
Computer Science
Technical Report

How Easy is Matching 2D Line Models
Using Local Search?

J. Ross Beveridge
Colorado State University

ross@cs.colostate.edu

Edward M. Riseman
University of Massachusetts

riseman@cs.umass.edu

September 11, 1997

Technical Report CS-96-117

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5862 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

� Updated 9/04/97 to match manuscript published in IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 19, No 6, June 1997.

c
1997 IEEE Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes of for creating new
collective works for resale is redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

1

How Easy is Matching 2D Line Models

Using Local Search?
J. Ross Beveridge and Edward M. Riseman

Abstract|Local search is a well established and highly ef-

fective method for solving complex combinatorial optimiza-

tion problems. Here, local search is adapted to solve di�cult

geometric matching problems. Matching is posed as the

problem of �nding the optimal many-to-many correspon-

dence mapping between a line segment model and image line

segments. Image data is assumed to be fragmented, noisy

and cluttered. The algorithms presented have been used

for robot navigation, photo-interpretation and scene under-

standing. This paper explores how local search performs

as model complexity increases, image clutter increases, and

additional model instances are added to the image data.

Expected run-times to �nd optimal matches with 95% con-

�dence are determined for 48 distinct problems involving 6
models. Non-linear regression is used to estimate run-time

growth as a function of problem size. Both polynomial and

exponential growth models are �t to the run-time data. For

problems with random clutter the polynomialmodel �ts bet-

ter and growth is comparable to that for tree search. For

problems involving symmetric models and multiple model

instances, where tree search is exponential, the polynomial

growth model is superior to the exponential growth model

for one search algorithm and comparable for another.

Keywords|Object Recognition, Optimal Model Matching,

Line Segment Models, Run-time Performance Characteriza-

tion, Random-starts Local Search

I. Introduction

Local search [1], [2], [3] is known within the combinato-
rial optimization literature as an e�ective means of solv-
ing di�cult combinatorial optimization problems. Con-
ceptually, local search is refreshingly simple. A tractable
neighborhood is de�ned within an intractable combinato-
rial search space and search repeatedly moves to neighbor-
ing states until a state is found which is better than all
its neighbors. In random-starts local search, local search
is initiated from states drawn randomly from the space.
Multiple trials of local search increase the probability of
�nding a near optimal solution. Our contribution has been
to adapt these ideas to geometric matching problems [4],
[5], [6] associated with object recognition.
Our local search algorithms have been used for semi-

autonomous photo-interpretation [7], robot navigation [8],
[9], [10] and scene understanding [11]. A matching system
based upon the ideas presented here is now included in
the KBVision system produced by AAI in Amherst Mas-
sachusetts. When estimates for object position and orien-
tation are available, a 3D version �nds optimal matches in
domains with signi�cant 3D perspective [12].
Over the course of our work, we've continued to try to

J. R. Beveridge is with the Computer Science Department,
Colorado State University, Fort Collins Colorado. E-mail:
ross@cs.colostate.edu .

E. M. Riseman is with the Computer Science Department at the
University of Massachusetts, Amherst Massachusetts

understand how local search scales up to larger and more
di�cult problems 1. To address this question, here we
present results from our largest empirical study to date.
A short version of this study appears in [14] and the re-
sults signi�cantly extend those presented in [6]. We use
non-linear regression to compare two alternative

1) run-time growth is exponential O(en);
2) run-time growth is polynomial O(n�);

where n is the problem size. Over a test suite of 48 prob-
lems varying in size from n = 12 to n = 1; 296, the poly-
nomial hypothesis is a signi�cantly better �t to our ob-
served run-times. The exponent � is roughly 2 and hence
run-times appear to grow as a linear function of n2.
Problem size n is typically the product of the number of

model features m and data features d, i.e. n = md. Our
matching algorithms consider many-to-many mappings be-
tween features, and thus there are 2n possible matches. It
is perhaps surprising that run-time growth appears polyno-
mial while search space growth is exponential. These �nd-
ings suggests local search compares favorably with two of
the better known and well understood alternative matching
algorithms: Grimson's tree search [15], [16] and Cass' [17]
pose equivalence analysis.
Grimson has shown that for tree search, excluding prob-

lems with symmetric models and multiple instances, av-
erage case complexity is O(m2d2). Since n = md, this
average case complexity is comparable to that which we
observe for local search. However, Grimson also shows
that if models are symmetric or more than one model in-
stance is present, then tree search becomes exponential:
O(dm) or O(md) depending on formulation. Our test suite
of problems includes both symmetric models and multiple
model instances, and thus we are observing n2 average case
growth on problems where tree search is exponential.
Pose equivalence analysis cleverly combines search in

pose and correspondence space. For 2D problems involving
rotation, translation and scale, pose equivalence analysis
has an analytic worst-case complexity bound of O(k4 n4).
Here, k is the number of sides on a convex polygon within
which corresponding features must appear. The 4 derives
from the 4 degrees of freedom in a 2D similarity transform.
While the existence of this bound is signi�cant, the depen-
dence upon n4 precludes large problems in the worst case
and average case performance has not been reported.
We begin this paper with an overview of local search

matching including examples on real data. Sections III

1Johnson and Papadimitriou [13] are thanked for inspiring the title
to this paper with their own title: 'How Easy is Local Search?'

2

Rectangle Model Imperfect Data Best Match

D

C

B

A

0

1

2

3

4

5

8

11

9

10
7

6 12

0

1

2

4

5

8

9

10

11

3

6

7
12

D

C

B

A

(a)

1 2 3 4 5 6 7 8 9 10 11 120

A
1 2 3 4 5 6 7 8 9 10 11 120

B
1 2 3 4 5 6 7 8 9 10 11 120

C
1 2 3 4 5 6 7 8 9 10 11 120

D
Row Error

1 95.92
2 78.77
3 65.14
4 54.62
5 48.94
6 40.43
7 35.10
8 29.40
9 18.72
10 15.00
11 11.05
12 7.74
13 3.78
14 2.44
15 0.75
16 0.41
17 0.34
18 0.33
19 0.31

(b)

Fig. 1. Illustration of local search matching. a) a model, imperfect
data, and an optimal match, b) Successive rows show local search
improving upon an initial random match. A black circle indicates
correspondence of a pair.

and IV present our matching objective function and two
local search algorithms. Section V develops a random
sampling methodology and describe how we characterize
the di�culty of individual matching problems. Section VI
presents our non-linear regression analysis of run-times on
our test suite of 48 matching problems. Section VII sum-
marizes run-times for the real data examples presented ear-
lier. We �nish with a discussion of the relationship between
random starts local search and algorithms that use feature
subsets for pose indexing.

II. Local Search Matching Overview

Let us look at an illustration of the key concepts of local
search matching and review some results on real data.

A. A Thumbnail Sketch of Local Search Matching

Figure 1 introduces many of the essential elements of
local search matching. Figure 1a shows an object model,
imperfect data and the associated best match. Both model
and data are represented simply as sets of 2D straight line
segments. While the segments in this model form a closed
contour, closed contours are not required. Models are al-
way �t to corresponding data when evaluating match qual-
ity: note that the model has been rotated, translated and
scaled to best match the data. Fitting is an essential part of
our approach and is described in detail in Section III-C.1.
Figure 1b illustrates one run, or trial, of local search.

Each row indicates a particular match. Those pairs of seg-
ments included in the match are indicated with a black cir-
cle. The initial match, shown in row 1, is selected at ran-
dom. This introduction of randomness is important and
is explained below. Each successive row indicates a new
match generated by a single step of the local search process.
Search considers the addition or removal of a single pair of
corresponding segments and then makes the change which
reduces the match error by the greatest amount. This is an
example of a local search neighborhood and neighborhood
search strategy. Neighborhoods and search strategies are
discussed in Sections IV-A and IV-B.

The match error, shown for each successive match, de-
�nes what constitutes the best match and guides the local
search through the combinatoric space of possible matches.
Match error takes into account the quality of the �t be-
tween the model and data and how well the corresponding
data `explains' or covers the model. Match error details
are presented in Section III-C.

Local search will not always arrive at the best match.
Typically there are many local optima, and the crux of
this paper lies in demonstrating that local search remains
a viable tool despite the existence of local optima. Sec-
tion V discusses the use of randomly sampling to mitigate
the importance of local optima.

Let us suggest the type of analysis developed in Sec-
tion V by considering actual performance numbers for the
problem shown in Figure 1. On this problem, local search
�nds the best match in 25 out 100 tries initiated from in-
dependently chosen random starting matches. This tells us
that the probability of seeing this best match on any single
trial is roughly 0:25. Consequently, if 12 independent tri-
als are run, the best match will be seen at least once with
probability better than 0:95. Running on a Sun Sparc 10
workstation, our algorithm takes just under 1 second to
run 12 trials: run-times per trial range from 0:04 to 0:12
seconds.

B. Some Sample Results on Actual Image Data

Figures 2 and 3 illustrate how local search matching
might be used to �nd buildings in aerial photographs. In
these examples, models have been hand built. However,
while these examples are hand built, local search has been
used with real building models on the RADIUS calibrated
terrain board imagery [18]. It has also been used with aerial
photgraphs to register ortho-recti�ed images [7]. The data
line segments for these examples are produced using the
Burns algorithm [19].

For the match in Figure 2d, the model is rotated by 120�,
illustrating that the original orientation of the model does
not matter. In this example, there is little clutter and the
building has a distinctive form. We'll see in Section VII
that his is not a di�cult problem. The match in Figure 3
is more di�cult. The data is highly fragrmented and clut-
tered the matching algorithm must �nd the exact set of
12 data line segments which, when taken together, are the

3

(a) (b)

AA Z

YXW

VU
T

S
R

Q
P

O N
M

L

K

J
I

H
G

F

E
D C

B

A

20

22

21
3

30

35

9

11

15

55
53 54

51
48

49
52

0

41

6

1

31
29

13
42

2

7

10

16
17

23 24 25
26

2728

34 36

37

38 39
40

43
46

56

59

60

12

14

57

45

47

5

50

8

18

44

58

19

32 33

4

(c) (d)

Pairs Pairs Pairs Pairs Pairs Pairs
A 20
B 22
C 21
D 3
E 30

F 35
G 9
H 11
I 15
J

K 55
L 53,54
M 51
N 48
O 49

P 52
Q 0
R
S 41
T 6

U 0
V 2
W 31
X
Y 29

Z 13
AA 42

(e)

Fig. 4. Matching an oncoming car. a) Image 1, b) Image 2, c) model extracted from image 1, d) data from Image 2 with matching segments
in black and others in grey, e) optimal correspondence mapping between segments.

optimal match to the model. 2

Figure 4 illustrates a di�erent kind of matching problem.
Figures 4a and 4b show two images of a car coming toward
a camera. Figure 4c shows a labeled set of 27 model line
segments extracted from Image 1. Figure 4d shows a la-
beled set of data line segments extracted from Image 2. In
this example there is no clutter. However, the model itself
is complex and has locally ambiguous structure.

The matrix in Figure 4e indicates the correspondence
mapping found to be the optimal match. A square indi-
cates a pair which potentially match, and a �lled in square
indicates a pair belonging to the optimal match. Some pair-
ings between model and data segments are ruled out based
upon an initial estimate of how much the model has moved
from Image 1 to Image 2. The amount of time required to

2For this model, as for the rectangle shown earlier, there are two
equally good matches. These two di�er by rotating the model by 180
degrees.

�nd this match is discussed in Section VII.
The pairs of closely spaced lines bordering the windshield

on the top and sides present a challenge to a matching algo-
rithm. The outer segments could locally match the inner
segments as well as the outer segments, and the match-
ing algorithm must overcome this local ambiguity. Fitting
the object model as a whole e�ectively disambiguates this
structure.

III. Matching As Combinatorial Optimization

Several key concepts underlie our approach.

1. Matching is the problem of �nding a discrete correspon-
dence mapping, possibly many-to-many, between model
and data segments, which minimizes a heuristic measure
of match quality. (Section III-A)
2. E�cient global �tting techniques align 2D models to 2D
data. (Section III-C.1)
3. Global alignment is the basis for evaluating all matches,

4

(a) (b)

(c) (d)

Fig. 2. Matching a building in an earial photograph. a) model in
white, b) test image, c) data segments, d) optimal match.

(a) (b)

(c) (d)

Fig. 3. Match with high clutter and fragmentation. (a) image, (b)
line segments, (c) simple building model, (d) optimal match.

and alignment implicitly guides search through the com-
binatorial space of matches. (Sections III-C.3 and III-C.4
and IV-A)
4. Tractable neighborhoods make exploration of combina-
torial match space feasible. (Sections IV-A and IV-B)
5. Random sampling �nds, with arbitrarily high probabil-
ity, globally optimal matches between model and data line
segments. 3 (Sections V and VI)

3Often, but not always, in the domain of matching, visual inspection

LK
J

I
H G

F E

D C

B A

0

1
2

3

4

5

6
7

8 9

10 11

12

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

(c) (d)

Fig. 5. An example match from the test suite to be presented in
Section VI. a) Model line segments, b) data line segments, c)
model shown matched to data, d) correspondence matrix with
matching pairs blacked out. The match error Ematch = 0:052
for this best match. It is the sum of �t error E�t = 0:022 and
the omission error Eom = 0:030

A. Discrete Space of Many-to-many Correspondences

Match error is de�ned over a discrete space of possible
model-to-image segment mappings. Let M be the set of
model segments, D the set of data segments, and S the
cross product of M and D, the correspondence space C is
the powerset of S: C = 2S . In other words, C contains all
possible many-to-many mappings between model and data
segments.
Figure 5 shows an example of a match for a stylized tree.

Relating the above de�nitions to this example,

M = fA;B;C;D;E; F;G;H; I; J;K;Lg
D = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g
S = f(A; 0); (A; 1); : : : (A; 12); (B; 0) : : : (L; 12)g
C = 2S

The sets M , D, S and C contain 12, 13, 156 and 2156

elements respectively.

B. Match Error

A match error Ematch is de�ned such that

Ematch : C ! <; Ematch(c) � 0 8c 2 C

The goal of matching is to �nd the optimal match c� where

Ematch(c
�) � Ematch(c) 8c 2 C :

of results is enough to make a determination that an algorithm has
in fact found the globally optimal match. In some subtle problems
the true global optima may not be known to us, and in these cases
we are referring to the best our algorithms have ever found.

5

Our match error, Ematch, measures three things: 1) the
degree to which the model �ts the corresponding data seg-
ments, 2) the degree to which portions of the model are
omitted from the match and 3) the degree to which the
best-�t transformation is acceptable. In its general form,
it may be written as:

Ematch(c) = E�t(c) +Eom(c) +EF (c) (1)

=

�
1

�2

�
EI(c) +Eom(c) +EF (c)

where EI(c) is a normalized residual after least-squares �t-
ting of the model to the data and the weighting coe�cient
� controls the relative importance of �t versus omission.
Our experience [4], [5], [6], [12] suggests Ematch(c) in-

duces reasonable rankings over matches for a given model.
It is not intended for comparing matches to di�erent mod-
els. Developing measures to compare complex versus sim-
ple models is itself a subtle problem [20].
In part inspired byWells [21], we have experimented with

a data omission term penalizing matches that leave data
unmatched. On problems of the type presented here data
omission hurts rather than helps. Consider what happens
when two instances of a model appear in one image. Mak-
ing the quality of a match to one instance dependent upon
the size of the other instance leads to unpredictable and
undesirable behavior. However, in the context of matching
laser range data we have found a data omission term to be
helpful [20].
To evaluate Ematch, �rst a global alignment of model to

data must be determined based upon the correspondence
c. Next, the model must be transformed to this con�g-
uration and omission measured. Finally, the best �tting
transformation F� is compared to some acceptable range
and a penalty is added if the transformation lies outside
these bounds.

C. Match Evaluation Using Global Alignment

Of several alternative ways to �t a line segment model
to line segment data, perhaps the most obvious but
awed
approach is to minimize point-to-point distance between
corresponding segment endpoints or midpoints. Point-to-
point �tting has problems when line segments are frag-
mented or overextended. Both Lowe and Ayache [22], [23]
appropriately suggested it is better to minimize a perpen-
dicular point-to-line distance measure.
Ayache [23] developed a closed-form solution for the ro-

tation, translation and scale which minimizes squared per-
pendicular distance from endpoints of model line segments
to in�nitely extended data lines. The weakness of this ap-
proach is that often line segments extracted from imagery
fragment [24]. Extending a fragmented segment ampli�es
orientation errors and in turns skews the overall resulting
�t. We have developed closed-form solutions with the role
of data and model reversed so that the inherently more
stable model segments are in�nitely extended [24], [4].
In another improvement to least-squares �tting of line

models, the perpendicular distance is integrated along the

data line segment rather than being allowed to concentrate
at the ends. Consequently, the optimal least-squares �t is
completely invariant with respect to breakpoints in data
line segments. More precisely, if a single data segment is
broken into two adjacent segments at any position along
the segment, the resulting �t will not change.
As an aside, the case of rigid 2D �tting deserves

comment. For many matching techniques, such as tree
search [16] and Hough transforms [25], forcing scale to re-
main constant makes problems easier to solve. In a some-
what counter-intuitive discovery, we have found that least-
squares �tting of line models for the rigid case is harder
than for the variable scale case. Variable scale requires the
solution of a quadratic equation, while �xing scale leads to
a quartic equation [6].

C.1 Minimizing Perpendicular Distance

Models are �t to data so as to minimize the sum of the
integrated squared perpendicular distance (ISPD) between
h corresponding pairs of segments in c. The perpendicular
distance from the endpoint of a data line segment to the
corresponding in�nitely extended model line segment may
be parameterized by a similarity transformation F .
The transformation F rotates, translates and scales the

model relative to the data and may be written as:

F =
�
~�DM ; ~TDM ; sMD

�
=

�
cos�
sin�

;
tx
ty

; sMD

�
(2)

The terms ~�DM and ~TDM rotate and translate data seg-
ments data relative to the model, while sMD scales the
model relative to the data segments. This asymmetric
treatment of rotation and translation versus scaling sim-
plies the solution for the best-�t transformation. The sub-
scripts indicate the direction of the transformation: DM for
data reference frame to model and MD for model to data.
Rotation may be written with the vector ~�DM provided

we introduce a matrix to represent 2D points. Thus, the
jth endpoint of a data line segment Di is written as:

Dij =
xij �yij
yij xij

(3)

The term sMD scales the distance � from the origin to the
nearest point on the in�nitely extended model line. Hence,
for a model segment Mi,

�i = N̂i � Mik (4)

where N̂i is the unit normal vector to the line Mi, andMik

is any point lying on Mi.
The perpendicular distance vij from the endpoint j of

a data line segment Di to the corresponding in�nitely ex-
tended model line segment Mi may be written as F :

vij(F) =
�
N̂i �

�
Dij

~�DM + ~TDM

�
� sMD�i

�
(5)

The integrated squared perpendicular distance may be
de�ned in terms of vij : integrated (EI) and endpoint con-

6

centrated (EP) measures are shown to highlight the di�er-
ence between the two:

EP =

�
1

LD

� hX
i=1

`i

2

�
v2i1 + v2i1

�
(6)

EI =

�
1

LD

� hX
i=1

`i

3

�
v2i1 + vi1vi2 + v2i1

�
(7)

The term `i is the length of the data segment Di and LD is
the cumulative length over all matched data line segments.
Normalizing by LD yields a weighted average of squared
perpendicular distance over all pairs of matching model
and data line segments.
Multiplying out the terms in equation 7 and collapsing

the sums yields the following:

EI =

�
1

LD

��
~�TA~� + 2~T TB~� + ~T TC ~T (8)

�2~U T~�s+ 2~V T ~Ts+ ks2
�
;

A =
Ph

i=1 (`i=3)
�
DT
i1N̂iN̂

T
i Di1 +DT

i1N̂iN̂
T
i Di2

+DT
i2N̂iN̂

T
i Di2

�
B =

Ph

i=1

P2
j=1 (`i=2) N̂iN̂

T
i Dij

C =
Ph

i=1 `iN̂iN̂
T
i

~U =
Ph

i=1

P2
j=1 (`i=2) �iD

T
ij N̂i

~V =
Ph

i=1 `i�iN̂i

k =
Ph

i=1 `i�
2
i

(9)
For simplicity the subscripts have been dropped from the
transformation terms: s = sMD, ~� = ~�DM and ~T = ~TDM .
The best-�t alignment of the model to the data

F� =
�
~��; ~T �; s�

�
(10)

minimizes equation 8 subject to the constraint

~�T~� = 1: (11)

To solve for F�, set to zero the derivative of equation 8
with respect to s and solve for s� as a function of ~� and ~T .

s� =
�
~U T~�+ ~V T ~T

�
=k (12)

Substitute s� for s in equation 8 and drop the normalization
term (LD) to yield:

E0

I = ~�TD~� + 2~T TE~� + ~T TF ~T ; (13)

where

D = A� ~U ~U T=k E = B�~V ~U T=k F = C�~V ~V T=k:

Set the partial derivative of equation 13 with respect to ~T

to zero and solve for ~T � as a function of ~�:

~T � = �F -1E�: (14)

Finally, substitute ~T � into equation 13 to get

E00

I = ~�TG~� where G = D �E TF -1E: (15)

By Rayleigh's Principle ([26], pg. 429) the vector ~�� which
minimizes equation 15 is the unit eigenvector associated
with the lesser eigenvalue of the matrix G.
For some con�gurations, such as corners, the best-�t

transformation ~��; ~T �; s� is underconstrained. Adding
a regularizing term, squared Euclidean distance between
mid-points of corresponding line segment, resolves these
cases. We use 10�3 as the weight for this regularization
term.

C.2 Fit Error is Normalized Residual After Global Fitting

The �t error is the residual of EI from equation 7
weighted by sigma:

E�t(c) =

�
1

�2

�
EI (~�

�; ~T �; s�) (16)

It is possible now to give a clearer interpretation to the
relative weighting term � used in equation 1. Since EI

is average squared perpendicular distance, the �t error
E�t(c) reaches 1:0 when the average perpendicular distance
reaches �. Practically speaking, since the omission error is
normalized to the range [0; 1], � is the largest amount of in-
tegrated perpendicular distance allowed in a match. This
is because if E�t(c) exceeds 1:0, the match error will fa-
vor removal of those segments causing the poor �t. As a
parameter of the matching system, � is described as the
`maximum-displacement' and, unless otherwise stated, is
set to 4:0 pixels in all the experiments which follow.
The symbol � is commonly used for the standard devi-

ation of a noise process, and our use of the term is meant
to be suggestive. While the connection is not rigorous, one
may think informally of � as the standard deviation of a
noise process which skews data line segments relative to
their `true' position. For an excellent treatment on noise
process models and straight line extraction, see [27].

C.3 Omission Error is Non-linear Function of Coverage

The omission error for a model segment M is de�ned
as a non-linear function of the percent p of the model line
unaccounted for by data. Let M1 andM2 be the endpoints
of M and de�ne a parametric expression for points lying
on M .

P (t) = ~T t + M1 ; 0 � t � ` ; ~T =
M2 �M1

jM2 �M1j
(17)

where ` is the length of M in pixels and ~T is a unit tan-
gent vector pointing from M1 to M2. The t value for the
perpendicular projection of any arbitrary point D may be
written:

t = (D �M1) � ~T (18)

A data segment Di with endpoints Di1 and Di2 trans-
formed into the best-�t con�guration covers M over the

7

interval [ti1; ti2] where

ti1 = (Di1 �M1) � ~T

ti2 = (Di2 �M1) � ~T

The percent omitted p is the portion of M (range [0; `])
not included in the projection range [ti1; ti2] of any corre-
sponding data segment.
While p itself could be used as an error, there are rea-

sons to favor a non-linear function of p. First, even under
the best of circumstances, a small amount of omission is
to be expected (e.g. the ends of lines are often di�cult to
extract). Thus, small values of p should incur a relatively
small penalty. Second, as increasingly large portions fail
to be found, the penalty should begin to grow substan-
tially. The following non-linear function of p captures this
relationship:

Eom(p) =

�
e
p�1
e
�1

if
 6= 0

p otherwise
: (19)

Since p lies in the range [0; 1], the omission error also lies in
this range. The degree of non-linearity is controlled by
.
However, the exact manner in which changing
 changes
the form of Eom(p) is less than obvious.
It is helpful to introduce an auxiliary parameter a, and

then de�ne
 in terms of a:

 = 2 ln

�
2

a
� 1

�
: (20)

The parameter a attenuates the omission error for small
amounts of omission. In the special case a = 1:0, Eom is
a linear function of p and as a decreases Eom drops below
the linear case. A value of a = 0:5 drops Eom by 50% at
the midpoint of the curve, i.e. where p = 0:5. In all the
experiments presented in this paper, a = 0:75.
Omission error for a match is a weighted sum of omission

for each model segment:

Eom =
X
m2M

�
`(m)

LM

�
Eom(pm): (21)

where ` is the length of each model line segment and LM is
the cumulative length of all model line segments. Weight-
ing by relative length makes the omission error more di-
rectly comparable to the normalized �t error E�t.

C.4 Discouraging Excess Scale Change

We discourage correspondences that imply near patho-
logical transformations, such as shrinking the model to a
point. In order to make such matches less desirable the
following EF (c) is de�ned:

EF (c) =

8<
:

(1=s�)� r if s� < 1=r
0:0 if 1=r � s� � r

s� � r if s� > r:

(22)

The scale change s� indicates how much the model changes
size and the parameter r de�nes an allowable range of size

changes. If s� becomes larger than r, then the error starts
out at 0 and grows linearly with s�. If s� becomes smaller
than the reciprocal of r, then error grows linearly in the
reciprocal of s�. The error approaches in�nity as s� ap-
proaches in�nity or 0. For all the experiments presented
here r = 2: models may range from half to twice their
original size without penalty.

IV. Two Local Search Matching Algorithms

A Hamming-distance-1 neighborhood and the associated
steepest-descent algorithm is described in the following sec-
tion. A neighborhood structure speci�cally tailored to ge-
ometric matching problems is de�ned in Section IV-B.

A. Steepest-descent Local Search

To understand how local search is carried out, it helps to
�rst understand our bit-string encoding of the search space
C and its relationship to the local search neighborhood.
This encoding assigns a unique bit to every pair of model
and image line segments in the set S = M �D. Therefore,
if jS j = n, then the search space C maps to the space of
all possible bitstrings of length n. A 1 in the ith position of
the string indicates the ith pair si 2 S is part of the match.
The local search neighborhood is now de�ned to contain all
strings within Hamming-distance-1 of the current match.
Local search is itself just a loop in which the n neigh-

bors of some current match are evaluated and if a bet-
ter neighbor is found it becomes the current match. More
speci�cally, a steepest-descent local search algorithm in the
Hamming-distance-1 neighborhood toggles each bit in the
bit string encoding of the current match and evaluates the
match error Ematch(c). The algorithm records the toggle
which yields the greatest drop in Ematch(c) and uses this to
create a new better state. Search terminates when none of
the neighboring matches are an improvement upon the cur-
rent match. This algorithm has already been illustrated in
Figure 1b. This neighborhood can add or remove a single
pair of model-data segments in one move: it cannot swap
one data segment for another.
A Hamming-distance-2 neighborhood permits swapping

of segments. However, the size of the Hamming-distance-
2 neighborhood is n2. Early experiments were made with
this neighborhood [24], but the n2 growth in neighborhood
size makes this an unattractive alternative for even medium
sized problems. Results using the Hamming-distance-1
neighborhood show run-times to solve complete problems
appear to grow as a function of n2. If the neighborhood
alone grows as n2, then the resulting local search algorithm
cannot help but do worse.
For e�ciency, local search exploits the fact that the n

neighbors are slight perturbations of the current match.
In principle, for every neighbor tested, the model must be
completely �t to the corresponding data and the associ-
ated omission over the entire model computed. However,
the change in �t error can be more e�ciently computed
incrementally relative to the current match [6].
The incremental computation of E�t requires about 20

oating point additions and multiplications and the �nding

8

of 1 square root. A useful heuristic is therefore to see if the
change in �t error appears to preclude improvement. Most
neighbors being tested suggest adding a pair of model-data
segments. The rule of thumb is if that if the �t error
grows more than can be possibly made up for by an as-
sociated drop in omission for that model segment, then do
not bother to compute the complete change in omission er-
ror. Applying this heuristic reduces required computation
by nearly an order of magnitude [28]. It is a heuristic be-
cause it neglects subtle interaction e�ects in which a small
match change might drop omission error for many model
line segments. Such cases exist but are rare.

B. Subset-convergent Local Search

Subset-convergent local search tests whether subsets of
a locally optimal match in the Hamming-distance-1 neigh-
borhood are `consistent' with the overall match. For a
truly good match, Hamming-distance-1 local search initi-
ated from subsets of the matching pairs should converge
back to the same match. Alternatively, if the match is
poor, then subsets of the match are probably incompati-
ble, and search initiated from a subset may well lead to
an overall better match. Our experiments, including those
presented below, have shown this intuition to be correct.
Subset-convergent local search begins by running the

steepest-descent algorithm until a Hamming-distance-1 lo-
cal optima is encountered. This match is recorded and
search is initiated from new matches containing only sub-
sets of the model-data pairs present in the local optima.
Subsets are de�ned relative to the model segments. If
M 0 �M is a designated subset, then only pairs s contain-
ing model segments in M 0 are retained in the new match.
These matches almost always score worse than the local
optima since removing data increases omission error. How-
ever, steepest-descent initiated from these subset matches
often leads to better matches. If search from all the subsets
fails to yield a better match, then subset-convergent local
search terminates.
There are many ways to de�ne the subsets and subset

selection is perhaps the least studied aspect of our algo-
rithm. One guiding principle has been that the total num-
ber of subsets remain small and not grow as a function of
model size. The heuristic we've chosen begins with a list

of all m(m�1)

2
pairs of model segments and passes this list

through three �lters:
Remove nearly parallel pairs of segments: Remove pairs dif-
fering in orientation by less then 5 degrees.
Retain pairs with proximal endpoints: Sort the remaining
pairs in ascending order according to the minimum Eu-
clidean distance between endpoints. Retain the �rst m

pairs in this list.
Retain the 4 longest disjoint pairs: Sort the m pairs in de-
scending order according to the sum of the lengths of the
two segments. Select the �rst 4 disjoint pairs in this list. If
there are fewer than 8 model segments do not requires the
pairs to be disjoint.
Provided there are at least 4 pairs of non-parallel model
segments to begin with, this algorithm will always select 4

pairs of model segments to serve as subsets for the subset-
convergent local search algorithm.

V. Local Optima and Random Sampling

Both of the local search algorithms described above are
deterministic: starting from any match c in the space C,
local search will move predictably to an associated local
optima. As one might expect, for all but trivial problems,
there are a tremendous number of local optima in the space
C. Often this fact causes people to prematurely dismiss
local search as a useful technique.
Tovey [29] makes several very insightful observations

about local search and local optima. The �rst is that a
deterministic local search algorithm imposes a `forest struc-
ture' upon the search space. To be more speci�c, the space
may be viewed as a `forest' of trees, with the root of each
individual tree a locally optimal match. From nodes which
are not locally optimal, there is path leading `down' the tree
to the root. These paths represent the successive matches
found by the local search algorithm. There is one tree, the
globally optimal tree, whose root is the global optima. 4

To visualize what this forest looks like, imagine placing
each node in the search space at a `height' o� the ground
corresponding to the match error: nodes with larger error
are higher. Only one branch leads down from each node,
and this represents the move from one state to another
taken by steepest-descent local search. At the bottom of
each tree is a root node representing the local optima found
by local search initiated from any branch in the tree.
The shape of this forest, the number of trees and their

relative size, are the combined product of the local search
neighborhood de�nition, the criterion function and the spe-
ci�c problem instance. 5 Tovey [29] proves that for several
classes of NP-complete problems the expected number trees
in the forest grows exponentially. He further expresses a
belief that all NP-complete problems have exponentially
many local optima, but stops short of o�ering a proof (a
proof would amount to a proof that P 6= NP).
From a practical standpoint, Tovey's most important ob-

servation is that while the number of local optima may ex-
plode, the relative size of the trees containing local optima
versus the size of the tree containing the global optima may
remain such that random starts local search will continue
to perform well.
Let us formalize some of these notions. First, let O be the

fraction of the search space C containing the global optima.
Next, let us assume local search is initiated from a state
ci uniformly sampled from C. Under these conditions, the
probability Ps of successfully arriving at the global optima
on any single independent random trial is:

Ps = O (23)

If Ps for a given problem is known, then the probability of
failing to see the global optima over t independent trials is

4For simplicity, ties for `best' are ignored.
5This interplay between the neighborhood de�nition and the evalu-

ation function which makes formal analysis of local search di�cult [29]

9

simply

Qf = (Pf)
t
; where Pf = 1� Ps: (24)

From equation 24 it is possible to compute the number of
trials ts required to �nd the optimal match with probability
Qs = 1 � Qf :

ts = dlogPf Qfe: (25)

In all the work presented in this paper, Qs is set to 0:95.

A. The Work Required to Solve a Speci�c Problem

Given a test problem with a known solution, it is usually
possible to determine how many trials are required to �nd
that solution with probability Qs. We run k trials of local
search and record the number of times the global optima
is seen, o. In classifying the result as true for an optimal
match and false otherwise, we are equating our multiple
trials with a binomial process with unknown probability
of returning true Pt. A true value from the binomial pro-
cess means success at �nding an optimal match, and con-
sequently Ps = Pt. This means that the maximum likeli-
hood estimate for Ps is the ratio:

P̂s =
o

k
(26)

It is also possible to predict the degree of uncertainty in the
estimate P̂s and these bounds for di�erent combinations of
trials and P̂s appear in [6].
A good rule of thumb is that the best match must be

seen some reasonable number of times: perhaps more than
10 times. While all the problems presented in this paper
may be studied in this fashion, clearly there are limits. At
some point it becomes prohibitive to run su�cient trials to
reliably estimate P̂s. Typically we run 100 trials for easy
problems and 1000 for hard problems.
To determine an expected run-time rs to solve a problem,

take the estimated probability of success Ps and the average
run-time r for a single trial of local search, compute the
required number of trials ts to solve the problem with 95%
con�dence using equation 25, and multiply time-per-trial
by the number of trials:

rs = ts r (27)

This measure of problem di�culty will be used in Sec-
tion VI-B to test two alternative hypothesis about how
run-time grows as a function of problem size.

A.1 Biased Random Sampling

The choice of initial random starting matches need not
be uniform, and it is common [3], [29] to bias random se-
lection of starting states in order to improve the likelihood
that the state is in the tree leading to the global optima.
While introducing bias destroys the strict interpretation of
Ps as the fraction of the space spanned by the globally op-
timal tree, Ps may still be reliably estimated using random
sampling, and equations 26, 25 and 27 still hold.
Random initial correspondences are generated with, on

average, � data segments matched to each model segment.

Rectangle Pole Dandelion

Deer Tree Leaf

Fig. 7. Six stick �gure models used in tests.

This is done by de�ning a binding probability PMi
for each

model segment Mi:

PMi
= min(0:5; �=Ki) (28)

where Ki is the number of model-data pairs include Mi.
When building the initial match, a pair s 2 S is included
in the initial correspondence ci with probability PMi

. For
the example in Figure 1, � = 4. Elsewhere � = 2 unless
otherwise noted.

A.2 How Many Trials?

To illustrate these ideas with a concrete example, con-
sider the global optima shown in Figure 5. For the subset-
convergent algorithm, this match was found in 761 out of
1000 random trials and the average run-time per trial was
r = 2:2 seconds. Consequently,

P̂s = 0:76 ts = 3 trials rs = 6:6 seconds (29)

For the steepest-descent algorithm on this same problem,
the global optima was found in 70 out of 1000 trials and
the average run-time per trial was r = 0:8 seconds. Thus,

P̂s = 0:07 ts = 42 trials rs = 33:6 seconds (30)

B. Example Optima - The Good, the Bad and the Ugly

Figure 6 shows a sampling of local optima for the Tree
example presented in Figure 5. Figures 6a and 6b demon-
strates that local search is �nding partial symmetries in
the model. These local optima tell us something about
the structure of our models. For instance, revealing the
self-similar structure of the tree branching structure. How-
ever, most local optima are uninteresting. Figure 6c and 6d
shows two such matches. The match error ranks these local
optima as worse than those arising out of the symmetry in
the tree branching structure.

VI. Characterizing Performance

A test suite of 48 distinct matching problems is used
in this study. They are derived from the 6 `stick �g-
ure' models shown in Figure 7. We and others [30] have

10

(a) (b) (c) (d)

Fig. 6. Local optima: a) Model shifted up with Ematch = 0:395, b) Model shifted down with Ematch = 0:340, c) Ematch = 0:523, d)
Ematch = 0:575

(a) (b)

Fig. 8. Test data, a) random clutter, b) multiple instances.

used this test suite in the past to benchmark local search
matching algorithms [6], [14] and to compare local search
with genetic algorithms [28]. The test suite as well as
our optimal matches are available through our website:
http://www.cs.colostate.edu/�vision.

Each model is de�ned by a set of 2D straight line seg-
ments. In matching, these models may be rotated and
translated to lie anywhere in the image. In addition, model
size is allowed to vary. The models have been selected to
be simple enough to permit study yet varied enough to test
for possible weaknesses in a matching algorithm.

For example, the Dandelion exhibits a 16 fold near sym-
metry. Symmetries in models complicate matching for
many well established techniques [16]. The Leaf presents an
example where model and data line segments approximate
a curved contour. In this case, a many-to-many mapping
between model and image segments is needed to account for
breakpoints falling at di�erent positions along the curve.

A Monte Carlo simulator produces corrupted image data.
The simulator rotates, translates and scales the model so
placement and size is unknown. Model segments are also
fragmented and skewed. In 24 of the problems, 0, 10, 20
and 30 additional clutter segments are randomly placed
about the image. A sampling of this data is shown in Fig-

ure 8a. In the other 24 problems, 1, 2, 3 and 4 instances
of the model are added to the image. A sampling of this
data is shown in Figure 8b.

A. Steepst-Descent Versus Subset-convergent Local Search

Having run each algorithm 1; 000 times on each of the
48 problems on a Sparc 10, we have reliable estimates of
r and Ps. From these, we compute ts and rs. Values for
rs for each problem are given in Table I. Size n = md is
indicated for each problem. Due to fragmentation, d may
be larger than m even when no clutter is present.

Table I indicates SC does better on 30 out of the 48
problems. Moreover, while SD is never more than 3:3 times
faster than subset-convergent on any problem, SC is as
much as 38:5 times faster than SD. Overall, to solve the
entire test suite, SC would requires 6:9 hours compared to
8:9 hours using SD.

An interesting di�erence does emerge relative to which
models do better using which algorithms. For both the Pole
and Tree, the SC algorithm is better on 8 out of 8 problems.
For the Dandelion, SC is still doing well, performing better
on 6 out of 8 problems. For both the Rectangle and Deer,
SC is better on only 3 out of 8 problems. Finally, for the

11

Steepest-Descent and Multiple Models

Problem Size N

R
un

-t
im

e
(s

ec
s)

0

1

10

100

1,000

10,000

100,000

0 500 1,000

Steepest-Descent and Random Clutter

Problem Size N

R
un

-t
im

e
(s

ec
s)

0

1

10

100

1,000

10,000

0 250 500 750

Subset-Convergent and Multiple Models

Problem Size N

R
un

-t
im

e
(s

ec
s)

0

1

10

100

1,000

10,000

100,000

0 500 1,000

Subset-Convergent and Random Clutter

Problem Size N

R
un

-t
im

e
(s

ec
s)

0

1

10

100

1,000

10,000

0 250 500 750

Fig. 9. Estimated run-times rs as a function of n. Times are broken out by algorithm and random clutter versus multiple model instances.
Both polynomial and exponential regression lines are shown.

Leaf problem, SC does better on only 2 out of 8 problems.
It appears the di�erence between these two algorithms may
depend upon model structure, but it is not immediately
apparent why these di�erences arise.

B. Run-Time Versus Problem Size

The estimated run-times rs are charted on log plots
shown in Figure 9. The multiple model instance problems
have been broken out from the random clutter problems.
By separating these two cases, the growth trend can be
examined for each independently. Within these two prob-
lem classes, problems deriving from the six di�erent models
have not been distinguished.
Also shown in Figure 9 are two non-linear regression

curves. These are derived using standard non-linear re-
gression techniques as described in [31]. Two alternative
statistical models are proposed for how run-time varies as
a function of problem size n:

Polynomial rs = �n� Exponential rs = �e�n

(31)
The exponential regression comes out as a straight line
on these log plots and is easily distinguished from the
polynomial regression curve. Qualitatively, it appears the
polynomial model is a better �t to the data. Moreover,
the normalized coe�cients of determination, or R2 values,
shown in Table II support this interpretation. R2 measures
the proportion of the variation explained by the regression

curve. For both algorithms applied to random clutter prob-
lems, the R2 values are substantially higher for the polyno-
mial model. For the SD algorithm on the multiple instance
problems, R2 for the polynomial model is also higher.
The one ambiguous case is the SC algorithm applied to

multiple instance problems. Here, each regression model is
equally bad. The comparatively low R2 values are indica-
tive of the high problem-to-problem variance in run-time
relative to problem size. For SC, some problems are run-
ning much faster, and some are not. The side-by-side plots
for SD and SC algorithms have the same vertical scaling,
so one can see that the most signi�cant di�erence is the
emergence of some much lower run-times on the SC plot.
The exponents � for the polynomial model are also

shown in Table II. For the random clutter cases, these
empirical estimates are surprisingly close to the n2 aver-
age case bounds derived for tree search by Grimson [15],
[16]. However, note that our random clutter data includes
the Dandelion model, which because of its near symmetry
would cause tree search great di�culty. For the multiple-
instance problems, the growth rate is higher, tending up
toward 2:5 rather than 2:0.

C. Relating Ps to Problem Attributes

By running many trials on each problem we have esti-
mated Ps and hence ts and rs for each problem. While this
analysis says much about how local search behaves, it does
not address a key problem: how many trials should be run

12

TABLE I

Expected Run-times Sorted by Problem Size n.

rs (secs) Ratio
M C. I. n SD SC SD SC
Po 0 1 12 0.2 0.1 2.4
Po 0 1 24 0.8 0.4 2.0
Re 0 1 28 0.6 0.5 1.2
Po 10 1 42 2.6 0.7 3.7
Po 0 2 42 1.2 0.8 1.5
Re 0 1 52 1.0 1.2 1.2
Re 10 1 68 1.1 1.2 1.1
Po 20 1 72 3.5 1.8 1.9
De 0 1 81 3.9 1.4 2.8
Po 0 3 81 3.7 2.7 1.4
Po 0 4 96 9.0 3.9 2.3
De 0 1 99 7.6 2.2 3.5
Po 30 1 102 9.6 7.5 1.3
Re 20 1 108 9.4 3.6 2.6
Re 0 2 108 3.6 10.4 2.9
Re 0 3 124 5.6 12.0 2.1
Re 30 1 148 12.6 9.6 1.3
Tr 0 1 156 33.6 6.6 5.1
Re 0 4 168 10.0 32.5 3.3
De 10 1 171 17.4 23.0 1.3
De 0 2 180 21.7 45.0 2.1
Tr 0 1 216 66.3 3.6 18.4
De 20 1 261 43.0 74.0 1.7
De 0 3 261 59.0 6.2 9.5
Da 0 1 272 239.4 119.7 2.0
Tr 10 1 276 76.5 55.1 1.4
Le 0 1 306 23.2 36.0 1.6
De 0 4 342 159.0 335.0 2.1
Le 0 1 342 23.8 41.5 1.7
De 30 1 351 96.0 128.8 1.3
Tr 20 1 396 114.4 14.0 8.2
Da 0 1 416 233.1 333.0 1.4
Da 10 1 432 732.8 113.3 6.5
Tr 0 2 432 310.5 17.2 18.1
Le 10 1 486 147.5 60.5 2.4
Tr 30 1 516 297.0 18.8 15.8
Tr 0 3 552 461.9 24.0 19.2
Da 20 1 592 915.4 102.9 8.9
Le 0 2 648 301.6 511.2 1.7
Le 20 1 666 217.6 268.8 1.2
Da 0 2 736 1,897.0 265.2 7.2
Da 30 1 752 1,153.2 121.8 9.5
Tr 0 4 780 1,554.8 40.4 38.5
Le 30 1 846 494.1 615.4 1.2
Le 0 3 882 2,571.4 1,340.0 1.9
Da 0 3 1130 8,676.8 6,515.5 1.3
Le 0 4 1293 823.6 2,499.8 3.0
Da 0 4 1293 10,322.4 10,923.3 1.1

Legend

M Model
C Number of Clutter Lines
I Number of Model Instances
n Number of Model-Data Pairs
SD Steepest-descent
SC Subset-convergent
rs Time to 95% Prob. Optimal
Ratio Amount Faster Than Other

TABLE II

Summary of Run-time Regression Statistics.

Random Clutter Multiple Instances
Poly. Exp. Poly. Exp.

Alg. R2 � R2 R2 � R2

SD 0.91 2.06 0.76 0.96 2.44 0.82
SC 0.89 1.92 0.69 0.80 2.25 0.79

on a novel problem instance. While in general we must
leave a detailed study of this issue to future work, we have

TABLE III

R2
Values for ln (Ps) Vs. Problem Attributes.

m d n � d & n n & � d & �

Random 0:14 0:46 0:30 0:48 0:46 0:56 0:77
Multiple 0:36 0:66 0:61 0:35 0:67 0:66 0:71

1

10

100

1000

1 10 100 1000

Trials Actual

Tr
ia

ls
 M

od
el

ed

Random Multiple

Fig. 10. Trials required actual versus estimates derived from multi-
varite regression model.

looked into a number of di�erent models of how ts might
depend upon measureable problem attributes.

The strongest relationship we �nd is between ln (Ps) and
the number of data segments d. This relationship holds
for the SD algorithm. It also appears helpful to de�ne
a problem attribute � which notes the number of partial
symmetries in the model. For the Dandelion, � = 16, for
the Tree � = 3, and for all others � = 1.

Table III gives coe�cients of determination (R2 Values)
for di�erent combinations of problem attributes and shows
that the combination of d and � has the highest R2 val-
ues. Three di�erent characterizations of problem size are
tested in Table III: m, the number of model segments, d
the number of data segments, and n = md the number of
possibly matching pairs of segments.

Recall that the normalized R2 expresses the percent of
variation in the dependent variable ln (Ps) explained by
the independent variables. The combination of d and �

explains 77% of the variation in the random clutter data
and 71% of the variation in the multiple instance problems.
A similar analysis for the SC algorithm was less productive.
There is a higher variance in Ps not explained by any of
the attributes considered: the highest R2 value was 0:16
for the random clutter problems and 0:43 for the multiple
instance problems.

For the SD algorithm, the regression coe�cients give the

13

following relationship between ln (Ps) and variables d and
�

� ln (Ps) = 0:0451d + 0:112� + 1:072
� ln (Ps) = 0:0456d + 0:070� + 1:009

(32)

for the random clutter and multiple instance problems re-
spectively. This non-linear model of how Ps varies with d

and � along with equation 25 lets use compute the number
of trials our regression model predicts

ts;rm = dlogPf 0:05e: (33)

Figure 10 plots ts;rm versus the actual number of trials
required ts for the 48 test problems.
Being based upon regression, ts;rm under estimates some

cases and over estimates others. A more conservative num-
ber of trials may be generated by multiplying ts;rm by a
constant. For the 48 problems, ts;rmc = 3 ts;rm trials is
su�cient to overestimate ts on all but two problems. To
see if using a number of trials that was no longer prob-
lem speci�c changes our observed relationship between n

and run-time, we repeated the run-time regression analysis
presented in Section VI-B using ts;rmc in place of ts.
On the random clutter problems R2 = 0:91 for the poly-

nomial growth model and R2 = 0:85 for the exponential
model. For the multiple instance problems, R2 = 0:93 for
the polynomial model and R2 = 0:82 for the exponential
model. Thus, using ts;rmc slightly lessens the di�erence be-
tween the two models, but the polynomial growth model is
still explaining more of the run-time variation relative to
n. The exponents on the polynomial model are within 0:01
of those found using ts.

VII. Performance on the Real Data Examples

Table IV summarizes how the SC algorithm performs the
matching problems from Figures 2, 3 and 4. For examples
in Figures 3 and 4, results are shown both with and without
an initial placement estimate for where the model appears
in the image.
Table IV compares run-times needed to solve these spe-

ci�c problems with run-times predicted by the polynomial
regression lines shown in Figure 9. It is perhaps surprising
how well these run-times bracket the actual run-times for
four out of the �ve cases. The one exception is the exam-
ple from Figure 3 when no placement estimate is available.
Exactly why this problem is so hard is not certain. How-
ever, a reasonable conjecture is that the run-time scaling
as a function of n seen in the test suite should not be ex-
pected when n grows solely due to larger numbers of image
segments.

VIII. Some Observations

The performance of local search as a general method for
�nding matches appears as good or better than any of the
known alternative general methods [32], [16], [17]. How-
ever, there are some important caveats. First, while local
search probabilistically �nds optimal matches, these other
techniques deterministically �nd acceptable (not optimal)

matches. Comparison at a coarse level is informative but
also somewhat problematic.
Second, while local search does well with clutter, multi-

ple model instances, highly fragmented data, and symmet-
ric models, in its current form on current machines it will
not solve problems involving tens of thousands of possibly
matching pairs of line segments. In practice, either the
complexity of an image must not be excessive, or alterna-
tively, constraints must provide focus of attention within
the image.
Finally, we have not yet mentioned anything about meth-

ods which use some form of pose indexing to generate
match hypotheses and then explore these either in sequence
or in parallel. This line of work is useful and important,
so let consider brie
y how it relates to our local search
technique.

A. A Comment About Indexing

The strengths and weaknesses of our method come in
large part from the lack of any indexing phase. The initial
matches are drawn at random from the search space with
no attempt to discern or capitalize upon localized struc-
ture or domain speci�c constraints. This lack of reliance
upon indexing sets our approach apart from much of the
prior work on geometric object recognition and makes our
algorithm robust across a wide range of problem types.
However, it also places limits on what problems can be
solved.
Going back to Roberts [33], there has been a rich tra-

dition of work that says essentially: to �nd an object �rst
�nd a small subset of features that predict the presence
of the object. This general approach to recognition can be
traced through many works including [34], [22], work on ge-
ometric hashing schemes [35] and on through a collection
of excellent recent works [36], [37], [38], [39], [40]. Grimson
et al. provide a nice general analysis of the problem [41].
The fundamental di�culty in designing indexing algo-

rithms is e�ciently �nding reliable sets of domain inde-
pendent indexing features. Hence, indexing is frequently
solved using domain speci�c heuristics. In some application
domains, such as 2D part recognition, these heuristics are
easily developed. However, they may not generalize across
domains - for instance, from polygonal to non-polygonal
models.
Random sampling plays such a key role in our approach

that it is worth understanding that random sampling alone
is not a good way of selecting consistent indexing features.
Random sampling to �nd small subsets of consistent fea-
tures has been suggested and put to good use under some
conditions [42], [43], [44]. However, if for the problems
studied in this paper the set of pairs S is partitioned into
`good' and `bad' pairs,

S = G [B and G \ B = ; (34)

where pairs in G belong to the optimal match, then the
probability of drawing k good pairs at random from S is:

P =
� g
n

�k
where g = jGj; n = jSj (35)

14

TABLE IV

Run-times for real data problems and comparisons with times predicted by regression models.

Stats. Time Predicted

Matching Problem n P̂s ts r rs f1(n) f2(n)

Building, Figure 2 (No Placement) 1; 376 6/100 48 25:1 1; 206 680 1; 694
Building, Figure 3 (Placement) 261 28/100 10 4:4 44 28 40
Building, Figure 3 (No Placement) 1; 788 12/1; 000 248 178:6 44; 293 1; 123 3; 061
Car, Figure 4 (Placement) 557 30/100 9 13:5 121 120 219
Car, Figure 4 (No Placement) 1; 701 25/250 28 35:7 1; 000 1; 021 2; 735

Legend

n Number of Model-Data Pairs

P̂s Times global optimum found out of total trials
ts Trials required to �nd global optimum with 95% con�dence
r Average time per trial (seconds)
rs Seconds required to solve problem with 95% con�dence
f1(n) Seconds predicted by polynomial regression with random clutter
f2(n) Seconds predicted by polynomial regression with multiple instances

TABLE V

Trials to draw k good pairs versus trials of SC local search.

Trials 95% Con�dence
Problem Description Draw 3 Draw 4 Local Search
Model g n Good Pairs Good Pairs Optimal Match

Rectangle (Figure 1) 6 52 1; 948 16; 899 8

Tree (Figure 5) 13 156 5; 175 62; 118 3

Tree (30 Clutter Lines) 13 516 187; 334 7; 435; 809 2

Building (Figure 2) 19 1; 375 1; 135; 402 82; 167; 362 48

Building (Figure 3) 12 1; 788 9; 909; 727 1; 476; 549; 592 248

Table V lists values of g and n for a sampling of matching
problems as well as how many independent random trials
it would take to draw subsets of 3 or 4 good pairs with 95%
con�dence. The number of trials is determined by inserting
the probabilities from equation 35 into equation 25. Just
drawing 3� tuples or 4� tuples at random from S clearly
does not scale well over the problems shown. Upwards of
millions to billions of trials are needed. For the sake of
comparison, the number of trials of SC local search are
shown in the �nal column of Table V.

B. Conclusion

Our work adds a new tool to the relatively small set of
general matching techniques. Past work has shown our al-
gorithm performs well in several application domains where
rough placement constraints derived from other sources are
available. This is true for both 2D and 3D [12] recogni-
tion problems. The empirical tests presented in this paper
suggest local search does well on a wide range of 2D line
matching problems even when no initial estimate of model
placement is available.

Local search handles many-to-many feature mappings
and optimizes global geometric consistency between model
and data. by increasing the number random trials, the
probability of �nding the optimal match may be made ar-
bitrarily high, and through adjusting the number of trials
the same algorithm scales easy to hard problems. Finally,
the expected average run-time required to solve a problem
appear to grow as n2 where n is the number of potential
pairings of model and image features. This is comparable

to, or better than, the run-time of any other known general
matching technique.

IX. Acknowledgements

This work was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) Image Understanding
Program under grant DAAH04-93-G-422, monitored by the
U. S. Army Research O�ce as well as by the National
Science Foundation under grants CDA-9422007 and IRI-
9503366.

References

[1] B. W. Kernighan and S. Lin, \An e�cient heuristic procedure
for partitioning graphs," Bell Systems Tech. Journal, vol. 49,
pp. 291 { 307, 1972.

[2] S. Lin and B. Kernighan, \An e�ective heuristic algorithm for
the traveling salesman problem," Operations Research, vol. 21,
pp. 498 { 516, 1973.

[3] Christos H. Papadimitriou and Kenneth Steiglitz, Combinato-
rial Optimization: Algorithms and Complexity, chapter Local
Search, pp. 454 { 480, Prentice{Hall, Englewood Cli�s, NJ,
1982.

[4] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman, \Com-
binatorial Optimization Applied to Variable Scale 2D Model
Matching," in Proceedings of the IEEE International Confer-
ence on Pattern Recognition 1990, Atlantic City. June 1990, pp.
18 { 23, IEEE.

[5] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman, \Op-
timization of 2-Dimensional Model Matching," in Selected Pa-
pers on Automatic Object Recognition (originally appeared in
DARPA Image Understanding Workshop, 1989), Hatem Nasr,
Ed., SPIE Milestone Series. SPIE, Bellingham, WA, 1991.

[6] J. Ross Beveridge, Local Search Algorithms for Geometric Ob-
ject Recognition: Optimal Correspondence and Pose, Ph.D. the-
sis, University of Massachusetts at Amherst, May 1993.

[7] Robert T. Collins and J. Ross Beveridge, \Matching perspec-
tive views of coplanar structures using projective unwarping and

15

similarity matching.," in Proceedings: 1993 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition,
New York, NY, June 1993, pp. 240 { 245.

[8] Claude Fennema, Allen Hanson, Edward Riseman, J. R. Bev-
eridge, and R. Kumar, \Model-directed mobile robot naviga-
tion," IEEE Trans. on Syst., Man, Cybern., vol. 20, no. 6, pp.
1352 { 1369, November/December 1990.

[9] Edward M. Riseman and Allen R. Hanson and J. Ross Beveridge
and Rakesh Kumar and Harpreet Sawhney, \Landmark-based
navigation and the acquisition of environmental models," in Vi-
sual Navigation: From Biological Systems to Unmanned Ground
Vehicles, Yiannis Aloimonos, Ed., pp. 317 { 374. Lawrence Erl-
baum Associates, Inc., 1997.

[10] J. Ross Beveridge and Christopher Graves and Christopher E.
Lesher, \Local Search as a Tool for Horizon Line Matching," in
Proceedings: Image Understanding Workshop, Los Altos, CA,
February 1996, ARPA, pp. 683 { 686, Morgan Kaufmann.

[11] Bruce A. Draper, Learning Object Recognition Strategies, Ph.D.
thesis, University of Massachusetts, Amherst, May 1993.

[12] J. Ross Beveridge and Edward M. Riseman, \Optimal Geometric
Model Matching Under Full 3D Perspective," Computer Vision
and Image Understanding, vol. 61, no. 3, pp. 351 { 364, 1995,
(short version in IEEE Second CAD-Based Vision Workshop).

[13] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yan-
nakakis, \How easy is local search," Journal of Computer and
System Sciences, vol. 37, pp. 79 { 100, 1988.

[14] J. Ross Beveridge, Edward M. Riseman, and Christopher
Graves, \Demonstrating Polynomial Run-Time Growth for Lo-
cal Search Matching," in Proceedings: International Symposium
on Computer Vision, Coral Gables, Florida, November 1995,
IEEE PAMI TC, pp. 533 { 538, IEEE Computer Society Press.

[15] W. E. L. Grimson, \The Combinatorics of Object Recognition in
Cluttered Environments Using Constrained Search," Arti�cial
Intelligence, vol. 44, no. 1, pp. 121 { 165, July 1990.

[16] W. Eric L. Grimson, Object Recognition by Computer: The Role
of Geometric Constraints, MIT Press, Cambridge, MA, 1990.

[17] Todd A. Cass, \Polynomial-time object recognition in the pres-
ence of clutter, occlusion, and uncertainty," in Proceedings: Im-
age Understanding Workshop, San Mateo, CA, January 1992,
DARPA, pp. 693 { 704, Morgan Kaufmann.

[18] R. Collins, A. Hanson, R. Riseman, and Y. Cheng, \Model
Matching and Extension for Automated 3D Site Modeling," in
Proceedings: Image Understanding Workshop, Los Altos, CA,
April 1993, ARPA, pp. 197 { 203, Morgan Kaufmann.

[19] J. B. Burns, A. R. Hanson, and E. M. Riseman, \Extracting
straight lines," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI{8, no. 4, pp. 425 { 456, July 1986.

[20] Mark R. Stevens and J. Ross Beveridge, \Precise Matching of
3-D Target Models to Multisensor Data," IEEE Transactions
on Image Processing, vol. 6, no. 1, pp. 126{142, January 1997.

[21] William M. Wells III, \Map model matching," in CVPR{91,
1991, pp. 486{492.

[22] David G. Lowe, Perceptual Organization and Visual Recogni-
tion, Kluwer Academic Publishers, 1985.

[23] N. Ayache and O. D. Faugeras, \Hyper: A new approach for
the recognition and positioning of 2-d objects," IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp. 44
{ 54, January 1986.

[24] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman, \Op-
timization of 2-dimensional model matching," in Proceedings:
Image Understanding Workshop, Los Altos, CA, June 1989,
DARPA, pp. 815 { 830, Morgan Kaufmann.

[25] Larry S. Davis, \Hierarchical generalized Hough transforms
and line-segment based generalized Hough transforms," Pattern
Recognition, vol. 15, no. 4, pp. 277 { 285, 1982.

[26] Ben Noble and James W. Daniel, Applied Linear Algebra,
Prentice-Hall, Inc, Englewood Cli�s, N.J., 2 edition, 1977.

[27] Visvanathan Ramesh, Performance Characterization of Image
Understanding Algorithms, Ph.D. thesis, University of Wash-
ington, 1995.

[28] D. Whitley, J. Ross Beveridge, C. Graves and K. Mathias, \Test
Driving Three 1995 Genetic Algorithms: New Test Functions
and Geometric Matching," Journal of Heuristics, vol. 1, pp. 77
{ 104, 1996.

[29] Craig A. Tovey, \Hill climbing with multiple local optima,"
SIAM J. Alg. Disc. Meth., vol. 6, no. 3, pp. 384 { 393, July
1985.

[30] Chris Loader, \Local Search Algorithms for 2D Geometric Ob-
ject Recognition," M.S. thesis, University of Western Australia,
1995.

[31] Jay L. Devore, Probability and Statistics for Engineering and the
Sciences, chapter Nonlinear and Multiple Regression, pp. 459{
520, Brooks/Color Publishing Company, Monterey, CA, 1982.

[32] Henry S. Baird, Model-Based Image Matching Using Location,
MIT Press, Cambridge, MA, 1985.

[33] L. G. Roberts, \Machine perception of three{dimensional
solids," in Optical and Electro-Optical Information Processing,
James T. Tippett, Ed., chapter 9, pp. 159 { 197. MIT Press,
Cambridge, MA, 1965.

[34] R. C. Bolles and R. A. Cain, \Recognizing and Locating Par-
tially Visible Objects: The Local-Feature-Focus Method," In-
ternational Journal of Robotics Research, vol. 1, no. 3, pp. 57 {
82, 1982.

[35] Yehezkel Lamdan, Jacob T. Schwartz, and Haim J. Wolfson,
\A�ne invariant model-based object recognition," IEEE Trans-
actions on Robotics and Automation, vol. 6, no. 5, pp. 578 {
589, October 1990.

[36] Fridtjof Stein and G�erard Medioni, \Recognition of 3-d ob-
jects from 2-d groupings," in Proceedings: Image Understanding
Workshop, San Mateo, January 1992, DARPA, pp. 667 { 674,
Morgan Kaufmann.

[37] A.R. Pope and D.G. Lowe, \Learning object recognition models
from images," in ICCV, 1993, pp. 296{301.

[38] Arthur R. Pope, \Model-based object recognition," Tech. Rep.,
University of British Columbia, January 1994.

[39] C.F. Olson, \Time and space e�cient pose clustering," in
CVPR94, 1994, pp. 251{258.

[40] C.F. Olson, \On the speed and accuracy of object recognition
when using imperfect grouping," in SCV95, 1995, pp. 449{454,
http://www.cs.cornell.edu/Info/People/clarko/papers.html.

[41] Grimson, W.E.L. and Huttenlocher, D.P. and Jacobs, D.W., \A
Study of A�ne Matching With Bounded Sensor Error," IJCV,
vol. 13, no. 1, pp. 7{32, September 1994.

[42] Martin A. Fischler and Robert C. Bolles, \ A Paradigm for
Model Fitting with Applications to Image Analysis and Auto-
mated Cartography (reprinted in Readings in Computer Vision,
ed. M. A. Fischler," Comm. ACM, vol. 24, no. 6, pp. 381 { 395,
June 1981.

[43] Gerhard Roth, \Extracting geometric primitives," Computer
Vision, Graphics, and Image Processing { Image Understand-
ing, vol. 58, no. 1, pp. 1 { 22, July 1993.

[44] Rakesh Kumar and Allen R. Hanson, \Robust methods for esti-
mating pose and a sensitivity analysis," CVGIP:Image Under-
standing, vol. 11, 1994.

J. Ross Beveridge J. Ross Beveridge re-
ceived his B.S. degree in Applied Mechanics
and Engineering Science from the University of
California at San Diego in 1980 and his M.S.
and Ph.D. degrees in Computer Science from
the University of Massachusetts in 1987 and
1993 respectively. He has been an Assistant
Professor in the Computer Science Department
at Colorado State University since 1993. He
is on the editorial board of Pattern Recogni-
tion. His present interests include object recog-

nition, sensor fusion, image feature extraction, and software develop-
ment environments for computer vision. He is a member of the ARPA
Image Understanding Environment Technical Advisory Committee.

16

Edward M. Riseman Edward M. Riseman
received his B.S. degree from Clarkson College
of Technology in 1964 and his M.S. and Ph.D.
degrees in Electrical Engineering from Cornell
University in 1966 and 1969, respectively. He
joined the Computer Science Department as
Assistant Professor in 1969, has been a full
Professor since 1978, and served as Chairman
of the department from 1981-1985. Professor
Riseman has been the Director of the Com-
puter Vision Laboratory since its inception in

1975. Recent research projects in the lab include knowledge-based
scene interpretation, motion analysis, mobile robot navigation, site
model construction for aerial photointerpretation and terrain recon-
struction for visualization. Professor Riseman currently serves on the
Editorial Board for the International Journal of Computer Vision, is
a Senior Member of IEEE, and a Fellow of the American Association
of Arti�cial Intelligence. He is Co- Editor of Computer Vision Sys-
tems (Academic Press, 1978) and is a founder of Amerinex Arti�cial
Intelligence, Inc. (AAI), and Dataview Corporation.

