
2024/05/03 18:45 1/5 Writing Alpha

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

In this tutorial, we write an Alphabets program, starting from a mathematical equation for LU
decomposition. Then we will generate code to execute the alphabets program, and test the generated
code for correctness.

The equation for LU Decomposition, derived from first principles using simple algebra in Foundations
(pg.3), is as follows: <latex>

 $U_{i,j}=\begin{cases}

1=i\le j & A_{i,j}
1<i\le j & A_{i,j}-\sum_{k=1}^{i-1}L_{i,k}U_{k,j} \end{cases}

L_{i,j}=\begin{cases} 1=j\le i & \frac{A_{i,j}}{U_{j,j}}
1<i\le j & \frac{1}{U_{j,j}}(A_{i,j}-\sum_{k=1}^{j-1}L_{i,k}U_{k,j}) \end{cases}$ </latex>

[Temp note: in the last case of L, the condition is “1 < j ⇐ i”]

Writing Alphabets

Step 1 : Affine System and Parameters

Let's start from an empty alphabets file, with LUD as the name of the system, and a positive integer N
as its parameter. A system (Affine System) takes its name from system of affine recurrence
equations, and represents a block of computation. An Alphabets program may contain multiple
systems.

Caveat: Remember the phrase, “It's not a bug, it's a feature”? Well, in a tutorial, a feature is called a
“learning opportunity.”

Parameters are runtime constants represented with some symbol in the code. In this example,
parameter N will be used to define the size of the matrices, which is not known until runtime.

affine LUD {N|N>0}
.

Step 2 : Variable Declarations

In most cases, a computation uses some inputs and produces outputs. Such variables must be
declared with a name, a data type, and a shape/size. In Alphabets, the shape/size is represented with
polyhedral domains. For this example, the A matrix is given, and we are computing two triangular
matrices L and U. A is an NxN square matrix. The declaration for A looks as follows:

float A {i,j|1<=(i,j)<=N}; //starting from 1 to be consistent with the
equation in the notes

Similarly, L is a lower triangular matrix of size N (with unit diagonals, implicit) and U is an upper
triangular matrix of size N. The declarations should look like the following:

https://www.cs.colostate.edu/AlphaZ/wiki/lib/exe/fetch.php?media=foundations.pdf

Last update: 2015/03/06 09:32 tutorial_lud https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud&rev=1425659563

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/05/03 18:45

// The convention is that i is the vertical axis going down, and j is the
horizontal axis
float L {i,j|1<i<=N && 1<=j<i}; // Note that the diagonal elements of L are
not explicitly declared
float U {i,j|1<=j<=N && 1<=i<=j};

Now these variable declarations need to be placed at appropriate places to specify whether they are
input/output/local. input (old: given) is the keyword for input, output' (old: returns) is the
keyword for output, and local (old: using) is the keyword for local variables.
<sxh alphabets; gutter:false> affine LUD {N|N>0} input float A
{i,j|1⇐(i,j)⇐N}; output float L {i,j|1⇐j<i⇐N}; float U {i,j|1⇐i⇐j⇐N}; .
</sxh> ===Domains=== Polyhedral domains are represented as { “index names” |
“affine constraints using indices and parameters” }, where constraints can be
intersected with “&&”. Sometimes constraints can be expressed with short-hand
notation like “a<b<c” or “(b,c)<0”. Unions of such domains can be expressed as
“{ a,b | constraints on a and b } || { c,d | constraints on c and d }”. One
important point about Alphabets domains is that the names given to indices
are only for textual representation. Internally, all
analysis/transformation/code generation tools only care about which dimension
the constraint applies to. For example, a domain { i,j | 0⇐i<j<N } is
equivalent to { x,y | 0⇐x<y<N }, because i and x are both names given to the
first dimension, and j and y are names given to the second dimension.
====Step 3 : Equations==== Now the only remaining step before a complete
Alphabets program is writing the equations. After a little experience, the
connection from mathematical equations (of a certain form) to Alphabets
equations should become increasingly clear. There are two slightly different
syntactic conventions for writing equations, one is called the “Show syntax”
and the other is called “AShow syntax”. Show syntax is closer to the internal
representation of Alphabets programs, and is more expressive when writing
complex programs. AShow syntax uses “array notation” so that it is easier for
people used to imperative programs. We will first write the equation for U
in AShow syntax, and then move on to Show as we write the equation for L.
===Equation for U (AShow syntax)=== In this equation, U is on the left hand
side, and the right hand side should define U for each point in the declared
domain of the U variable. In AShow syntax, the names for indices used appear
on the LHS of the equations. For this example, the following LHS for U gives
i, j as the names for the first and second dimensions to be used when writing
the expressions in the RHS. These names do not have to match the names used
in variable declaration. You could use x,y instead of i,j if desired. <sxh
alphabets; gutter:true>U[i,j] = RHSexpr;</sxh> ==Case Expression== The first
thing you notice in the definition of U in the mathematical equation is the
branch based on values of i and j. This branching is expressed with
CaseExpression in Alphabets. A CaseExpression starts with the keyword “case”,
ends with keyword “esac”, and has list of “;”-delimited expressions, called
“clauses” as its children. Often (but not always), each child of a case is a
RestrictExpression (whose syntax is “domain : expr”), which restricts the
domain to the specified domain. Using the above expressions, the branching of
the definition of U is as follows : <sxh alphabets; gutter:true> U[i,j] =
case {|1==i} : expr1; {|1<i} : expr2; esac; </sxh> Note that because index
names are already declared in the context (equation LHS), there is nothing to
the left of the | in the AShow syntax. ==Variable Expression== Moving on to

2024/05/03 18:45 3/5 Writing Alpha

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

the definitions in each case, the first case is <latex>$A_{i,j}$</latex>.
This is written as A[i,j] in AShow syntax, similar to accessing an array. A
variable without a square bracket, is treated either as a scalar variable (as
in, X[i,j] = 0) or as an access with the identity dependence function, (i.e.,
X[i] = A[i] would be the same as X[i] = A). ==Reductions== The last piece missing
before completing the definition of U is the summation in the second branch.
Mathematically, a reduction is an operation that applies an associative-
comutative operator (in general, the operator may only be associative, but In
Alphabets, we have only associative-comutative operators) to a set of values,
such as summation (sum over a set of numbers). Reductions are expressed with
the following syntax : <sxh alphabets; gutter:true> reduce(operator,
projection, expr); </sxh> operator: operator to be applied (+, *, max, min,
and, or)
expr: Any Alphabets expression. “Slices” of the result of evaluating this
expression are combined using the reduction operator.
projection: The projection is an affine function with the same syntax as a
dependence (as explained below). By its very nature, a reduction reduces the
number of dimensions of the expression, so the rxpr has more dimensions than
the result. Which values contribute to which result is specified by
projection, a many-to-one affine function. In the mathematical equation,
summation with one new index k is used. For each value of k, the expression
L[i,k]*U[k,j] is computed and added up to produce the result U[i,j]. Thus, the
projection function is (i,j,k → i,j). (from the three dimensional space indexed by
i,j,k, all values computed at [i,j,k] are used to compute U[i,j] in the two
dimensional space indexed by i,j – i.e., the k is 'projected out')
When the projection function is canonic (e.g., (i,j,k→i,j)), then the projection
function can be replaced with a simpler syntax (AShow syntax for reductions)
that specifies the names of new dimensions surrounded by square brackets. For
example, the projection (i,j,x,y→i,j) can be expressed as [x,y]. Using the above,
summation in the original equation can be written as the following Alphabets
fragment. <sxh alphabets; gutter:true> reduce(+, [k], L[i,k]*U[k,j]); </sxh>
Putting all this together, the final equation for U is: <sxh alphabets;
gutter:true> U[i,j] = case {|1==i} : A[i,j]; {|1<i} : A[i,j] - reduce(+, [k],
L[i,k]*U[k,j]); esac; </sxh> This is exactly like the original equation
Caveat ===Equation for L (Show syntax)=== Now we will write the equation for
L, but this time in Show syntax. Unlike the AShow syntax, Show syntax does
not rely on the context for naming of indices. Index names can be different
in every (sub)expression if it makes sense to do so. Because of this, the LHS
does not have square brackets, all we need is the variable name. <sxh
alphabets; gutter:true> L = RHSexpr; Show syntax </sxh> ==Case Expression==
CaseExpression and RestrictExpression are same as AShow syntax. However,
since index names are no longer deduced from the context where they occur,
they must be explicitly named everywhere. While this may seem cumbersome, it
allows expressions to have compositional semantics. In our example, the index
names used in the domain of RestrictExpression have to be made explicit. The
branch in the definition of L becomes the following Alphabets : <sxh
alphabets; gutter:true> L = case {i,j|1==j} : expr1; {i,j|1<i} : expr2; esac;
</sxh> ==Dependence Expression== In the array notation in AShow syntax, a
DependenceExpression was implicit: just add expressions within square
brackets to access variables). In the Show syntax DependenceExpression is
used to explicitly specify which value of a variable is required for a

https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=caveat

Last update: 2015/03/06 09:32 tutorial_lud https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud&rev=1425659563

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/05/03 18:45

computation. The syntax of DependenceExpression is “(affine_function)@expr”,
where affine_function is of the form (list_of_indices →
list_of_affine_expressions). For example, the dependence (i,j→i-1,i+j)@A
means that at index point (i,j) this computation evaluates to the value of A
at index point (i-1,i+j). The child of DependenceExpression can be any
Alphabets expression, possibly another DependenceExpression. For example,
(i,j→i,j,i+j,0)@(a,b,c,d→a,c-a)@A is a perfectly legal Alphabets expression.
==Reductions== Reductions in Show syntax are exactly like in the AShow
syntax, except that the projection function is specified in the dependence
syntax. This is all you need in order to write the rest in of the equation in
Show syntax. <sxh alphabets; gutter:true> L = case {i,j|1==j} : (A /
(i,j→j,j)@U); {i,j|1<i} : (A - reduce(+, (i,j,k→i,j),
(i,j,k→i,k)@L*(i,j,k→k,j)@U))/(i,j→i,i)@U; esac; </sxh> ====Final Alphabets
Program==== Combine all of the above, and you will get the Alphabets program
for LU decomposition. Don't forget the keyword through before equations the
period at the end (since our example has no local variables). Notice how we
can mix and match Show and AShow syntax within the program, but each equation
must obviously, be consistent. <sxh alphabets; gutter:false> affine LUD
{N|N>0} input float A {i,j|1⇐(i,j)⇐N}; output float L {i,j|1<i⇐N && 1⇐j<i};
float U {i,j|1⇐j⇐N && 1⇐i⇐j}; local U[i,j] = case {|1==i} : A[i,j]; {|1<i} :
A[i,j] - reduce(+, [k], L[i,k]*U[k,j]); esac; L = case {i,j|1==j} : A /
(i,j→j,j)@U; {i,j|1<j} : (A - reduce(+, (i,j,k→i,j),
(i,j,k→i,k)@L*(i,j,k→k,j)@U))/(i,j→j,j)@U; esac; . </sxh> =====Generating and
Testing Alphabets===== Analyses, transformations, and code generation of
Alphabets programs are performed using the AlphaZ system. The normal
interface for using AlphaZ is the scripting interface called compiler
scripts. Given below is an example script for that does several things using
the LUD program we wrote above. <sxh cs; gutter:false> # read program and
store the internal representation in variable prog prog =
ReadAlphabets(“./LUD.ab”); # store string (corresponding to system name) to
variable system system = “LUD”; # store output directory name to variable
outDir outDir = “./test-out/”+system; # print out the program using Show
syntax Show(prog); # print out the program using AShow syntax AShow(prog); #
prints out the AST of the program (commented out) #PrintAST(prog); # generate
codes (this is demand-driven, memoized code) generateWriteC(prog, system,
outDir); generateWrapper(prog, system, outDir); generateMakefile(prog,
system, outDir); </sxh> Save this script with .cs extension, place the
alphabets file in the same directory as the script, and then right click on
the editor and select “Run As → Compiler Script” to run the script. If you
get some error message, try looking at the first line of the error messages
to find out what it is about. Common problems are: * not having the file in
the right place (you will see FileNotFoundException in this case) * system
name does not match the any of the system in the program (error message
should say system xxx does not exist) ====Code Generators==== In this
tutorial, we use two basic code generators, without going into too much
detail. The two types of codes generated are WriteC and Wrapper.
WriteC code may not be efficient, but it can be generated without any
additional specification beyond the program.
Wrapper code is a wrapper around other generated codes that allocates/frees
memory for input and output variables, and it also have different options for
testing.

2024/05/03 18:45 5/5 Writing Alpha

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

Note:Current implementation of the Wrapper prints out the bounding box of the
domain of the output variable. generateMakefile produces a Makefile that
should compile the generated codes. You can make with different options.
====Compiling and Executing the Generated Code==== Congratulations!! You are
nearly at the end. Now, you will actually make and execute the code (in a
separate terminal window). ==make== compiles the code and produces an
executable xxx (where xxx is the system name) that executes the program with
default input that is 1 everywhere. Compiling with this option does not test
very much, but it will test if it compiles and runs and produces no errors.
==make check== Compiles the code and produces an executable xxx.check (xxx is
the system name) that prompts the user for all values of input variables.
After executing, it prints out all values of the output variables. This
option should be used for testing small to mid-sized input data. ==make
verify== Compiles the code with another code named xxx_verify.c that defines
a function xxx_verify (xxx is the system name). Users can provide different
program as xxx_verify to compare outputs. ==make verify-rand== Same as
verify, except the inputs are generated randomly. ====OOPS WHAT HAPPENED====
You will see that when you execute the code, it will produce an error. You
may be able to easily fix the error in your Alpha program and regenerate
correctly executing C code, or you may want a bit of help. In either case, we
would like to know. Please email Sanjay.Rajopadhye@colostate.edu with the
error message that is produced.

From:
https://www.cs.colostate.edu/AlphaZ/wiki/ - AlphaZ

Permanent link:
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud&rev=1425659563

Last update: 2015/03/06 09:32

mailto:Sanjay.Rajopadhye@colostate.edu
https://www.cs.colostate.edu/AlphaZ/wiki/
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud&rev=1425659563

	[Writing Alphabets]
	Writing Alphabets
	Step 1 : Affine System and Parameters
	Step 2 : Variable Declarations

