
Department of

Computer Science

The VISA User's Guide

Matthew Haines and Wim Bohm

Technical Report CS-93-102

March 10, 1993

Colorado State University



The VISA User's Guide

Matthew Haines� Wim B�ohm

Computer Science Department

Colorado State University

Fort Collins, CO 80523

March 8, 1993

Abstract

Programming distributed memory systems that lack a single addressing space remains a

di�cult task at best. The VISA system provides the user (or compiler) with a single addressing

space that can be shared among the participating nodes. Access to the system is provided

through a set of VISA primitives that control all aspects of the VISA space, from allocating

memory to accessing data to freeing memory. This document explains how the VISA system

is organized and how the primitives operate.

1 Introduction

Large-scale distributed memory multiprocessors represent the current state-of-the-art in high-

performance architectures, yet software support for these complex machines still lags. It is often

necessary for a programmer to explicitly specify the creation and distribution of parallel threads

(i.e. code segments) using a sequential language that has been augmented with library calls

for managing parallel threads of execution. And for distributed memory multiprocessors that

lack hardware support for a single addressing space, the programmer must also divide the data

structures among the distributed memories (called data decomposition), and provide the message

passing necessary for sending and receiving remote values needed for local computation. Moreover,

�Supported in part by a grant from Sandia National Laboratories



to reduce unnecessary remote references, the programmer must match the distribution of data

with the distribution of threads to maximize local references. This requires the ability to match

the decomposition with the expected access pattern of the program, resulting in the need for

general decompositions. Clearly this is a di�cult task for even the most basic application, and,

in an ideal world, should not be left to the programmer to solve.

Though most parallel programming languages do not provide support for data decompositions

[10], there has been some recent e�ort to remedy this neglect. FortranD [6] and other Fortran

extensions [1, 15] augment Fortran with statements that allow the programmer to specify a

limited number of decompositions, and the compiler then uses this information to generate a

data-parallel program with implicit message passing for sending and receiving remote values.

While this approach has proved useful for many scienti�c applications, it su�ers from three 
aws

that keep it from being widely utilized. First, this strategy is based on extensive data dependence

analysis that requires very regular (i.e. predictable) computations and data structure references to

be successful. Symbolic subscript terms with unknown values, coupled subscripts, and nonzero or

nonunity coe�cients of loop indices often make dependence analysis impossible for even the most

sophisticated parallelizing compilers [14]. Second, this technique requires that data structure

sizes and the number of processors to be used be known at compile time, which restricts the

ability to run the application using varying parameters without re-compilation each time. Third,

this approach requires a very intelligent compiler that is often not available on a given system,

and when provided, forces the programmer to use a speci�c language. Thus this approach is not

language-independent. Other parallel languages either provide similar support for decompositions

that are used by the compiler to generate data parallel programs [7, 8, 12], and thus su�er the

same problems as the FortranD approach, or lack the ability to control decomposition altogether

[3].

Another approach to simplifying the problem of programming distributed memory machines is

to utilize underlying support for a single addressing space. This is most commonly provided by

either the operating system (often termed distributed shared memory) or the hardware. These

DSM systems [2, 9, 11] provide a single addressing space to the compiler so that the programmer

can code in a shared-memory fashion, leaving the details of data decomposition and message

passing to the operating system. Decomposition occurs by dividing the data structures among

the DSM pages that will be exchanged when attempting to access a page that is not local. Caching

techniques are used to increase the availability of these pages, but this enhancement comes at the

cost of expensive coherence protocols. The main disadvantage of these systems is the inability

to control the decompositions so that the data can be matched to the threads. Another problem

with this approach is false sharing, in which values from two di�erent data structures are placed

on the same page, and thus access to these values must be mutually exclusive although they are

really independent of each other.

Our approach, which we call VISA, is similar to the DSM approach in that we provide a single

addressing space to the compiler, but di�ers from the DSM approach in that we provide the

2



Source Program VISA Calls

Native Compiler

VISA Runtime Library

Message Passing AbstractionObject Program

Figure 1: Overview of the VISA system

ability to control decompositions, similar to the language approach, and eliminate false sharing

by reducing the granularity of the page to the size of each individual data structure. The result is

a language-independent method for providing the programmer with a shared-memory paradigm

while exposing the decomposition of data so that it may be altered to reduce remote references,

thus improving performance. Currently, VISA is running atop the Vertex 3.0 operating system

on the nCUBE/2 multiprocessor.

The remainder of the paper is organized as follows: Section 2 provides an overview of the VISA

addressing space and the supporting system. Section 3 describes the data structures used to

control and access the VISA space. Section 4 outlines the VISA interface functions, and Sec-

tion 5 describes the currently-de�ned data mapping functions. We conclude and outline future

enhancements in Section 6.

2 The VISA Single Addressing Space

VISA is a runtime system that provides a single addressing space and general data decomposition

functions to the programmer or compiler. The interaction of the VISA system with the other

language components is depicted in Figure 1. The programmer (or compiler) augments a parallel

program with VISA primitives for allocating and referencing the data structures to be kept in

the single addressing space. Local variable references are una�ected by the VISA system. The

augmented program is then compiled using the native language compiler of choice, and linked

with the VISA library to create the object program, which can then be executed on a distributed

memory multiprocessor. All message passing for handling remote references is handled implicitly

3



by the VISA system through the use of a message passing abstraction that is included in the

VISA library.

2.1 The Message Passing Abstraction

The VISA system relies on an underlying message passing abstraction to support both syn-

chronous (blocking) and asynchronous (non-blocking) operations. Since these operations are

provided by most host operating systems for distributed memory multiprocessors, VISA can be

easily ported to another multiprocessors by simply modifying the message passing abstraction to

make the proper native calls.

Speci�cally, the abstraction supports the following operations:

� WriteMsg, a non-blocking send abstraction, designed to provide point-to-point commu-

nication. We can use this primitive to build higher-level abstractions such as broadcast and

multicast.

� ReadMsg, a blocking receive abstraction, designed to provide explicit synchronization

when reading a remote value. Selective message screening can be accomplished using a

message key, which is composed of a message type and sender/receiver designator.

� MsgInterruptHandler, an implicit non-blocking receive abstraction, designed to provide

asynchronous message reception. Asynchronous message reception requires polling at some

level to determine when a message arrives and take appropriate action. Most systems,

including the nCUBE/2, provide hardware polling for incoming messages, resulting in a

hardware interrupt that is caught by the operating system, and then passed into the user-

level in the form of an interrupt, which can be caught by user-level programs. Therefore

VISA traps the interrupt caused by an incoming message and invokes a routine called the

message interrupt handler to deal with the incoming message. After taking appropriate ac-

tion, the interrupt handler returns to the instruction that was executing when the interrupt

occurred. If the interrupt handler is allowed to be invoked at any arbitrary time, it cannot

be allowed to modify the global state of the computation. However, since VISA messages

do modify the global state, such as in adding an element to a global structure, the interrupt

handler must be selectively disabled during the times when these global structures are ac-

cessed. Thus, VISA provides a mechanism for enabling and disabling the interrupt handler

so that a consistent global state can be maintained. This mechanism is provided through

the BEGIN CS (begin critical section) and END CS (end critical section) primitives.

Built atop this message passing abstraction is the VISA system, providing a single addressing

space and general data decompositions to ease the burden of distributed programming while

4



VISA Addressing Space

MemoryMemoryMemory

LocalLocalLocal

ProcessorProcessorProcessor

Memory

Local

Processor

...

Figure 2: The VISA Addressing Space

at the same time provide explicit control over the distribution of data, which is necessary for

achieving good performance over a variety of data access patterns.

2.2 The Single Addressing Space

One of the main goals of the VISA system is to provide a single addressing space over a set of

distributed memories, so that compilers that assume a shared addressing space is available, such

as the Sisal compiler, can be implemented on distributed memory multiprocessors. To create

the shared addressing space, each node reserves a portion of local memory to be contributed

to the VISA system, resulting in a distributed addressing space for storing shared data (see

Figure 2). The VISA system then assigns each shared data structure a virtual address that

corresponds to this addressing space. This, in turn, results in the data structure being divided

among the memories, such that each memory \owns" a portion of the data structure. Ownership

is necessary to implement the VISA update protocol, owner-writes, in which the ownership of

a data structure element (or portion) is �xed, and only the owner is allowed to update the

portion it owns. However, to increase availability of certain data structures, replication of any

VISA data structure is supported, though the user is responsible for ensuring that all copies are

consistent. This eliminates the need for implementing costly coherence protocols especially when

implemented in software.

2.3 Data Distribution with Mapping Functions

Informally, the problem of data distribution (or decomposition) is to divide the data structures

that a program uses among the memory elements so as to minimize certain desired measures, such

as total execution time or number of remote references. For a shared memory multiprocessor,

this becomes a trivial task, since the placement of a data structure does not (or should not)

e�ect performance in a shared memory system (by de�nition). However, for non-shared memory

5



multiprocessors, such as distributed memory multiprocessors, data distribution becomes a more

serious concern. There are two important points to be made about data distribution for a

distributed memory multiprocessor:

1. The time required to access local memory is typically an order of magnitude less than the

time to access remote memory. Therefore, if no attempt is made to tolerate latency, opti-

mal execution time occurs only when all data references are local. However, this is clearly

not possible. For example, it is possible that every processor will need every element of a

data structure. If the data structure is to be distributed, then clearly some processors will

not have local access to the elements they need. Another problem occurs when the refer-

ence pattern is unknown at the time of distributing the data. Also, some interconnection

networks (e.g. ring) have faster access times to neighboring nodes than to distant nodes.

For these non-uniform access machines, non-local data references should be on neighboring

nodes as opposed to distant nodes. Again, this is not always possible.

2. The principle of locality states that memory references are grouped together in both space

(spatial locality) and time (temporal locality). This implies that if we reference a particular

data item, then there is a good probability that we will issue a reference for the same data

item very soon (temporal locality), or we will reference another data item that is physically

close to the original reference (spatial locality).

If we combine these points, then we have the outline for a data distribution scheme:

� Determine the access pattern.

� Distribute the data so as to maximize the local references.

� Distribute the non-local references so as to maximize the neighboring references (only if

there is a discrepancy between neighboring and distant access latencies).

� If a reference is remote, then attempt to either make the reference local in the future, or

try to make references to related items local in the future, or both.

This distribution scheme takes advantage of the observations that were made about the behavior

of distributed memory multiprocessors and their programs, but does not address the feasibility

of the approach. Of the assumptions made, the ability to determine access patterns is by far the

most idealistic. This is re
ected in the current alternative methods being used for distributing

data structures:

� The compiler controls the distribution of data structures. This is the approach taken by

the parallelizing compiler camp [4, 15]. The basic idea is to distribute the data structures

6



according to some distribution function, and then to analyze the array subscripts to deter-

mine whether or not, for a particular thread, a given reference is local or remote. If the

reference is remote, the the appropriate communication primitives are generated to retrieve

the value at runtime. The distribution functions are formalized so that a compiler can make

sense of them, and this formalization is equally useful when considering other approaches.

� The compiler controls the distribution with the help of the programmer. This approach is

an extension to the compiler controlled approach in that the programmer helps the compiler

in identifying the data access patterns by the use of pragmas, which are source level compiler

directives. Since the programmer may have a better idea as to how the data will be accessed

[6], most compilers that perform the data distribution for the programmer will accept these

\hints" so that the proper data distribution function can be selected.

� The compiler controls the distribution with the help of run-time pro�les [13]. Again, this

approach attempts to help the automated distribution process, but rather than have the

programmer tell the compiler how the data will be accessed, the compiler simply \watches"

several characteristic runs and notes the distribution patterns used for those runs. The

compiler then selects a distribution function that will come closest to this observed reference

behavior. The advantage this approach has over the pragmas is that the programmer may

be unaware of the reference pattern, and thus be unable to help with the distribution.

The disadvantage is that if the pro�led runs are not characteristic of the actual reference

patterns, or if the reference patterns vary with the input data, then this approach may be

misleading.

� The programmer controls the distribution explicitly. Since all of the above techniques

require intelligent compilers that are not always (or often) available, a common technique

for distributing data is for the programmer to explicitly distribute the data and then insert

the appropriate communication primitives into the source code, all \by hand." Though

this approach requires very little software support (only the message passing interface is

needed), the user is required to determine the access patterns and then distribute the data

accordingly using explicit message passing primitives. Clearly this contradicts the e�orts

of raising programming to a higher level of abstraction.

The VISA approach to this complex problem is to provide a comprehensive set of mapping

functions that are representative of common scienti�c data access patterns, and allow for the

user to create new mapping functions as needed. The mapping function is then speci�ed upon

requesting memory from the single addressing space using the visa malloc function. This allows

a compiler that is generating the VISA primitives to invoke visa malloc with the desired mapping

function, either obtained from analysis or through user directives. Likewise, a programmer using

the VISA primitives directly can select the desired mapping function for each data structure

without having to specify the actual message passing details necessary for implementing such

a distribution scheme. A complete list of the currently de�ned mapping functions is given in

Section 5.

7



Field Function

low range The base (lowest) address for this data structure

high range The highest address for this data structure

local base The o�set to the desired element

nelems The number of elements in this data structure

size The size of each element in this data structure

blocksize The blocksize (elements per block) used for distribution

start node The node ID on which to begin distributing the blocks

stride The stride at which to distribute the blocks

replicate A boolean to determine if this data structure is replicated

next A pointer to the next entry in the table

Table 1: Description of a range map entry

3 VISA Data Structures

3.1 The Range Map

In order to support general data decompositions, each VISA data structure must have associated

information to enable address translation \on-the-
y", which is needed in the general case when

data structure sizes and processor con�gurations are not known at compile time. Thus, at the

heart of the VISA addressing system is the range map data structure, which stores the information

necessary to perform an address translation. Table 1 depicts the �elds of a range map entry.

We call it a range map because we associate only one entry for each VISA data structure, which

we can do since every VISA data structure is allocated a contiguous segment of the VISA space,

so all addresses falling within a speci�ed range (low range : : : high range) necessarily belong to

a speci�c data structure. This allows us to store information about each data structure rather

than having to store information about each VISA address. We now describe how these �elds are

used in the address translation process.

3.2 Address Translation

In theory, the VISA addressing space is a single addressing space, similar to a shared memory

addressing space for a workstation. However, in reality, just as the workstation hardware must

translate each address to determine which memory chip and o�set the address is referring to, the

8



nelems
size
blocksize
start_node
stride
replicate

local_base
high_range
low_range

VISA Address
Lookup Translate

Range Map Table

Node, Offset

Range Map Entry

Figure 3: VISA Address Translation Diagram

VISA system must translate each VISA address into a corresponding processor memory and local

o�set. Central to the address translation process (depicted in Figure 3) is the concept of blocksize,

which de�nes the granularity (in terms of data structure elements) of the data decomposition.

Each VISA data structure is divided into blocks of size blocksize, and distributed among the

nodes, starting with start node and continuing with a stride of stride until all of the blocks

have been distributed. By varying the control parameters (blocksize, start node, and stride),

we can implement various mapping functions, as further explained in Section 5.

Once the data structure blocks have been distributed among the nodes, address translation can

proceed as follows:

� Starting with address, which is the VISA address of the desired datum, we subtract the

low range, resulting in a relative element position:

element = address - low range.

� Next we compute which of the blocks contains the element we are interested in:

block = element / blocksize.

� Next we calculate the o�set within a block where the element is located:

block offset = element mod blocksize.

� Now we can compute the actual node ID that contains the block (and hence the element)

that we desire. If the replicate 
ag is set, then the computed node is always the local

node ID, indicating that each node has a copy of the desired block. Otherwise, we compute:

node = (start node + (block * stride)) mod P,

where P is the number of nodes.

� If the number of blocks is greater than the number of nodes, then some nodes will have

more than one block allocated to them. To determine which of the local blocks contains

the element we are interested in, we compute:

node block = block / P.

� Now we compute the actual o�set of the desired datum within the node:

offset = node block * blocksize + block offset.

9



� Finally, if the computed node matches the local node ID, then we can adjust the offset

to point to the actual datum in local memory by adding the local base to the previously-

computed offset:

offset += local base.

The translation process yields a node and offset for the given VISA address. If the computed

node matches the local node ID, then the computed offset points to the actual position in local

memory where the desired datum is located. However, if the computed node is not local, then

the computed offset is not valid since it was computed using the wrong local base. Therefore

we send a message to the speci�ed node (send VISA REQUEST), requesting that the desired

datum be retrieved from its local memory and sent back, where we will be waiting for it (receive

VISA REPLY).

The disadvantage of this translation process is that the control parameters need to be looked-up

for each address translation, since the control parameters can vary for each VISA data structure.

This can be an expensive process when the result is a local reference, and so we have implemented

an optimization that avoids translation when the data structure is guaranteed to be local, and is

discussed further in Section 4.

The alternative to this variable control parameter scheme is to have a �xed blocksize, start pe,

and stride for every data structure, then the address translation calculations can proceed directly

from the information provided in the virtual address bits. We implemented this �xed addressing

scheme as a VISA runtime option, and found that although translation proceeds at a faster rate,

the �xed control parameters often causes mis-alignment with the parallel loops accessing the

data structures, resulting in excessive remote references and severely degraded performance [5].

Therefore we opt for the ability to avoid latency by providing 
exible data distributions that

can easily be matched to the access patterns of the parallel loops. This requires that each data

structure have its own set of control parameters, and that these parameters be fetched for address

translation.

4 VISA Access Functions

We now introduce the VISA access functions, which can be classi�ed into two main categories:

routines for allocating and deallocating VISA space and routines for accessing VISA space. We

also introduce a special function designed to help avoid the address translation for variables that

are always local.

10



4.1 Allocating and Deallocating VISA Space

� V ADDRESS visa malloc (int nelems, int size, map function map, int map arg)

This function allocates a block of VISA space (nelems * size bytes), which will be distributed

according to map, and returns a pointer to the start of the allocated space.

� void visa free (V ADDRESS address)

This function returns the given portion of VISA space to the free pool.

4.2 Accessing the VISA Space

� char visa get c (V ADDRESS address)

This function returns the desired character value from the given VISA address.

� int visa get i (V ADDRESS address)

This function returns the desired integer value from the given VISA address.

� 
oat visa get f (V ADDRESS address)

This function returns the desired 
oating-point value from the given VISA address.

� double visa get d (V ADDRESS address)

This function returns the desired double 
oating-point value the given VISA address.

� void visa get m (POINTER data, V ADDRESS address, int size)

This function copies the block of data starting at the given VISA address and for a length

of size into the location pointed to by data.

� void visa put c (char value, V ADDRESS address)

This function places value into the given VISA address location.

� void visa put i (int value, V ADDRESS address)

This function places value into the given VISA address location.

� void visa put f (
oat value, V ADDRESS address)

This function places value into the given VISA address location.

� void visa put d (double value, V ADDRESS address)

This function places value into the given VISA address location.

� void visa put m (POINTER data, V ADDRESS address, int size)

This function copies the block of data pointed to by data into the given VISA address

location.

11



� void visa update c (uchar reduction, char value, V ADDRESS address)

This function updates the value stored in the given VISA address with value. The reduction

argument speci�es how the update is to be performed, and the current values for reduction

are V SUM and V PRODUCT.

� void visa update i (uchar reduction, int value, V ADDRESS address)

This function updates the value stored in the given VISA address with value.

� void visa update f (uchar reduction, 
oat value, V ADDRESS address)

This function updates the value stored in the given VISA address with value.

� void visa update d (uchar reduction, double value, V ADDRESS address)

This function updates the value stored in the given VISA address with value.

4.3 Optimizing VISA Addresses Translation

In Section 3.2 we introduced the VISA address translation process, which consists mainly of

�nding the appropriate range map entry for a given address and performing a few calculations

using the control parameters from the range map entry, resulting in a computed node and offset.

For remote references, this translation time is small compared to the time required to fetch the

remote value. However, for local references, this translation time is larger than the actual time

required to perform a true local reference. Many times these remote references are always local,

such an for replicated data structures or blocks of data that are entirely owned by a processor.

When this is the case, we can replace the base VISA address to this data structure with the

actual local o�set of the data, so that future references to this VISA structure can occur without

translation, and thus at about the same rate as a true local reference.

The local o�set that replaces the VISA address must be tagged so that the VISA routines know

that this is not a VISA address but the real local o�set, and thus bypass the translation process.

Currently this tag consists of setting the second high-order bit in the address, which places the

actual o�set outside of the possible range of VISA addresses.

To perform the optimization, the following conditions must hold:

� The runtime parameter for allowing optimization (-vo) has been set.

� The address has not already been optimized.

� The computed node for the address matches the local node ID and the given address is the

base address for this structure (i.e. address = low range).

� The entire structure is local (i.e. blocksize == nelems).

12



� The address is not going to be passed to another node.

When all of these conditions hold, it is safe to replace the VISA address with the actual computed

offset. With the exception of the last, these conditions are checked by the visa optimize

routine, and if any fail, the original VISA address is returned as the result of the optimization.

The last condition, that the address not be sent to another node, is enforced by the placement

of the visa optimize routine in the code.

� V ADDRESS visa optimize (V ADDRESS address)

This routine attempts to replace the given VISA address with the actual computed offset

so that future references to this data structure can occur without translation.

5 VISA Data Mapping Functions

A data mapping function describes how a data structure is to be distributed among the par-

ticipating memories. More formally, data mapping functions can be de�ned as follows: let D

be a data structure with elements e1 : : :en, and M a distributed memory multiprocessor with

processors P1 : : :Pm, each processor with a local address space A available for sharing and with

local addresses a1 : : :al. We de�ne a mapping function F : D ! M � A for each element e 2 D,

as the set of (Pi, aj) pairs that will receive a copy of e, such that 8e 2 D; F(e) 6= ;. That is,

every element must be mapped to some local address of some processor. A distribution func-

tion F is non-replicating if 8e 2 D; j F(e) j = 1. A distribution function F is replicating if

9e 2 D; s:t: jF(e) j > 1.

The principle of locality states that memory references are grouped together in both space (spa-

tial locality) and time (temporal locality). We attempt to exploit locality and minimize remote

references by providing general mapping functions that can be used to align data references with

the parallel loop slices that access the data.

Each data structure is allowed to have a di�erent mapping function, since it is unlikely that

all data structures in a program would bene�t from the same mapping function. For example,

control structures might be allocated using a replicate map so that each processor has local

access to the structures, an array might use a block map mapping function so that the array is

divided into blocks and distributed among the processors for e�cient parallel access, and a shared

counter would be implemented using a scalar map to ensure consistency. Each of these maps is

implemented by varying the control parameters discussed in Section 3, namely the blocksize,

stride, start node, and replicate values. Thus the job of every mapping function, which

is called from the visa malloc routine to set up the range map entry, is to de�ne how these

13



Mapping Function Blocksize Start PE Stride Replicate

scalar map n map arg 1 No

replicate map n Pid 1 Yes

block map n=p map arg 1 No

interleave map 1 map arg 1 No

Table 2: Control Parameter Settings for Various 1D Mapping Functions

Figure 4: Two-Dimensional Array in Sisal

control parameters are to be established. Table 2 details these parameter settings for several

one-dimensional mapping functions.

Two dimensional data structures in VISA (and Sisal) are provided as one dimensional pointer

arrays, where each element of the array points to another one dimensional structure. For example,

a two dimensional array is represented as an array of pointers to rows of data, as depicted in

Figure 4. Mapping functions for two dimensional arrays must therefore consider both the array

of pointers as well as the arrays of data. Since the pointer arrays are only written once (when

initialized), they can be replicated to increase the availability of all rows to all processors. This

guarantees that accessing any element of the matrix will generate at most one remote reference.

So assuming that all pointer arrays are allocated using the replicate map, Table 3 details how

the control parameters are established for each of the data rows. The map arg for these mapping

functions is typically i, corresponding to the ith row of the matrix. Thus for the matrix row map

mapping function, themap arg varies from 0 to p, so that each of the p processors gets a row of the

matrix. The rbs variable for the matrix block map function represents the blocksize (or number

of elements) in each of the blocks. Figure 5 depicts the matrix row map and matrix block map for

an 8x8 matrix on 4 processors, where rbs = 4, the number of elements in each row of the blocks.

Though we have only presented a few possible mapping functions for one dimensional and two

dimensional structures, it is possible to create many di�erent mapping functions, given the ability

to modify the data control parameters. This general approach to data distribution is necessary to

14



Mapping Function Blocksize Start PE Stride Replicate

matrix row map n map arg 1 No

matrix col map 1 map arg 1 Yes

matrix block map rbs � n=p map arg=rbs rbs No

Table 3: Control Parameter Settings for Various two dimensional Mapping Functions

0

1

2

3

0

1

2

3

matrix_row_map matrix_block_map

Figure 5: Row and Block Matrix Mapping Functions

15



accommodate the various reference patterns that applications exhibit, and VISA allows the user

to add to the set of available mapping functions so that customized decompositions are possible.

6 Conclusion and Enhancements

We have introduced the VISA runtime system as a method for creating a single addressing space

to raise the programmer (or compiler) from the details of a message passing architecture. The

addressing space supports general data decomposition functions so that the distribution of data

can be matched to the access patterns of a program so that remote references may be minimized.

This paper outlines the organization and implementation of the VISA system, and provides

information about the VISA primitives necessary to create and access the VISA space.

VISA started as a method for creating a language-independent and machine-independent ap-

proach to providing a single addressing space that so many compilers and programmers take for

granted. Speci�cally, we created the VISA system to provide for a distributed memory implemen-

tation of the Sisal programming language, whose compiler assumes a shared memory abstraction

exists for storing user data structures. Therefore VISA currently supports Sisal, as well as C, on

the nCUBE/2 distributed memory multiprocessor. We are also working, or considering work, to

enhance the VISA system as follows:

� We are currently working with people at the Lawrence Livermore National Laboratory to

create a NUMA-based version of VISA, where NUMA stands for Non-Uniform Memory

Access machines. These are machines that provide a single addressing space, but whose

memories are physically distributed and so the access time to various portions of the memory

can vary. Examples of NUMA machines include the BBN TC2000 and the KSR-1. Since

data decomposition is still important in such as architecture, we wish to use the VISA

system to control the data distribution rather than provide a single addressing space. Thus

mapping functions for such an implementation would specify in which type of memory the

data structure is to be stored. A NUMA implementation also should take advantage of the

ability to pass around actual memory addresses rather than data in the message passing

substrate.

� Compiler support for the VISA system is necessary for increased performance and further

abstracting the details of an architecture from a programmer. The compiler can help the

visa optimize primitive by relaxing the constraint that the entire structure must be local.

That constraint exists because the base is optimized and the entire structure is not local,

then accessing part of the non-local area would result in a memory violation. Compiler

analysis could determine that this would actually not happen even though the structure

is not held locally, and the optimization could proceed. Compiler support for helping

16



to analyze the access patterns using sophisticated dependence analysis techniques would

alleviate the need for programmers having to specify the mapping functions, while allowing

the user the ability to override the compiler decision.

� We are also considering di�erent language interfaces, such as object-oriented and di�erent

machine bases, such as other DMMP and NUMA machines for the future of VISA.

17



References

[1] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data parti-

tioning and distribution. In Distributed Memory Computing Conference, Charleston, SC, April 1990.

[2] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Shared memory for distributed

memory multiprocessors. Technical Report Rice COMP TR89-91, Rice University, April 1989.

[3] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444{458, April

1989.

[4] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D

language speci�cation. Technical Report TR90-141, Dept. of Computer Science, Rice University,

December 1990.

[5] Matthew Haines and Wim B�ohm. On the design of distributed memory sisal. Technical Report

CS-92-144, Colorado State University, Fort Collins, CO, January 1992.

[6] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.

[7] C. Koelbel and P. Mehrotra. Compiling global name-Space parallel loops for distributed execution.

IEEE Transactions on Parallel and Distributed Computing, 2(4):440{451, October 1991.

[8] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between distributed

arrays. In Frontiers of Massively Parallel Computation, College Park, MD, October 1990.

[9] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale University,

September 1986.

[10] Cherri M. Pancake and Donna Bergmark. Do parallel languages respond to the needs of scienti�c

programmers. IEEE Computer, 23(12):13{24, December 1990.

[11] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi. Unifying synchronization

and data transfer in maintaining coherence of distributed shared memory. Technical Report GIT-CS-

88/23, Georgia Institute of Technology, June 1988.

[12] A. Rogers and K. Pingali. Process decomposition through locality of reference. In ACM SIGPLAN,

Portland, OR, June 1989.

[13] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. The MIT Press,

1989. Research Monographs in Parallel and Distributed Computing.

[14] Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An emperical study of Fortran programs for paralleliz-

ing compilers. IEEE Transactions on Parallel and Distributed Systems, 1(3):356{364, July 1990.

[15] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parallelization.

Parallel Computing, 6:1{18, 1986.

18


