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Abstract

Labeling data to train visual concept classifiers requires
significant human effort. Active learning addresses label-
ing overhead by selecting a meaningful subset of data, but
often these approaches assume that the set of visual con-
cepts is known in advance. Clustering approaches perform
bottom-up discovery of concepts, and reduce labeling ef-
fort by moving from instance-based to group-based label-
ing. Unfortunately, clustering techniques assume a one-
to-one mapping between clusters and visual concepts even
though learned groups are often not coherent and fail to
represent all concepts. We introduce Selective Guidance, a
technique that hierarchically clusters data and selectively
queries labels of coherent clusters representing different vi-
sual concepts. Unlike most active learning and clustering
techniques, Selective Guidance does not require any a pri-
ori knowledge. Using benchmark data sets we show that
Selective Guidance achieves classification accuracy better
than active learning and clustering approaches with fewer
labeling queries.

1. Introduction
Supervised multi-class visual concept classifiers require

large amounts of labeled training data to yield high clas-
sification accuracy. Although the collection of visual data
has become trivial, the task of labeling large sets of data
requires significant human effort. Thus, unsupervised and
semi-supervised approaches are emerging with the goal of
training accurate classifiers while significantly reducing the
labeling workload relative to supervised approaches.

Active learning has been used to reduce the labeling
workload without significantly compromising the perfor-
mance of visual concept classification [5, 6, 7, 8, 12]. Active
learning frameworks iteratively search for subsets of unla-
beled data to query and label. Selection of the data subset
typically involves identifying a diverse set of images that a
supervised classifier is uncertain how to label.

While active learning frameworks have reduced the la-

beling workload, they often require heavy assumptions
about the training data. Labeled data is needed to train the
initial supervised classifier, so the number and types of vi-
sual concepts must be known in advance. These assump-
tions limit active learning frameworks to data that have been
at least broadly analyzed.

Clustering algorithms look for reoccurring patterns in
data that indicate similarity, and thereby discover visual
concepts bottom-up in unlabeled data [2, 10, 16]. Clustering
therefore does not require that visual concepts are known in
advance, but many clustering techniques do assume that the
number of visual concepts is known. Clustering reduces la-
beling effort since clusters are labeled instead of individual
data instances.

Providing a single label to a cluster of images is most
meaningful when the cluster is pure, i.e., contains images
from the same visual concept. Unfortunately, achieving a
perfect partition of large visual data sets is difficult. Vari-
ations in intra-class and inter-class similarity make some
concepts easy to group while others are incredibly challeng-
ing. Impure clusters produce weak training data since not
all instances will match the label assigned to the cluster,
and there is no guarantee every visual concept will domi-
nate a cluster. Cluster impurity has lead to the emergence
of active clustering which iteratively collects pair-wise con-
straints [1, 17] or examples of true/false positives [4] to im-
prove the clustered output. Over time the clustered output
becomes purer, but human effort is introduced to achieve
this.

This paper presents a novel technique, Selective Guid-
ance, that discovers visual concepts bottom-up and effi-
ciently labels these concepts to create training data that
achieves high classification accuracy. We do this by hierar-
chically clustering data to create a dendrogram in which to
search for visual concepts. Clusters are iteratively selected
for labeling by evaluating the likelihood of information gain
in terms of exploitation, i.e., collecting labels for a large
number of samples, and exploration, i.e., the discovery of
new visual concepts. Using benchmark data sets we show
that Selective Guidance is able to collect labeled training
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data that achieves classification accuracy better than exist-
ing active learning and clustering techniques with fewer la-
beling queries. This is achieved because Selective Guidance
provides labels to more samples than active learning and
discovers more pure visual concepts than clustering tech-
niques. Further, unlike existing techniques, Selective Guid-
ance requires no advance knowledge of the data, making it
ideal for completely unlabeled data.

2. Related Work

Two broad techniques are commonly used to solve the
problem of collecting labels for unlabeled data: active
learning and clustering. Both are motivated by the need
to reduce the labeling workload relative to supervised ap-
proaches, but make different assumptions about the a priori
knowledge that is available.

2.1. Active Learning Frameworks

The primary goal of active learning is to reduce the high
cost of annotation while maintaining classification accu-
racy. Pool-based frameworks assume that an initial set of
labeled instances is available, called the seed set, in addi-
tion to a set of unlabeled data known as the active pool.
These frameworks iteratively train classifiers by querying
for labels on subsets of data from the active pool that are
expected to improve classification accuracy.

A variety of selection criteria have proven successful in
the visual domain. Holub et al. [5] select samples that min-
imize the expected entropy of the active pool, whereas Jain
and Kapoor [6] select uncertain samples using entropy from
a variant of k-nearest neighbor classification. Other un-
certainty sampling techniques use the posterior mean and
variance from Gaussian processes classification [8], and
a multi-class SVM for margin sampling, i.e., the differ-
ence between the best (most likely) and second best classes
(BvSB) [7]. Li and Guo [12] combine uncertainty sam-
pling with information density to select uncertain samples
in dense areas of feature space which are more likely to fit
the expected distribution of testing data.

These frameworks yield high classification accuracy
with fewer training samples, but many require the number
and types of classes to be known a priori to initially train
a supervised classifier. These assumptions limit the frame-
works to data that are not completely unlabeled. The ex-
ception is the BvSB framework [7]. The seed set used in
BvSB is chosen randomly from the unlabeled data without
regard to class which does not guarantee the labeled subset
of training data will include all visual concepts until BvSB
discovers them. Thus, BvSB is a rare active learning frame-
work that has been demonstrated under the assumption that
data are completely unlabeled.

2.2. Clustering

The primary goal of clustering is to partition unlabeled
data into visual concepts. A perfect partition would result
in every group containing data from the same concept, and
no two groups representing the same concept. This perfect
one-to-one mapping produces groups that can be labeled,
allowing multiple images to be labeled simultaneously.

The low intra-class similarity and high inter-class simi-
larity found in visual data makes perfect partitions of data
difficult. Many techniques focus on feature representa-
tion as this plays a crucial role in learning good partitions.
Tuytelaars et al. [16] show that different normalization, in-
terest point detectors and dimensionality reduction affect
the output. Dai et al. [2] adapt supervised ensemble based
learning for unlabeled data to learn improved proximity ma-
trices. Lee and Grauman [10] iteratively learn groups of
concepts in order of difficulty and emphasize the use of con-
text descriptors [11] in addition to other features.

Perfect data partitions are difficult to achieve indicated
by the evaluation of average cluster purity for these clus-
tering techniques. This measure becomes particularly im-
portant when discussing the labeling process, since only a
single label is given to a group of images. Active cluster-
ing techniques iteratively refine the clustered output after
collecting feedback from an annotator about data samples.
Feedback has included binary must-link or cannot-link con-
straints [1, 17], and identification of samples that are true or
false positives relative to the majority concept of their clus-
ter [4]. As more feedback is collected, the clustered output
gets closer to an ideal one-to-one mapping.

On the whole, clustering techniques make fewer assump-
tions than active learning because an initial set of labeled
data is not required. However, most clustering techniques
still assume the number of concepts is known to learn a
one-to-one mapping. While this reduces the labeling effort,
cluster impurities increase the cognitive load of the labeling
process and produce weak training data. Even when assum-
ing the number of visual concepts is known, some concepts
may go undiscovered if they do not dominate a cluster. Ac-
tive clustering has made advances to improve cluster purity,
but as a result the human effort increases.

3. Selective Guidance Approach

Selective Guidance (SG) is designed to generalize the
task of collecting labeled training data to completely un-
labeled data sets. The algorithm makes no assumptions
regarding the total number of instances, the number and
types of visual concepts or the underlying distribution of
instances per class in the data set. Thus, SG does not re-
quire any a priori knowledge of the data, but is capable of
discovering coherent groups of visual concepts that can be
labeled with minimal human effort.



SG uses hierarchical clustering to create a space of po-
tential visual concepts. Discovery and labeling are done it-
eratively. On each iteration, clusters are evaluated based on
their expected information gain. Two estimates of informa-
tion gain are used: 1) exploitation of the unlabeled data and
2) exploration of the visual concepts in the unlabeled data.
The cluster expected to provide the most information gain is
selected for labeling. Details of this algorithm are discussed
in the remainder of this section.

3.1. Unsupervised Learning of Visual Concepts

Clustering lends itself well to unsupervised visual con-
cept discovery because it identifies reoccurring patterns
within data which can be indicators of interesting concepts.
Spectral clustering or k-means require information that SG
assumes is unavailable, such as the number of classes in
the data. Also, the poor cluster purity achieved using these
clustering algorithms (as in [2, 11, 16]) lead us to believe
that partitional clustering is not well suited for SG. Instead,
SG uses hierarchical clustering to create a hierarchy of m
groups, H = {c1, c2, . . . , cm}, from the set of n training
samples, T = {x1, x2, . . . , xn}. Each ci contains at least
two training samples, meaning m ≈ n − 1. The two sam-
ple constraint is introduced since SG is designed to avoid
instance-based labeling.

Hierarchical clustering gives SG three important prop-
erties. First, the number of clusters does not have to be
defined in advance. Second, for multi-class data sets the hi-
erarchy will contain both pure and impure clusters. Third,
the one-to-one mapping constraint is relaxed which allows
visual concepts to group at different locations and levels of
the hierarchy.

�

� �

� � � �

� 	 
 � �  � �

� � � � � � � � � � �� �� �� �� �� ��

�� �� 		 

 �� ��  �� �� �� �� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� 			 


 ��� ���

Figure 1: Cluster hierarchy where yellow, green, red and blue in-
dicate pure clusters of different concepts and black represents im-
pure clusters.

Figure 1 is a toy example of a hierarchical clustering for
four classes that illustrates these properties. Black circles in
the hierarchy indicate impure clusters while the other col-
ors indicate pure clusters for a particular class. Trivially,
the root node of the hierarchy must be impure since it con-
tains all images which come from different classes. Green
appears to be relatively self-similar and easy to group indi-
cated by the formation of a pure cluster high in the hierar-
chy, while red appears to be less self-similar and/or highly
similar to blue which requires a finer granularity of group-
ing to form pure clusters.

3.2. Cluster Selection

An SG query asks for a single label for a cluster. Label-
ing the entirety ofH is redundant, since clusters are subsets
of one another. Also, providing a single label to an impure
cluster is not well-defined and creates noisy training data.
Therefore, if a pure cluster is queried, as in Figure 2a, its
visual concept label is provided, and if an impure cluster
is queried, as in Figure 2b, the label “mixed” is provided.
Thus, SG queries are easy in terms of cognitive load. How-
ever, a “mixed” label does not add any information to the
set of collected labeled data, so the task of SG is to identify
and label a small set of pure clusters inH to quickly collect
meaningful information about T .

(a) Label Assignment: Tall Building

(b) Label Assignment: Mixed

Figure 2: Examples of pure and impure clusters from the 13-
Scenes data set.

Cluster selection is iterative. On each iteration, clusters
in H are in either the purely labeled set L, the mixed la-
beled setM or the unlabeled set U . SG is similar to active
learning in the sense that U is the equivalent of an active
pool, and samples belonging to clusters in L can be used
as training data for a classifier. On each iteration, a selec-
tivity score based on the expected information gain is given
to all clusters in U . The cluster with the maximum score
is queried and labeled, and L, M and U are updated ac-
cordingly. Note that labels of pure clusters are inherited by
descendants, and labels of impure clusters are inherited by
ancestors. Two selectivity scores, one focusing on exploita-
tion and the other on exploration, are discussed later in this
section. First, however, we discuss our approach to estimat-
ing cluster purity.

3.2.1 Evaluating Cluster Purity

Our estimation of cluster purity is predicated on the belief
that data near each other in feature space are more likely to
represent the same visual concept than data that are further
away, where near and far depend on the relative density of
the data. Thus, clusters in H that contain samples that are
approximate nearest neighbors (ANN) in feature space are
likely to be pure. We derive a purity measure from the Prox-
imity Forest data structure [14] which was designed for fast



ANN lookups in general metric spaces. Although any ANN
algorithm would suffice for image vector data, the Proxim-
ity Forest was shown to return more accurate querying re-
sults than other common ANN algorithms [14], and allows
SG to later generalize to a broader range of data representa-
tions (e.g., videos represented as points on Grassmann man-
ifolds [13]).

A Proximity Forest is a set of T randomized metric trees.
Each tree partitions data into τ sized leaf nodes to encode
approximate nearest neighborhoods. Thus, data that coexist
in leaf nodes of multiple metric trees likely represent the
same visual concept. Treating all xi as nodes in a graph, a
weighted edge between xi and xj defines the connectivity
of the samples, i.e., the number of times the samples coexist
in forest leaf nodes. Connectivity is extended to clusters and
called the Proximity Forest Connectivity (PFC) measure.

Formally, PFC is based on the calculation of weighted
edges between points xi and xj , defined as

w(xi, xj) =

T∑
k=1

common leafk(xi, xj), (1)

where the function common leafk finds the leaf nodes in
tree k that xi and xj belong to, and returns 1 if the leaf nodes
are the same, and 0 otherwise. The average edge weight
from xi ∈ ci to all xj ∈ ci,

c(xi) =
1

|ci|
∑
∀xj∈ci

w(xi, xj), (2)

defines how connected a sample is to its cluster. Finally,
since PFC estimates cluster purity, the connectivity of ci is
the average connectivity of all samples in ci,

pfc(ci) =
1

|ci|
∑
∀xi∈ci

c(xi). (3)

Higher PFC scores suggest a greater likelihood of being
pure. PFC is computed without supervision since the only
information used is the relative distances between samples.
Unfortunately, PFC is not size invariant. The connectivity
sum in Equation 2 is dependent on the value of τ , mean-
ing xi can maximally be connected to τ − 1 other data
points. However, the connectivity for point xi is normal-
ized by the size of its cluster ci. Thus, smaller clusters with
the same connectivity as larger clusters will receive higher
PFC scores, causing clusters near the leaves of the hierar-
chy to be favored when evaluating purity. This favoring is
accurate, but provides little benefit in terms of minimizing
the labeling effort. Further, PFC is not probabilistic, but in-
stead a relative score. The next section discusses details of
how SG uses PFC to create a probability of purity for the
exploitation score.

3.2.2 Exploitation

Exploitation seeks to label large numbers of samples
quickly, making cluster purity and cluster size important
factors when calculating information gain. The exploitation
score for cluster c is defined as

exploit(c) = pc ∗ lc, (4)

where pc is the probability that c is pure and lc is the number
of unlabeled samples in c. Note that lc is not the size of c
since some samples may already be labeled if a descendant
of c was selected for labeling in a previous iteration.
pc is calculated by iteratively modeling PFC scores and

cluster sizes from clusters that exist in L and M. Adding
cluster size to the model helps ensure that cluster selectivity
is not limited to the bottom of the hierarchy since PFC is
not size invariant. As more clusters are labeled, more in-
formation is available to predict the ranges of PFC scores
and sizes most likely to be pure. The information is mod-
eled using a 10x10 uniform grid of Gaussian radial basis
functions (RBF). One axis of the grid represents the range
of PFC scores and the other represents the range of clus-
ter sizes. Each axis is normalized to [0.0, 1.0] with an even
distribution of grid point centers along these axes.

The RBF grid is modeled online as labeling queries
are processed. Each grid point is modeled as the average
weighted purity of the current labeled clusters. That is, af-
ter t labeling queries, grid point gi has a modeled purity
value of

p(gi) =
1

t

t∑
i=0

φ(ri) ∗ vi, (5)

where ri is the distance between the grid point center and
the cluster queried at iteration i. vi is 0 if the cluster was
labeled “mixed” or 1 if it was given a non-mixed label, and
φ(ri) is the Gaussian RBF formally defined as exp−(ri/σ)

2

,
which weights clusters closer to the center of gi more heav-
ily than clusters further from the center of gi. For all exper-
iments in this paper, σ = 0.1.

The value of pc is calculated from the RBF grid as

pc = φ(rc) ∗ p(gi), (6)

where gi is selected as the grid point that minimizes rc. The
exploitation score describes the expected number of sam-
ples that will receive labels if a cluster is given a non-mixed
label, and emphasizes labeling as many samples in as few
queries as possible. Focusing solely on exploitation, how-
ever, favors the discovery of visual concepts that are easy to
group and that dominate the data set, possibly disregarding
less common concepts.

3.2.3 Exploration

Exploration focuses on how to discover different visual con-
cepts quickly. Exploration is modeled with the assumption



Data Set # Concepts Total Instances Training Size Testing Size Classifier
UCI-Pendigits 10 10,992 5,100 2,000 SVM-Linear
UCI-Letters 26 20,000 7,100 5,000 SVM-RBF
13-Scenes 13 3,859 2,500 500 SVM-Linear

Leaf-100 and Face-100 10 100 70 30 NN
Leaf-250 and Face-250 25 250 175 75 NN

Table 1: Experiment details for benchmark data sets.

that often, different visual concepts will be located in dif-
ferent areas of feature space. Thus, when selecting a cluster
from U to be labeled, it should be far away from the clus-
ters that already exist in L to try and identify a new visual
concept.

The exploration selectivity score is based on a distance
value and defined as

explore(c) = min
∀ci∈L

d(ci, c), (7)

where d is the Euclidean distance between two cluster cen-
troids. After two non-mixed labeling queries, unlabeled
clusters will have multiple distances between the clusters in
L. The minimum distance from c to any cluster in L is used
since it represents the difference between c and its most sim-
ilar labeled neighbor. The cluster in U with the maximum
exploration score represents the cluster that is most dissim-
ilar to its nearest neighbor and expected to be most likely to
represent a visual concept that has not been discovered yet.

3.2.4 Combination of Selection Criteria

Both exploitation and exploration provide benefits to the
overall goal of SG. For this reason, both selection criteria
are combined to provide an overall selection criteria score.
The two terms are combined using a weight α that has a
range [0, 1]. Formally, the combination is defined as

SG(c) = α ∗ exploit(c) + (1− α) ∗ explore(c), (8)

and the cluster with the highest selection score is selected to
be labeled. For all experiments in this paper, the exploita-
tion and exploration terms are weighted evenly by setting
α = 0.5.

Note that neither selectivity score requires retraining a
supervised classifier after each labeling query. The only
supervised modeling comes at the level of cluster purity
within the RBF grid for the exploitation term.

4. Experiments
SG, active learning and active clustering all iteratively

query for information to collect labeled training data. Each
query is slightly different. SG asks for labels for clusters,
active learning asks for labels of individual images and ac-
tive clustering asks for constraints about whether images

should be grouped together. Each querying task, however, is
designed to collect information about the training data so it
can be used to classify new unseen testing data. The goal is
to maximize accuracy while keeping the number of queries
to a minimum. Thus, the experiments in this paper com-
pare the classification accuracy achieved by each method as
a function of the number of labeling queries.

The focus of comparison is placed on the process of col-
lecting labeled data, so the same classifier is trained for each
method being compared. For each experiment, a classifier
is also trained using the full set of training data available
to indicate the performance of a completely supervised ap-
proach. The details of each experiment are given in Table 1.
Each experiment is averaged over 20 trials of random train-
ing and testing partitions.

Comparisons are made against the following techniques:

SG : Our proposed Selective Guidance approach that iter-
atively labels clusters.

Wardsk : Baseline hierarchical clustering with Wards link-
age that cuts the dendrogram to form k clusters (one-
to-one mapping) without any annotator feedback.

BvSB : Active learning framework that iteratively queries
for labels of uncertain samples [7].

FAST-Active-HACC-H1 : Active clustering approach that
iteratively queries for must-link or cannot-link con-
straints to improve clustered output [1].

Wardsk and FAST-Active-HACC-H1 output a set of clus-
ters. Each cluster is assigned the label that represents the
dominating visual concept of its images. This label is trans-
ferred to all images in the cluster and then used to train a
classifier. Classification accuracy depends in part on the
number of concepts discovered. Since SG is only capable
of collecting labeled data from all k concepts after k label-
ing iterations, classification accuracy for SG is only shown
starting at labeling query k.

4.1. Selective Guidance vs Active Learning

Three experiments are replicated to make direct compar-
isons to the BvSB active learning framework. BvSB does
not make assumptions about the number or types of visual
concepts in the training set, making it a good candidate for



(a) (b) (c)

Figure 3: Classification accuracy per labeling query for the (a) Pendigits, (b) Letter and (c) 13-Scenes data sets.

(a) (b) (c)

Figure 4: Concepts discovered per labeling query for the (a) Pendigits, (b) Letter and (c) 13-Scenes data sets.

comparison to SG. The total number of labeling queries an-
swered in the BvSB framework is the sum of the size of the
seed set and the total number of images labeled during ac-
tive learning iterations. The authors [7] do not report the
first classification accuracy result for BvSB until after the
seed set has been labeled.

The first two experiments use UCI data sets, Pendigits
and Letter. The third experiment uses the 13-Scenes [3]
data set which contains images from 13 categories of natural
scenes. GIST [15] features are used to represent each scene
image just as in the BvSB framework. The exact train-
ing and testing partition is not reported for the 13-Scenes
data set. We report SG results using a 2,500 training and
500 testing partition, but found similar trends across several
other partitions.

Figure 3 shows the classification accuracy per labeling
query for the three experiments. For all three experiments,
SG outperforms BvSB early on in the labeling process. This
suggests that given a time constraint where an annotator is
only able to provide a limited number of labeling queries,
SG would likely collect a more diverse set of informative
data faster than BvSB. On the whole, even after many la-
beling queries are answered, SG never performs any worse
than BvSB. Further, SG always approaches the classifica-
tion accuracy of a completely supervised approach, but does
so with significantly fewer labeling queries.

The performance gap for the 13-Scenes experiment is
significantly larger than that seen on the UCI experiments.

BvSB never converges to the performance of SG even after
1,000 labeling queries. This is likely due to the fact that the
BvSB framework is set up to select 20 samples at each itera-
tion. The authors claim that even though potentially redun-
dant data are being labeled at each active learning round,
BvSB still achieves improved results over random selec-
tion [7]. This may be true, but because SG first learns to
group some of these redundant data, they can be labeled si-
multaneously with a single labeling query.

As expected, both SG and BvSB outperform the base-
line clustering approach. The baseline method assigns the
dominating class label to each cluster regardless of purity
which causes weak training data to be collected. For the
three experiments, the average cluster purity achieved by
Wardsk is 0.81± 0.20 for Pendigits, 0.41± 0.27 for Letter
and 0.50 ± 0.18 for 13-Scenes. This means that on aver-
age only about half of the training data received accurate
labels for the Letter and 13-Scenes experiments. Looking
beyond average cluster purity, Figure 4 shows the number
of visual concepts that actually dominate the learned clus-
ters. For all experiments, SG eventually discovers clusters
that represent all visual concepts. Wardsk on the other hand,
leaves at least one visual concept from each data set undis-
covered. The noisy labels and undiscovered concepts affect
the ability of Wardsk to accurately train the SVM classifier.

The better classification performance achieved by SG
likely comes from the fact that SG provides more images
with labels than BvSB after the same number of labeling



(a) (b) (c) (d)

Figure 5: Classification accuracy per labeling query for the (a) Leaf-100, (b) Leaf-250, (c) Face-100 and (d) Face-250 data sets.

(a) (b) (c) (d)

Figure 6: Concepts discovered per labeling query for the (a) Leaf-100, (b) Leaf-250, (c) Face-100 and (d) Face-250 data sets.

queries. Since BvSB is an instance based labeling tech-
nique, t images are given labels after t labeling queries.
Using SG, 4,906 images from the Pendigits data set were
labeled and 2,682 images from the Letter data set were la-
beled after only 350 labeling queries. Although less ex-
treme, SG provided labels to 1,254 images for the 13-
Scenes data set after 1,000 queries. In all cases, SG col-
lects more labeled image samples than BvSB using the same
number of labeling queries.

4.2. Selective Guidance vs Active Clustering

Four experiments are performed to compare SG to
the active clustering FAST-Active-HACC-H1 [1] approach.
FAST-Active-HACC-H1 assumes the number of visual con-
cepts in the data set is known and iteratively re-clusters the
data to search for an ideal one-to-one mapping, and label-
ing queries are defined as binary constraints between two
images. At each iteration two images are selected and an
annotator determines if they are from the same or different
classes.

Two experiments are run using subsets of leaf species
from the Leafsnap corpora1. The remaining two experi-
ments use subsets from the PubFig [9] data set which in-
cludes images of real-world human faces collected from the
Internet. 70% of the images from each concept are used as
the training set and the remaining 30% are used as the test-

1http://leafsnap.com

ing set. Publicly available proximity matrices2 are used for
all methods in the experiments.

Figure 5 shows the classification accuracy results for all
four experiments. FAST-Active-HACC-H1 performs bet-
ter than SG when very few queries are answered for the 10
class data sets, Figures 5a and 5c, but within 20 labeling
queries the performances of the methods cross and SG per-
forms better. This performance cross can be explained by
looking at how quickly each method discovers the different
visual concepts, seen in Figures 6a and 6c. SG can only
discover visual concepts after a pure cluster is queried and
labeled. FAST-Active-HACC-H1 produces a set of clusters
after each labeling query, and the number of discovered con-
cepts is based on the set of concepts that dominate each
cluster regardless of cluster purity. It appears that many
classes in these 10 class data sets are relatively self-similar
since FAST-Active-HACC-H1 discovers ≈ 80% and 60%
(figures 6a and 6c respectively) of the visual concepts in
the initial clustering without any labeling queries. SG how-
ever, either selected several clusters that represented the
same concept or impure clusters early in the labeling pro-
cess. After 20 queries, SG has discovered more concepts
than FAST-Active-HACC-H1 which is the same point the
classification performances cross.

In the 25 class data sets, Figures 5b and 5d, SG hits its

2www.umiacs.umd.edu/˜arijit/projects/Active_
clustering/active_clustering.html



peak performance with significantly fewer labeling queries
than it takes FAST-Active-HACC-H1 to reach this same
classification performance. While the discovery for these
25 class data sets, Figures 6b and 6d, have a similar trend to
the 10 class experiments, it is likely that the average cluster
purity achieved by FAST-Active-HACC-H1 is much lower
to begin with. So although FAST-Active-HACC-H1 discov-
ers more concepts than SG with a small number of labeling
queries, the collected data is likely very weak whereas SG
collects only pure labeled data resulting in better classifica-
tion performance.

Once again both approaches outperform the baseline
method. Although the baseline method only requires k
queries after clustering is complete, the lower classification
performance caused by not discovering all concepts (seen
in Figure 6) and producing weak training data is a major
trade-off. FAST-Active-HACC-H1 eventually always out-
performs SG and approaches the performance of the su-
pervised classifier, but this is the nature of iterative feed-
back. The same is true for active learning approaches be-
cause eventually all unlabeled samples can be queried and
labeled. This is not the case for SG because some training
samples may never be labeled if they do not exist in a pure
cluster that has at least two images. Notice however, that for
the Leaf data sets, SG also approaches the performance of
the supervised classifier but with far fewer labeling queries
than FAST-Active-HACC-H1.

On the whole, SG outperforms FAST-Active-HACC-H1
on many levels. SG is able to discover a large number of
visual concepts at a faster rate than FAST-Active-HACC-
H1. Although SG never discovers all visual concepts in the
Face subsets, FAST-Active-HACC-H1 requires many label-
ing queries to approach discovery of all concepts as well,
indicating that the data set is very challenging. In all ex-
periments FAST-Active-HACC-H1 does not reach the peak
performance achieved by SG until a significant number of
labeling queries are answered. In fact, the number of binary
constraints answered is typically much larger than the total
number of samples in the training set, which is the number
of queries a completely supervised classifier requires.

5. Conclusions
Reducing the labeling overhead to collect training data

has been addressed in a variety of ways. Active learning se-
lects subsets of instances to label from an unlabeled pool of
images. Clustering techniques group unlabeled data by sim-
ilarities to label multiple images simultaneously. However,
many techniques do not generalize to completely unlabeled
data sets because they assume knowledge of the number
and/or types of visual concepts in the unlabeled data set. We
introduce Selective Guidance (SG) as an assumption-free
visual concept discovery approach that minimizes human
labeling effort. Using benchmark data sets, we showed that

SG labels more individual samples with the same number
of queries as the BvSB active learning framework, discov-
ers more visual concepts than clustering, and classifies more
accurately than active learning or clustering techniques.
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