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The Good, the Bad, and the Ugly Face Challenge Problem was created to encourage the development of algo-
rithms that are robust to recognition across changes that occur in still frontal faces. The Good, the Bad, and
the Ugly consists of three partitions. The Good partition contains pairs of images that are considered easy
to recognize. The base verification rate (VR) is 0.98 at a false accept rate (FAR) of 0.001. The Bad partition con-
tains pairs of images of average difficulty to recognize. For the Bad partition, the VR is 0.80 at a FAR of 0.001.
The Ugly partition contains pairs of images considered difficult to recognize, with a VR of 0.15 at a FAR of
0.001. The base performance is from fusing the output of three of the top performers in the FRVT 2006.
The design of the Good, the Bad, and the Ugly controls for posevariation, subject aging, and subject “recogniz-
ability.” Subject recognizability is controlled by having the same number of images of each subject in every
partition. This implies that the differences in performance among the partitions are a result of how a face
is presented in each image.

Published by Elsevier B.V.

1. Introduction

Face recognition from still frontal images has made great strides
over the last twenty years. Over this period, error rates have de-
creased by three orders of magnitude when recognizing frontal
faces in still images taken with consistent controlled illumination in
an environment similar to a studio [1–6]. Under these conditions,
error rates below 1% at a false accept rate of 1 in 1000 were reported
in the Face Recognition Vendor Test (FRVT) 2006 and the Multiple
Biometric Evaluation (MBE) 2010 [4,6].

With this success, the focus of research is shifting to recognizing
faces taken under less constrained conditions, which include greater
variability in pose, ambient lighting, expression, size of the face, and
distance from the camera. The trick in designing a face recognition
challenge problem is selecting the degree to which the constraints
should be relaxed so that the resulting problem has the appropriate
difficulty. The complexity of this task is compounded by the fact
that it is not well understood how the above factors affect perfor-
mance. The problem cannot be too easy so that it is merely an exer-
cise in tuning existing algorithms, nor so difficult that progress
cannot be made—the three bears problems [2].

Traditionally, a challenge problem is specified by the two sets of
images that are to be compared. The difficulty of the problem is
then characterized by the performance of a set of algorithms tasked
with matching the two sets of face images. To create a problem
with the desired level of difficulty, the performance of a set of algo-
rithms can be one component in the design process. Others factors
in the selection process include limiting the number of images per
person and requiring pairs of images of a person to be collected on
different days.

The Good, the Bad, and the Ugly (GBU) challenge problem consists
of three partitions called the Good, the Bad, and the Ugly. The difficul-
ty of each partition is based on the performance of three top per-
formers in the FRVT 2006. The Good partition consists of pairs of
face images of the same person that are easy to match; the Bad parti-
tion contains pairs of face images of a person that have average
matching difficulty; and the Ugly partition concentrates on difficult
to match face pairs. Nominal performance on the GBU is based on fus-
ing the results from three top performers in the FRVT 2006. The Good
partition has a verification rate (VR) of 0.98 at a false accept rate
(FAR) of 0.001. The Bad and Ugly partitions have VRs of 0.80 and
0.15 at FAR of 0.001, respectively. The performance range over the
three partitions is roughly an order of magnitude.1
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There are numerous sources of variation, known and unknown, in
face images that can affect performance. Four of these factors were
explicitly controlled for in the design of the GBU challenge problem:
subject aging, pose, change in camera, and variations among faces.
The data collection protocol eliminated or significantly reduced the
impact of three of these factors. Changes in the appearance of a face
due to aging is not a factor because all images were collected in the
same academic year (9 month time span). However, the data set con-
tains the natural variations in a person's appearance that would occur
over an academic year. Because all the images were collected by the
same model of camera, difference in performance cannot be attribut-
able to changes in the camera. Changes in pose are not a factor be-
cause the data set consists of frontal face images.

One potential source of variability in performance is that people
vary in their “recognizability.” To control for this source of variability,
there are face images of each person in all three partitions. In addi-
tion, each partition has the same number of images of each person.
Because the partition design controls for variation in the recognizabil-
ity of faces, differences in performance among the three partitions are
a result of how the faces are presented.

The primary goal of the GBU face challenge problem is to focus at-
tention on the fundamental problem of comparing single frontal face
images across changes in appearance. There are numerous applications
that require matching single frontal images. Examples include recogni-
tion from face images onmug shots, passports, driver's licenses, and US
Government PIV Identity cards. Additionally, there are numerous com-
mercial and academic organizations that have developing algorithms
specifically for this application area. The structure of the GBU encour-
ages algorithm development in these application areas as well as sup-
ports both the development of new recognition algorithms and
experiments to identify factors that affect performance.

2. Generation of the Good, the Bad, and the Ugly partitions

The GBU partitions were constructed from the Notre Dame multi-
biometric data set used in the FRVT 2006 [4]. The images for the parti-
tions were selected from a superset of 9307 images of 570 subjects.
All the images in the superset are frontal still face images collected ei-
ther outside or with ambient lighting in hallways. The images were ac-
quiredwith a 6 Mega-pixel Nikon D70 camera. All photos were taken in
the 2004–2005 academic year (Aug 2004 through May 2005).

Each partition in the GBU is specified by two sets of images: a target
set and a query set. For each partition, an algorithm computes a similar-
ity score between all pairs of images in that partition's target and query
sets. A similarity score is a measure of the similarity between two faces.
Higher similarity scores imply greater likelihood that the face images
are of the same person. If an algorithm reports a distance measure,
then a smaller distance measure implies greater likelihood that the
face images are of the same person. Distances are converted to similar-
ity scores bymultiplying by negative one. The set of all similarity scores
between a target and a query set is called a similarity matrix. A pair of
face images of the same person is called a match pair, and a pair of
face images of different people is called a non-match pair. From the sim-
ilarity matrix, receiver operating characteristics (ROC) and other mea-
sures of performance can be computed.

To construct the GBU Challenge Problemwe sought to specify target
and query sets for each of the three partitions such that recognition dif-
ficulty would vary markedly while at the same time factors such as the
individual people involved or number of images per person remained
the same. To gauge the relative difficulty associated with recognizing
a pair of images, similarity scores were created by fusing scores from
three of the top performing algorithms in the FRVT 2006; this fusion
process is described more fully in the next section.

The following constraints were imposed when selecting the GBU
partitions:

Distinct Images: An image can only be in one target or query set.
Balanced subject counts: The number of images per person is the
same in all target and query sets.
Different days: The images in all match pairs were taken on differ-
ent days.

After applying these constraints, and given the total number of im-
ages available, the number of images per person in the target and
query sets was selected to fall between 1 and 4. This number
depended upon the total availability of images for each person.

The selection criteria for the partition results in the following
properties. An image is only in one partition. There are the same num-
ber of match face pairs for each subject in each partition. There are the
same number of non-match pairs between any two subjects in each
partition. This implies that any difference in performance between
the partitions is not a result of different people. The difference in per-
formance is a result of the different conditions under which the im-
ages were acquired. Figs. 1, 2, and 3, show examples of matching
face pairs (mated vertically) from each of the partitions.

The images included in the GBU target and query sets were decided
independently for eachperson. For each subject i, a subject-specific sim-
ilarity matrix Si is extracted from a larger matrix containing similarity
scores from the FRVT2006 fusion algorithm. Each subject-specific ma-
trix contained all similarity scores between pairs of images of subject
i. For the Good partition, a greedy selection algorithm iteratively
addedmatch face pairs for subject i thatmaximized the average similar-
ity score for subject i; for the Ugly partition, match face pairs were se-
lected to minimize the average similarity score for subject i; and for
the Bad partition, face pairs for subject i were selected to maintain an
approximately average similarity score. The selection process for each
subject was repeated until the desired number of images were selected
for that subject. Since the images for each subject are selected indepen-
dently, the similarity score associated with a good face pair can vary
from subject to subject (similarly for the Bad and Ugly partitions).

Each of the GBU target and query sets contains 1085 images for 437
distinct people. The distribution of image counts per person in the tar-
get and query sets are 117 subjects with 1 image, 122 subjects with 2
images, 68 subjects with 3 images, and 130 subjects with 4 images. In
each partition there is 3297 match face pairs and 1,173,928 non-
match face pairs. In the GBU image set 58% of the subjects are male
and 42% female; 69% of the subjects are Caucasian, 22% east Asian, 4%
Hispanic, and the remaining 5% other groups; and 94% of the subjects
are between 18 and 30 years old with the remaining 6% over 30 years
old. For the images in the GBU, the average distance between the cen-
ters of the eyes is 175 pixels with a standard deviation of 36 pixels.

3. The FRVT 2006 fusion performance

Performance results for the GBU Challenge Problem are reported for
the GBU FRVT 2006 fusion algorithm, which is a fusion of three of the
top performers in the FRVT 2006. The algorithms were fused in a two-
step process. First, for each algorithm the median and themedian abso-
lute deviation (MAD) were estimated from every 1 in 1023 similarity
scores (mediank and MADk are the median and MAD for algorithm k).
The median and MAD were estimated from 1 in 1023 similarity scores
to avoid over tuning the estimates to the data. The similarity scores
were selected to evenly sample the images in the experiment.2 Second,
the fused similarity scores are the sum of the individual algorithm sim-
ilarity scores after the median has been subtracted and then divided by

2 The parameters for the fusion formula were computed from a subset of the similar-
ity scores rather than on the complete set of similarity scores. This was done with the
goal of generating a fusion formula that would generalize to additional faces or algo-
rithm data, rather than being overly tuned to this particular dataset. In the algorithm
evaluations carried out by NIST, the commonly applied procedure is to combine data
with a method that has the ability to generalize.
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the MAD. If sk is a similarity score for algorithm k and sf is a fusion sim-
ilarity score, then sf=∑k(sk−mediank)/MADk.

Fig. 4 reports performance of the fusion algorithm on each of the
partitions. Fig. 5 shows the distribution of the match and non-
matches for the fusion algorithm on all three partitions. The non-
match distribution is stable across all three partitions. The match dis-
tribution shifts for each partition. The Good partition shows the great-
est difference between the median of the match and non-match
distributions and the Ugly partition shows least difference.

4. Protocol

The protocol for the GBU Challenge Problem is one-to-onematching
with training, model selection, and tuning completed prior to comput-
ing performance on the partitions. Consequently, under this protocol,
the similarity score s(t, q) between a target image t and a query image
q does not in any way depend on the other images in the target and
query sets. Avoiding hidden interactions between images other than
the two being compared at the moment provides the clearest picture

Fig. 1. Examples of face pairs of the same person from each of the partitions: (a) good, (b) challenging, and (c) very challenging.

Fig. 2. Examples of face pairs of the same person from each of the partitions: (a) good, (b) challenging, and (c) very challenging.
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of how algorithms perform.More formally, any approach that redefines
similarity s(t, q; T ) such that it depends upon the target (or query)
image set T is NOT allowed in the GBU Challenge Problem.

To maintain separation of training and test sets, an algorithm can-
not be trained on images of any of the subjects in the GBU Challenge
Problem. It is important to note that there are images of the subjects
in the GBU problem that are in the FRGC and the MBGC data sets.
These images must be excluded from model selection, training, or
tuning of an algorithm.

We illustrate acceptable and unacceptable training protocols with
three examples. The first example is the training of a principal com-
ponents analysis (PCA) based face-recognition algorithm. In the algo-
rithm, PCA is performed on a training set to produce a set of
Eigenfaces. A face is represented by projecting a face image on the
set of Eigenfaces. To meet the training requirements of the protocol,
images of subjects in the GBU must be excluded from the PCA

decomposition that produces a set of Eigenfaces. The benchmark al-
gorithm in Section 5 includes a training set that satisfies the training
protocol.

A second example is taken from a common training procedure for
linear discriminant analysis (LDA) in which the algorithm is trained
on the images in a target set. Generally, it is well known that the per-
formance of algorithms can improve with such training, but the
resulting levels of performance typically do not generalize. For exam-
ple, we've conducted experiments with an LDA algorithm trained on
the GBU target images and performance improved over the baseline
algorithm presented, see Section fsec:Benchmark Algorithm. Howev-
er, when we trained our LDA algorithm following the GBU protocol,
performance did not match the LDA algorithm trained on a GBU tar-
get set.

The GBU protocol does permit image specific representations as
long as the representation does not depend on other images of
other subjects in the GBU Challenge Problem. An example is an algo-
rithm based on person-specific PCA representations. In this example,
during the geometric normalization process, 20 slightly different nor-
malized versions of the original face would be created. A person-
specific PCA representation is generated from the set of 20 normal-
ized face images. This method conforms with the GBU training proto-
col because the 20 face images and the person specific PCA
representation are functions of the original single face image. When
there are multiple images of a person in a target or query set, this ap-
proach will generate multiple image-specific representations. This
training procedure does not introduce any dependence upon other
images in the target set and consequently is permitted by the GBU
protocol.

5. Baseline algorithm

The GBU Challenge Problem includes a baseline face recognition
algorithm as an entry point for researchers. The baseline serves two
purposes. First, it provides a working example of how to carry out
the GBU experiments following the protocol. This includes training,
testing and evaluation using ROC analysis. Second, it provides a per-
formance standard for algorithms applied to the GBU Challenge
Problem.

Fig. 3. Examples of face pairs of the same person from each of the partitions: (a) good, (b) challenging, and (c) very challenging.
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The architecture of the baseline algorithm is a refined implemen-
tation of the standard PCA-based face recognition algorithm, also
known as Eigenfaces [7,8]. These refinements considerably improve
performance over a standard PCA-based implementation. The refine-
ments include representing a face by local regions, a self quotient nor-
malization step, and weighting eigenfeatures based on Fischer's
criterion. We refer to the GBU baseline algorithm as local region
PCA (LRPCA).

It may come as a surprise to many in the face recognition commu-
nity that a PCA-based algorithm was selected for the GBU benchmark
algorithm. However, when developing the LRPCA baseline algorithm,
we explored numerous standard alternatives, including LDA-based
algorithms and algorithms combining Gabor based features with ker-
nel methods and support vector machines. For performance across
the full range of the GBU Challenge Problem, our experiments with al-
ternative architectures have not resulted in overall performance bet-
ter than the LRPCA baseline algorithm.3

5.1. A step-by-step algorithm description

The algorithm's first step is to extract a cropped and
geometrically-normalized face region from an original face image.
The original image was assumed to be a still image and the pose of
the face is close to frontal. The face region in the original is scaled, ro-
tated, and cropped to a specified size and the centers of the eyes are
horizontally aligned and placed on standard pixel locations. Scaling,
rotating, and cropping of the face is based on the centers of the eyes
which were manually located.4 In the baseline algorithm, the face
chip is 128 by 128 pixels with the centers of the eyes spaced 64 pixels
apart. The baseline algorithm runs in two modes: partially and fully
automatic. In the partially automatic mode the coordinates of the cen-
ters of the eyes are provided; in the fully automatic mode, the centers
of the eyes are located by the baseline algorithm.

In the LRPCA algorithm, the PCA representation is based on 14
local regions. The 14 regions include the complete face chip. The 14
local regions are cropped out of a normalized face image. Some of
the local regions overlap, see Fig. 6. The local regions are centered rel-
ative to the average location of the eyes, eyebrows, nose and mouth.

The next step normalizes the 14 face regions to attenuate variation
in illumination. First, self quotient normalization is independently ap-
plied to each of the 14 regions [9]. The self quotient normalization
procedure first smoothes each region by convolving it with a two-
dimensional Gaussian kernel and then divides the original region by
the smoothed region, see Fig. 7. In the final normalization step, the

pixel values in each region are further adjusted to have a sample
mean of zero and a sample standard deviation of one.

During training, 14 distinct PCA subspaces are constructed, one for
each of the face regions. From each PCA decomposition, the 3rd
through 252th eigenvectors are retained to represent the face. The
decision to use these eigenvectors was based upon experiments on
images similar to the images in the GBU Challenge Problem. A region
in a face is encoded by the 250 coefficients computed by projecting
the region onto the region's 250 eigenvectors. A face is encoded by
concatenating the 250 coefficients for each of the 14 regions into a
new vector of length 3500.

Each dimension in the PCA subspace is further scaled. First, the
representation is whitened by scaling each dimension to have a sam-
ple standard deviation of one on the training set. Next, the weight on
each dimension is further adjusted based on Fisher's criterion, which
is the ratio of the between class variance and the within class variance
(σb

2/σw
2). This weight is computed based on the images in the training

set emphasizes the dimensions along which images of different peo-
ple are spread apart and attenuates the dimensions along which the
average distance between images of the same person and images of
different people are roughly the same.

During the recognition process, images are first processed as de-
scribed above and then projected into the 14 distinct PCA subspaces
associated with each of the 14 regions. The coordinates of images
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Fig. 5. Histogram of the match and non-match distributions for the Good, the Bad, and the Ugly partitions. The green bars represent the match distribution and the yellow bars
represent the non-match distribution. The horizontal axes indicate relative frequency of similarity scores.

3 This statement was accurate for the original submission to the IEEE Ninth Interna-
tional Conference on Automatic Face and Gesture Recognition 2011.

4 The coordinates of the manually located centers of the eyes are made available to
researchers.

Fig. 6. This figure shows the 14 local regions in the LRPCA algorithm. The fourteen re-
gions include the cropped face. The crop face has been geometrically normalized and
the self quotient procedure performed.
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projected into these spaces, 250 for each of the 14 regions, are then
concatenated into a single feature vector representing the appearance
of that face. This produces one vector per face image; each vector con-
tains 3500 values. The baseline algorithm measures similarity be-
tween pairs of faces by computing the Pearson's correlation
coefficient between pairs of these vectors. The performance of the
baseline algorithm on the GBU Challenge Problem is summarized in
Fig. 8. A comparison of performance of the Fusion and the LRPCA-
baseline algorithm is given in Table 1.

A recent area of interest in face recognition and biometrics is rec-
ognition from the ocular region of the face. There is interest in recog-
nition from both near infrared and visible imagery. The region-based
design of the LRPCA algorithm allows for baselining ocular perfor-
mance on the GBU partitions. Baseline performance for the left ocular
is computed from three of the 14 regions. The regions are the left eye
and two left eye brow regions. For the right ocular region, perfor-
mance is computed from the right eye and two right eye brow re-
gions. Here left and right are defined in respect to the subject where
the left ocular region corresponds to a subject left eye. Performance
for the LRPCA-ocular baseline for the left and right ocular regions is
given in Fig. 9.

A summary of performance of the Fusion, the LRPCA-face baseline
and the LRPCA-ocular baseline algorithms are given in Table 1.

6. Analysis

The goals of the GBU includes understanding the properties of face
recognition algorithms. One aspect is understanding and characteriz-
ing the factors that affect performance.

6.1. Limits of expression and lighting effects

A common assumption in the face recognition community is that the
primary factors affecting performance are aging, pose, illumination and
expression (A-PIE). Here we show that this assumption does not apply
to the GBU. Aging, which refers to the elapsed time between two face
images of a person, is not a factor because all the images in the GBU
were collected with a nine month time span. Additionally, all images
in the GBU nominally have a frontal pose and therefore it is assumed
pose is not a factor. There are a few images in the GBU that are clearly
not frontal, but the number is sufficiently small that it does not account
for the difference in performance among the three partitions.

Of the four A-PIE factors, the GBU contains significant variations in
illumination and expression. Both these factors can have a significant
impact on performance.

In a meta-analysis on the effect of covariates on face recognition
performance, changes in expressions were identified as a factor that
consistently impacted performance [10]. For expression, the data col-
lection protocol requested that subjects present neutral and smiling
expressions. Face image pairs are categorized as having the same ex-
pression when the two images are labeled smiling or two images are
labeled neutral. Similarly, pairs labeled as different expressions when
one image is labeled smiling and the other is labeled neutral.

Lighting is one factor affecting face recognition performance and has
been extensively studied [11]. According to the spherical harmonic theory
[12], 99% of the reflected energy can be captured by the first nine spher-
ical harmonics. An image can therefore be relighted based on a set of
lighting images. Sim andKanade [13] applied a Bayesianmodel and a ker-
nel regression technique to synthesize new images for different illumina-
tions. This work was extended to estimate the illumination directions in
facial imagery [14]. The output of this analysis was the dominant lighting
direction. For this study, lighting directionwas estimate by themethod of
Beveridge et al. [14]. The lighting directionwas quantized to frontal, right,
left or from behind. For the analysis in this section, a pair of face images
has the same lighting if both images had the same lighting direction; oth-
erwise, the face pair had different lighting.

To assess the impact of change in expression and lighting direc-
tion, all match face pairs are given one of labels: 1) same lighting,
same expression; 2) same lighting, different expression; 3) different
lighting, same expression; and 4) different lighting, different expres-
sion. Fig. 10 summarizes the results of this analysis. In Fig. 10 there is
a bar for each partition, and each bar consists of four color coded rect-
angles. Each of the rectangles corresponds to one of the four labels re-
garding the status of change in expression and lighting direction. The
length of the rectangles is proportional to the number match face
pairs with the corresponding label. For the Good partition, there are
1641 face pairs with the same lighting and same expression, 343
face pairs with different lighting and different expression. Also
reported for each change in expression and lighting condition, is the
verification rate at aFAR of 1/1000. The easiest case is the same light-
ing and same expression for the Good partition with a verification
rate of 99.5%. The most difficult case is different lighting and different
expression for the Ugly partition with a verification rate of 7.6%.

The Good partition contained the most number of same lighting,
same expression match face pairs, followed by the Bad and then the

Fig. 7. This figure illustrates the computation of a self-quotient face image. The face
image to the left is a cropped and geometrically normalized image. The image in the
middle is the geometrically normalized image blurred by a Gaussian kernel. The
image on the left is a self-quotient image. This image is obtained by pixel-wise division
of the normalized image by the blurred image.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False accept rate

V
er

ifi
ca

tio
n 

ra
te

0.001 0.01 0.1 1.0

Good
Bad
Ugly

0.07

0.24

0.64
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Table 1
Performance of the Fusion, the LRPCA-face baseline, and the LRPCA-ocular baseline al-
gorithms. For the ocular baseline, performance is given for both the left and the right
ocular regions. The verification rates at a FAR=0.001 are given.

Partition Fusion LRPCA-
face

LRPCA-ocular

Left Right

Good 0.98 0.64 0.47 0.46
Bad 0.80 0.24 0.16 0.17
Ugly 0.15 0.07 0.05 0.05
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Ugly partitions. Similarly, the Ugly partition contained the most num-
ber of different lighting, different expression match pairs, followed by
the Bad and then the Good partitions.

For the Good partition, the verification rate at a FAR of 1/1000 for all
four cases is better than all cases in the Bad partition. Similarly, perfor-
mance on all cases for the Bad partition is better than all cases on the
Ugly partition. If changes in lighting or expression were the source of a
large percentage of the difference in performance among the three parti-
tions, then therewould not be the observed stratification of performance.

The results in this section suggest that there exist other factors
that significantly affect performance. Currently these factors have
not been identified and the GBU challenge problem provides a basis
for identifying these factors.

6.2. Zoo analysis

Oneof the openquestions in face recognition is “are some faces harder
or easier to recognize than other faces?” This question implicitly implies
that faces are ordered from hardest to easiest to recognize. If there is an
ordering to the recognizability of faces, then the order should be stable
over imaging conditions. Because there are the same number of images
of each person in each the GBU partitions, the GBU is amenable to exam-
ining the relative difficulty of faces across imaging conditions.

Characterizing the ease or difficulty of recognizing a person from their
face, or more generally from any biometric, is referred to as the biometric
zoo problem. Zoo analysis falls into two basic classes. The first looks at the
“most” and “least” difficult to recognize faces–the extremes of the distri-
bution [15–17]. The second looks at the relative ranks of all the faces in
a data set [18,19]. We chose to follow the second method.

Our analysis is based on twomeasures of face difficulty. The first is the
median match score of a subject. The second is the median non-match
scores of a subject. The degree of consistency in recognizability of the
faces in the GBU among the partitions is measured by Spearman's corre-
lation coefficient.

For a partition, the median match score for subject k is the median
of all the match similarity scores where both the target and query are
images of subject k. Likewise, the median non-match score for subject
k is median of all non-match similarity scores where either the target
or query image is an image of subject k.

Fig. 11 plots the correlation between the median subject match and
non-match scores among the three partitions. Table 2 reports Spear-
man's correlation coefficient corresponding to the scatterplots in Fig. 11.

For the median match scores, correlation varies from 0.32 to 0.46.
This shows some degree of similarity in the relative ranking among
the partitions for the median match scores. For the median non-
match scores, correlation varies from 0.03 to 0.38. The 0.03 coefficient

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False accept rate

Ve
rif

ic
at

io
n 

ra
te

0.001 0.01 0.1 1.0

Good
Bad
Ugly

0.05

0.16

0.47

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False accept rate

Ve
rif

ic
at

io
n 

ra
te

0.001 0.01 0.1 1.0

Good
Bad
Ugly

0.05

0.17

0.46

a b

Fig. 9. ROC for the LRPCA-ocular baseline algorithm on the Good, the Bad, and the Ugly partitions. In (a) performance is for the left ocular region that consists of the left eye and two left
eye-brow regions; performance in (b) is for corresponding right ocular regions. The verification rate for each partition at a FAR of 0.001 is highlighted by the vertical lines at FAR=0.001.

Fig. 10. Effect of expression and lighting over the GBU partitions. Each bin shows the verification rate at 1/1000 FAR and the total number of match pairs.

183P.J. Phillips et al. / Image and Vision Computing 30 (2012) 177–185



is between the Good and Ugly partitions, which is essentially random.
The median non-match scores affects the ability of a person to be con-
sistently impersonated. This result suggests that the ease with which
a person can be impersonated varies with image acquisition condi-
tions. In addition, the result suggests that for non-matches a zoo
structure does not exist across changes in imaging conditions.

7. Discussion and conclusion

This paper introduces the Good, the Bad, and the Ugly Challenge
Problem. The main goal of the challenge is to encourage the

development of robust algorithms for recognizing frontal faces
taken outside of studio style image collections. The three partitions
in the GBU Challenge Problem emphasize the range of performance
that is possible when comparing faces photographed under these
conditions. This structure allows for researchers to concentrate on
the “hard” aspects of the problem while not compromising perfor-
mance on the “easier” aspects.

Partitioning the challenge by levels of difficulty is the most prom-
inent feature of the GBU Challenge Problem design. Another is con-
trolling for the “recognizability” of people by selecting images of the
same 437 people for inclusion in each of the GBU partitions. The
data in the three partitions is further balanced so as to ensure that
for each person the number of target and query images in each parti-
tion is the same. The design of the GBU Challenge Problemmeans that
any difference in performance observed between partitions cannot be
attributed to differences between people or numbers of images for in-
dividual people.

The unique design of the GBU Challenge Problem allows re-
searchers to investigate factors that influence the performance of al-
gorithms. O'Toole et al. [20,21] looked at the demographic effects on
the nonmatch distribution. Beveridge et al. [22] showed that the qual-
ity of face images comes in pairs. Quality comes in pairs was shown by
the existence of contrary face image: images that have a contrary na-
ture because they simultaneously have high and low quality. Addi-
tional possible lines of investigation include understanding the
factors that characterize the difference in match face pairs across
the partitions. Our results show that changes in expression and light-
ing direction do not characterize the majority of the variation across
the partitions. A second line of research is characterizing the recog-
nizability of a face; e.g., the biometric zoo. Our zoo experiments sug-
gest that recognizability is not stable across the partitions. A third line
of research is developing methods for predicting performance of face
recognition algorithms. The design of the GBU Challenge Problem en-
courages both the development of algorithms and the investigation of
methods for understanding algorithm performance.
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