
Department of

Computer Science

Di�erential Editors

Titus D. M. Purdin and Alan L. Wendt

Technical Report CS-93-101

February 4, 1993

Colorado State University

Di�erential Editors

TITUS D. M. PURDIN

Department of Management and Information Science, The University of Arizona, Tucson, Arizona 85721, U.S.A.

ALAN L. WENDT

Department of Computer Science, Colorado State University, Fort Collins, Colorado 80521, U.S.A.

Keywords

Di�erential editor, Source code control system, Bank statement reconciliation

Summary

A di�erential editor is a text or �le editor that excells at editing, comparison, and reconcil-

iation of several di�ering versions of a �le simultaneously. This paper discusses di�erential

editors in general and gives two important examples of the paradigm. One example is an

editor augmented for bank statement reconciliation. The other is a program text editor

augmented to handle multiple versions of source text, using preprocessor control lines to

delimit individual versions.

Introduction

Often programmers and users of computers must operate upon more than one version of

a text �le or a database. For example, programmers may maintain several versions of a

source program and may transfer text from one version to another, compare two versions,

etc. Users may need to compare two versions of a �le and edit them to ensure their

consistency. In general, in any system of information
ow, when two sources
ow together,

some comparison and reconciliation of di�erences may be necessary. When an interactive

text editor or a database �le editor is augmented with the ability to compare di�erent

versions of a text, a di�erential editor is the result. Such an editor is useful when several

versions of a text exist and they must be edited consistently, or their di�erences must be

resolved.

A di�erential editor works with more than version of a text. It allows changes to some

of the versions, and it may disallow changes to other versions. As changes are made, it

may automatically compare the updated version with other versions. It may track changes

to one version and generate a summary of the changes. The need to perform all of these

functions can make di�erential editors complex, so their construction can be justi�ed only

if alternative tools for handling versions are inadequate. Many tools exist to support these

tasks, but they all su�er from de�ciencies.

1

Operating systems such as Digital Equipment's VMS explicitly provide facilities to main-

tain several versions of each �le. In operating systems such as UNIX, control of versions

is accomplished through the use of utility programs such as SCCS (Source Code Control

System). Such utilities are usually large programs themselves, and they force a particular

paradigm upon the programmer. Sources must be checked in and out. Only one version

is instantiated at a time. Source comparison programs (diff et al) help but do not solve

the problem. Often the di�erence between two versions is longer than either. The Unix

diff3 and patch programs are intended to allow a change to be abstracted from a pair

of programs, and for the change to then be applied to a third program. These systems do

not alway apply patches correctly, due to inconsistent sets of changes between the three

versions. Finally, pipelines using sort and cmp can be used for simple comparisons of

structured (one-line) records, but such pipelines would be too slow to run for every record

update. The sdiff program is a primitive di�erential editor that compares two source �les

side-by-side, and allows the user to invoke a separate editor on either �le. However, it is

primarily a stream editor; once the output �le is complete the program must be restarted.

The spiff system [N88] includes the features of diff and extends it to allow approximate

numerical matches. It can also compare streams of program lexemes, so as to ignore for-

matting and comment changes in source code. A system that uses control
ow information

to integrate two versions of a program is described in HPR89. An editor for source code

revision control is described in FM87. None of these systems support viewing, comparison,

and editing of two or more versions of a �le simultaneously.

This paper describes two systems incorporating the di�erential editor paradigm. The �rst

is used to reconcile bank statements with records of issued checks. The second is a source

code maintenance system.

Bank Statement Reconciliation

Bank statement reconciliation is one important application for a di�erential editing tool.

A system has been implemented to compare and reconcile bank statements with records of

issued checks. Little information is available about automated systems for bank statement

reconciliation. A check of some local branches of large banks reveals that reconciliations

are currently done manually.

The editor described here reads a �le of bank statement lines (clearances) and a �le of

checks written (issuances). It displays these two �les side-by-side on a terminal screen. The

operator can compare the two �les and change records to bring the �les into agreement.

The editor interprets any changes that are made as error corrections, and it builds two

�les of these corrections, one of updated issuances and one of updated clearances. It can

then print reports to send to the bank or the source of the issuance records.

The editor has several display options. All checks can be displayed, or only unmatched

2

checks. The corrections records can also be edited directly. All of the checks can be sorted

in numeric order, or by any other �eld in the record such as the amount.

The system can accept input from optically-scanned bank statements. Such statements

usually contain about one error per three lines. The system uses an optimal minimum-

edit-distance error-correction algorithm to reduce this to about one error per page. The

algorithm accepts a regular expression that describes the format of a print line on a bank

statement. It also accepts a table of single-character correction costs (for example, it is

cheap to correct a capital \S" to a \5"). It then reads the optically-scanned input and

�nds a change of minimum cost that repairs each scanned input line to an instance of the

regular expression.

Bank statements are reconciled manually by comparing records of issuances against the

bank's statement, which records clearances. Mismatches can be bank errors, o�ce errors,

or outstanding checks. The process is complete when all of the errors have been corrected

and no unmatched clearances remain on the bank statement. Unmatched issuances can

remain and be carried forward as outstanding checks to the next reconciliation.

The Editor

An invocation of the editor loads in any existing records and presents them for display.

Issuances show the date of issue, while clearances show the date of clearance.

For a small example, if 5 checks were recorded as issued and the bank statement contained

3 of those, with some erroneous information, the display might appear as follows:

ISSUE CLEAR

NUMBER DATE DATE AMOUNT

214 09/10/92 32.16

214 09/13/92 32.16

215 09/10/92 52.13

215 09/10/92 52.18

216 09/11/92 24.33

218 09/11/92 10.00

218 09/11/92 24.33

219 09/12/92 12.50

In this example, two of the issuances (218 and 219) were not cleared by the bank. Check

number 215 was issued for $52.13 and cleared for $52.18. And check number 216, for

$24.33, was apparently cleared as check 218. Some information (e.g. the payee) is actually

presented by the program but omitted from this display for formatting reasons.

If a company has more than one o�ce, issuance records may be transmitted from several

di�erent computer systems. The source of all records is tracked (which bank statement,

or which register of check issuances) so that errors in the records, when corrected, can be

propagated back to their source.

3

After loading the records, the user can hit a function key to command the editor to match

up issuances and clearances. Pairs of records that match on both the amount and check

number are merged into a single record. Matched records show both issue and clearance

dates. The result is:

ISSUE CLEAR

NUMBER DATE DATE AMOUNT

214 09/10/92 09/13/92 32.16

215 09/10/92 52.13

215 09/10/92 52.18

216 09/11/92 24.33

218 09/11/92 10.00

218 09/11/92 24.33

219 09/12/92 12.50

Values in issuances and clearances can be edited directly. After examining the above

display, the user might determine that the bank incorrectly cleared check number 215 at

$52.18, edit the amount in the third line to match that in the second, and hit a function

key to command another match. The �rst time an issuance or clearance record is changed,

it is rewritten to an \updated" record of the same type.

Internally the editor maintains several variant record types. An \issuance" record comes

from an o�ce and contains the date that the check was issued, the amount and check

number, and identi�cation of the source of the record. An \updated issuance" contains

the original version of the issuance in addition to any corrections that have been made

to the issuance. A \clearance" record comes from the bank statement and contains the

date that the check was cleared, the amount and check number, and identi�cation of the

source. An \updated clearance" contains the original version of the clearance in addition

to any corrections that have been made to the clearance. Finally, a \merged" record is

generated when issuances and clearances are matched. It contains original versions of both

the issuance and clearance, as well as the current values for both (which must be the same

in order for the match to occur).

The editor supports editing from several points of view. For example, the editor facilitates

the examination of unmatched records by suppressing display of matched records:

ISSUE CLEAR

NUMBER DATE DATE AMOUNT

216 09/11/92 24.33

218 09/11/92 10.00

218 09/11/92 24.33

219 09/12/92 12.50

The editor can also sort the records on any key. To do this, the user positions on the

desired column and hits a function key. Check number discrepancies may by found be

examining matching amounts and vice-versa.

4

As errors are found and corrected on the screen, the editor generates updated clearance

and issuance records. Updated clearance records (and merged records) are normally used

to print a letter to the bank, requesting an update to the bank's records, but some of the

discrepancies re
ect errors in the optical scanning process, instead of errors printed on the

bank statement. To solve this problem, the editor supports a view of updated records,

showing both the original and updated versions. From this viewpoint, the user can edit

either version or simply delete the update, which amounts to copying the current version

onto the original version.

The goal of the reconciliation process is to eliminate all unmatched clearances. In other

words, the bank should not have cleared any checks that have not been issued. Once this

is done and reports printed, the matched records are purged from the �le, leaving only

unmatched issuances. These records are carried forward to the next reconciliation.

Correcting Scan Errors

Optical character recognition introduces many errors. The editor uses a minimum-edit-

cost error correction algorithm due to Myers [M88,MM89] to correct scanned input lines

to the closest instance of a regular expression that describes lines of the bank statement.

Many errors are simple substitution errors, such as replacing \5" with capital \S", but

other errors are more complex. The scanner sometimes inserts extra spaces into numbers,

for example, changing \45.90" into \4 5.90". Such errors would be di�cult to correct with

an editing script and, if allowed to remain, would complicate the problem of parsing the

input correctly. The correction process takes a maximum correction cost, and it rejects any

line on the bank statement that requires more. Correction therefore solves three problems.

It corrects most optical recognition errors. It ensures that the editor sees at least legal

(if not actually correctly scanned) input, which obviates parser error recovery. Finally, it

passes on the important detail lines of the bank statement and rejects other extraneous

information.

The error correction system begins by constructing a state-labelled �-NFA from the regular

expression. A state-labelled NFA labels the states of the NFA instead of the edges, so that

all edges into a given state transit on the same character.

For each input string S of length L, the system then �lls in a rectangular array V [L+1;N],

where N is the number of states in the NFA. V [i; p] gives the minimum cost of consuming i

characters of input and driving the NFA into state p. The following account uses �(p; c)! q

to mean that the NFA has a transition from state p on character c to state q. Because the

NFA is state-labelled, the label on state q (denoted L(q)) must in this case be c.

The description below uses Cc;d to denote the cost of correcting the character c to the

character d. The cost of deleting c is given as Cc;�. The cost of inserting c is given as C�;c.

The system �lls in cells in order of increasing cost. V [i; p] is the least cost of the following

5

di�erent ways of driving the NFA into state p after consuming i characters; these costs

model deletion, insertion, correction, NFA �-moves, and correct matches respectively:

V [i; p] =min

8>>>>><
>>>>>:

V [i� 1; p] + CS[i];�
V [i; q] +C�;L(p) where �(q; L(p))! p

V [i� 1; q] + CS[i];L(p) where �(q; L(p))! p

V [i; q] where �(q; �)! p

V [i� 1; q] where �(q; S[i])! p

The NFA begins in state 0, having consumed no input and incurred no cost, so V [0; 0] = 0.

The NFA is constructed with one �nal state F , and the system uses Dijkstra's shortest-path

algorithm [D59] with discrete costs to �nd the value of V [L;F].

Correction of most scanning errors is necessary for optical scanning to be successfully used

to reconcile bank statements. The system described is used routinely at a company issuing

approximately three thousand checks per month.

A Di�erential Source Editor

Those engaged in substantial software projects �nd it useful to maintain copies of varia-

tions of certain software entities within the project. Software entities are �les containing

programs, parts of programs, or data associated with the project.

The variations on these �les arise in two distinct ways: as historical revisions of a piece of

software or as alternatives to a piece of software.1 The former represents a record over time

of the changing state of a program. The latter represents concurrent, competing instances

of a program. The editor treats revisions and alternatives uniformly.

Variations of a program are the result of requirements to write software that is expected

to operate in more than one distinct environment. This occurs, for example, if the result

of a software project is expected to execute on machines running VMS and on machines

running UNIX. As soon as a piece of software achieves a reasonable size or more than a

little complexity, it becomes unlikely that a single, uniform source code will produce an

appropriate executable image for both platforms.

In many software development environments (e.g. C/UNIX), alternative source code for-

mulations can be accomplished through the use of conditional compilation. This is accom-

plished by including additional statements in the source that cause portions of the source

to be �ltered out when it is run through a \preprocessor." This is a well known paradigm

in the sphere of program compilation.

It is our purpose here to look at the potential bene�ts of an editor that takes this same

approach to conditionally included text.

1Backup copies of a piece of software could be considered a third, although they, notably, are not variations.

6

It is common practice to manage the portability of a software project through the use of

conditional compilation. This may be applied to situations as simple as that of the BSD

vs. SysV dispute over strings.h and string.h or as complicated as adapting a program to

both curses and to MS-DOS. Figure 1 shows a simple example of how this is accomplished.

#ifdef BSD

#include <strings.h>

#else /*SYSV*/

#include <string.h>

#endif

Figure 1. An example of conditional compilation

The lines beginning with a `#' character are meaningful to the preprocessor program. The

preprocessor determines the disposition of lines of source text bounded by such lines based

on the value of the variable speci�ed in the condition. These conditional variables are, in

turn, set either by other preprocessor statements (e.g. #define VAX) or as a command

line option to the compiler.

This is a simple and appealing method for maintaining the bulk of the code associated

with an application in a single location while isolating the speci�cally variable features

of the code. It is realized through the extension of the preprocessor phase; which o�ers

considerable additional functionality (e.g. macro expansion and external text inclusion).

Thus, while it is not obtained without cost, it does not represent a major addition to the

processing or to the number of �ltering steps associated with compilation.

Traditionally, use of this conditional inclusion/compilation approach has involved the use

of any available editor to create and modify the source text. Such standard editors take

no notice of the nature of the target �le other than that it is a string (or strings) of

printable characters. Thus a developer sees a, possibly, quite di�erent view of the text

of a program using an editor than that seen by a compiler. The compiler, of course, will

see the \preprocessed" version of the program; which among other changes, may have

conditionally bounded portions of the text omitted.

It has been the purpose of this investigation to construct and evaluate the utility of an

editor that allows the developer's view of source text to, more nearly, equate to that of the

compiler. Our editor incorporates a preprocessor similar to that used in the compilation

process to accomplish this. Using command line speci�cations a user selects the view(s)

of the source that are of interest. In essence, a user is allowed to edit the \VMS" version

of the program, for example, without seeing \alternate" code associated with a parallel

7

\UNIX" or \MS-DOS" versions. This approach supplies a very di�erent view of the source

code and raises some interesting questions with regard to editing.

This section details the design of a di�erential editor that includes features to facilitate

maintenance of multiple versions of programs written in the C language. Versions of

programs are maintained within a single source �le, which can be edited directly by the

programmer and processed directly by the compiler. The programmer can view one version

of the source �le, as with other tools. She can also view several or all versions simultane-

ously. If two versions are identical except for formatting di�erences, the programmer can

merge them back together easily.

Approach

The constructed system consists of three parts: a preprocessor, an editor, and a postpro-

cessor. There is no substantial reason for the three to be separate pieces of software. In

a production environment they could and would be combined into a single tool. For pur-

poses of design and evaluation, however, some advantage is obtained from keeping them

separate.

The preprocessor associated with the editor is an altered version of that associated with

the compiler; in this case the cpp program used by the UNIX C compiler. It di�ers in several

signi�cant ways from the compilation preprocessor. It performs no macro subsitution or

external text inclusion. Nor does it actively �lter out any text lines as does the compilation

preprocessor. Instead, the editor preprocessor prepends status information to each line

before it passes the line to the editor.

The editor used in this investigation is a modi�ed version of the vi editor associated with

UNIX. This editor, known simply as S or the S editor, is described in [M87]. This editor

was selected because of its familiar semantics, its small size, and the availability of the

source code.

The potential for inducing inconsistencies through the interleaving of #ifdef's and

#endif's or through the omission of same is very real when using a standard editor to

manipulate a source text �le. One of the design goals for the conditional editor was to

overcome this de�ciency and insure that the editor would not allow such inconsistencies to

exist past a write of the target �le. An independent, consistency checking postprocessor

was added to the editor to satisfy this need.

The Preprocessor

The �rst of the three logical parts of the conditional editor is the preprocessor. In a

single tool model of this software the preprocessor would be integrated into the �le read

facility of the editor itself. Maintaining it as a separate program greatly reduces the

8

modi�cation necessary to the editor code, and the interface remains relatively unchanged.

The preprocessor must associate with each input line information that the editor can use

when deciding which lines to display and which not to display.

The preprocessor does not do any macro substitution. In this regard, the conditional

editor does not provide the developer with the same view of a source �le as that seen

by a compiler. Clearly, inclusion of such items would clutter the user's view and defeat

the purpose of such features. It was felt that those few instances in which a developer

(debugger) needs to see these things are better served by saving the compiler preprocessor

output.

A separate �le (.versions) supplies the command-line arguments to the preprocessor that

yield each di�erent version. This �le can contain de�nitions of preprocessor variables and

it can adjust the order in which directories will be searched to satisfy #include statements.

Figure 2 gives an example of a .versions de�nition �le.

UNIX L -DUNIX=1 -I./unixinclude -I/usr/include

CPM L -DCPM=1 -I./cpminclude -I/usr/include

DOS U -DDOS=1 -DINTSIZE=16 -I./dosinclude -I/usr/include

COFFSMALL U -DUNIX=1 -DINTSIZE=16 -DPTRSIZE=16 -I./unixinclude -I/usr/include

COFFBIG U -DUNIX=1 -DINTSIZE=16 -DPTRSIZE=32 -I./unixinclude -I/usr/include

PORT L -DPORT=1

Figure 2. An example .versions de�nition �le

Each version can be locked against updates if desired (the L in the second column of the

�gure). The �gure describes versions for di�erent operating systems. The same technique

is used to describe di�erent revisions of the same program text. The editor command line

allows the user to specify which versions are to be displayed and which versions can be

updated (a subset of the unlocked versions). If all versions are displayed and updated, the

e�ect is that of a normal text editor { the user will see conditional compilation delimiters

(#ifdef, #else, #endif, etc.) marking the lines that are unique to each di�erent version.

If the user elects to edit just one or two versions, the conditionals and unique code for the

others will be tagged for suppression of display.

The editor disallows changes to read-only versions. If, for example, the user is allowed to

update version 2 but not version 1, an attempt to update a line common to both will cause

the editor to insert preprocessor commands to separate the two versions. In the example

above, the user will not be allowed to update the UNIX, CPM, and PORT versions because

they have been locked. Because all versions are available simultaneously, users can easily

move code from one version to another (i.e. to �x a common bug, or to move a bug �x

from an experimental version into a release). Users can easily make the same change to all

versions (for example, to change the name of a global variable in all versions). Users can

also compare versions and suppress display of non-pertinent versions.

To handle all versions in parallel, the preprocessor is equipped with a \parallel symbol

table" that holds di�erent values of preprocessor symbols for each version, and parallel

9

conditional expansion logic to produce a tag for each line in the �le that describes which

versions that the line belongs to. The tag is a bit vector describing which versions are active

at the time that the line is scanned. The parallel symbol table contains preprocessor names,

de�nitions, and tags that list the set of versions for which the given name has the given

de�nition.

The Editor

The S editor is a well written, well documented text editor that conforms very nicely to

the command semantics of vi. It is in the public domain and the source code is readily

available.

Users request incompatible capabilities from version editors and so some alternative designs

were explored. Some users like to suppress all but one version of the source �le but state

a preference for edits applying to all versions. This capability is useful if the source is

heavily #ifdef'ed but consists mostly of lists of alternative implementations on di�erent

platforms. The code for uucp and the GNU C Compiler gcc are examples of such. Other

users feel that such updates would be unsafe as they would a�ect invisible code, and that

any changes to visible and writable code should not a�ect unseen code. This alternative

seems preferable for historical revisions and for any complex conditional code. The �rst

style has a problem if the user inserts a line between two visible lines that have some

hidden lines between them (Figure 3); does the new line get inserted above or below the

hidden text?

Visible line one.

#ifdef H1 /* this conditional hidden */

Hidden line.

Hidden line.

Hidden line.

#endif

Visible line two.
Figure 3. Visibility problem

The second style has the same problem but in this case it doesn't matter because any

new insertion does not update hidden versions. If versions V1 and V2 are active then any

insertion will be quali�ed, so the result will either be that of Figure 4 or the two conditional

sections could be swapped, but they are mutually exclusive so their order is immaterial.

Both styles could be accomodated if desired; we chose the second style as being safer.

Little had to be changed in the editor code to allow it to accomodate the modi�ed input

provided by the preprocessor. The changes were con�ned to the text storage module and

to the text display module.

The editor maintains text lines on a doubly-linked list. The text display module was

augmented to skip over hidden lines by threading together visible lines on a separate list;

this makes screen display e�cient.

10

Visible line one.

#ifdef H1 /* this conditional hidden */

Hidden line.

Hidden line.

Hidden line.

#endif

#if defined(V1)|defined(V2)

New inserted line.

#endif

Visible line two.
Figure 4. Visibility problem

The text storage module was augmented in a similar manner to the preprocessor. The

commands to insert, delete, and update lines were augmented with a bit vector telling

which versions are subject to the update. The module preserves lines that apply to any

version, and it merges together adjacent identical lines that apply to more than one version.

The account thus far has ignored a complication in that \versions" are not actually recog-

nized by the preprocessor commands used (#ifdef et al), which instead recognize prepro-

cessor variables. Thus there is a level of indirection between versions and the generated

tests, and the editor must search for an appropriate expression to test. This can actually

be impossible; nothing guarantees that two versions actually de�ne anything di�erently,

and the editor will issue an error in that cases. The editor could easily be extended to

allow convenient access to all versions that de�ne a particular preprocessor variable, and

MACH maintainers could easily edit 10 UMA versions without messing up (or even seeing)

the NUMA versions. If only one version is visible all #ifdef's are suppressed and the user

can edit without regard to whether the code being edited is conditional or not.

The Postprocessor

Before the �le is written out it is processed by a program similar to the initial preprocessor.

Instead of creating version tags, however, the postprocessor compares the existing version

tags with the tests that exist in the bu�er. When they are inconsistent, the postprocessor

inserts and deletes preprocessor tests as necessary. This technique allows the user to supply

the test that will be used, or to defer and allow the editor to create a test, and still protect

un-edited sources.

Post-processing also checks the consistency of conditions. Users of the conditional editor

are less prone to introduce conditional errors because they see fewer conditionals. But

the consistency of matching pairs of preprocessor statements is easy to check, and adding

such a check to the output module of the editor is simple. The cost of doing such checks

when the target �le is written by the editor is o�set by the detection of simple errors at

the earliest possible point, thus avoiding having to track them down at a (possibly much)

later compile time.

Finally, the postprocessor attempts to simplify the conditionals contained in the bu�er.

11

That is, it is quite possible with any editor to arrive at code that looks like the following:

#ifdef UMA

: : : (text A) : : :

#endif UMA

#ifdef UMA

: : : (text B) : : :

#endif UMA

where this is simple enough to detect and correct, leaving the user with a cleaner �le and

one less worry.

Several simple patterns fall into the same category as that shown above and can be detected

and corrected inexpensively. Examples include empty conditional blocks, blocks bounded

by TRUE, and nested blocks that contain identical conditionals. Note that in no case is

source text removed. Only preprocessor statements are a�ected, always without impact to

the semantics of those conditionals.

Observations

The conditional editor constructed for this investigation can be substituted directly for the

S editor without any e�ect on average users. Its behavior in the absence of preprocessor

conditional statements is identical to an unaltered version of the editor. This is in no

way a result of the nature of the S editor. It would remain true for any standard editor

we can imagine. This is a testiment to the simplicity and low impact of the necessary

modi�cations.

When used in an environment in which conditional compilation is used for maintaining

program variants its functionality emerges.

Experience and Summary

This paper describes a consistent editor-based paradigm (a di�erential editor). The

paradigm is useful in any environment that requires accounting for discrepancies in a

large number of records. Di�erential editing involves parallel display of more than one

version of a dataset, automatic matching, and support of several viewpoints. Two editor

implementations exemplify the utility of this paradigm.

References

[D59] E. W. Dijkstra. \A note on two problems in connexion with graphs", Numerische

Mathematik, 1:269-271, 1959.

[FM87] C. W. Fraser and E. W. Myers. \An Editor for Revision Control." ACM Trans-

actions of Programming Languages and Systems Vol. 9 No. 2 (1987), 277-295.

12

[HPR89] S. Horwitz, J. Prins, and T. Reps. \Integrating Noninterfering Versions of Pro-

grams." ACM Transactions of Programming Languages and Systems Vol. 11 No. 3 (1989),

345-387.

[MM89] W. Miller and E. W. Myers. \Approximate Matching of Regular Expressions."

Bull. Math. Biology 51,1 (1989), 35-56.

[M87] W. Miller. \A Software Tools Sampler", Prentice-Hall, Englewood Cli�s, New Jer-

sey, 1987.

[M88] E. W. Myers. Personal communication.

[N88] D. W. Nachbar. \SPIFF { A Program for Making Controlled Approximate Compar-

isons of Files" Proceedings of the USENIX 1988 Summer Technical Conference, pp. 73-84,

USENIX Association, San Francisco, California, June 1988.

13

