklets is fast (10's of milliseconds
using unoptimized MATLAB code).

5.2. Future work

It is an open question on how best to select an appropriate number
of exemplars (or clusters) without having prior knowledge of an
expected number of behaviors to be observed. We presented a rudi-
mentary method for incrementally updating the set of exemplars, yet
more sophisticated methodsmay be required. Future work includes in-
vestigation of cluster quality, incremental learning strategies, and the
application of micro-action detections to the recognition of longer
term events and multi-entity interactions.

The clustering method may need to be adapted to an online meth-
od with outlier rejection for learning salient behaviors in continuous
data streams, while avoiding clustering noise. By combining online
unsupervised learning methods with Product Manifold distance mea-
sures, we hope to make significant advances towards our larger goal
of developing behavior recognition capabilities in less controlled,
non forced-choice scenarios operating on continuous data streams.
This capability is what is ultimately required for the “persistent
stare” needs of the video surveillance community and for advancing
human–robot interactions.
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