
Department of

Computer Science

A Comparison of Explicit and Implicit

Programming Styles for Distributed

Memory Multiprocessors

Matthew Haines and Wim Bohm

Technical Report CS-93-104

March 30, 1993

Colorado State University



A Comparison of Explicit and Implicit Programming Styles for

Distributed Memory Multiprocessors

Matthew Haines� Wim B�ohmy

Computer Science Department

Colorado State University

Fort Collins, CO 80523

March 25, 1993

Abstract

Task and data management in distributed memory multiprocessors can be expressed ex-

plicitly in the programming language or can be provided implicitly by the compiler or runtime

system. In this paper we compare three programming paradigms for distributed memory mul-

tiprocessors: implicit task and data management using the functional programming language

Sisal, explicit task management and implicit data management using C combined with the

virtual addressing runtime system VISA, and explicit task and data management using C with

message passing primitives. We measure, in both time and space, the programming e�ort and

performance of each of these paradigms. We show that the implicit programming style o�ers

good performance for our benchmarks, but that even higher levels of performance can be

obtained at the cost of lowering the programming abstraction, resulting in more complex and

machine-dependent programs.

�Supported in part by a grant from Sandia National Laboratories
ySupported in part by NSF grant MIP-9113268



1 Introduction

Large-scale distributed memory multiprocessors represent the current state of the art in high-

performance computer architecture. Programming these machines requires the management of

both parallel tasks and distributed data, which is often done explicitly using language constructs

for spawning and synchronizing tasks, and for message passing. The resulting programs are di�-

cult and time-consuming to write, and contain a large amount of machine dependent housekeeping

code not germane to the speci�cation of the problem. An alternative approach is to employ a

software system to provide implicit management for tasks and/or data.

This paper introduces the design of a runtime system, called VISA [6], for implicit memory

management on a distributed memory multiprocessor. The compiler or programmer is provided

with a shared memory abstraction, and a set of primitives for allocating and accessing shared

data structures within a virtual address space. Data structures are allocated using a variety

of data decompositions speci�ed by a set of prede�ned or user-de�ned mapping functions. We

compare the merits of three programming styles: Sisal with VISA, explicit parallel C with VISA,

and explicit parallel C with message passing. In the Sisal with VISA case the compiler inserts

the appropriate VISA calls, whereas in the C with VISA case the programmer does. It would

be interesting to compare the performance of these approaches to a parallelizing compiler for

sequential C or Fortran, but such a compiler is not available on the nCUBE/2. Using two relatively

simple problems, Successive Over-Relaxation and Lawrence Livermore Loop #7, we measure the

programming e�ort in terms of program length and programming time for these paradigms. These

measures are clearly subjective, but given the state-of-the-art of parallel software engineering, the

best we can provide. We measure the execution time and storage use of our programs. In the

panel discussion at Supercomputing 92 [2], one of the authors claimed that it is considerably easier

to write parallel programs for distributed memory multiprocessors in an implicit style rather than

in an explicit style, and that the implicit style does not need to su�er from an overwhelming loss

of e�ciency. This paper quanti�es these claims.

Sisal is a functional language that supports data types and operations for scienti�c computation

[10]. The Sisal compiler consists of three parts: a frontend, a backend, and a runtime system.

The frontend translates the source program into intermediate dependence graph form. The

backend optimizes the intermediate representation and generates native C code. The runtime

system provides the Sisal compiler with two main abstractions: task management and memory

management. We are working on a runtime system that provides support for both abstractions in

a distributed memory environment, and in [4] we introduced the design and initial performance

of the distributed task management abstraction.

In Section 2 provides an overview of VISA, and the design and implementation of the supporting

system. Section 3 describes the benchmarks used in evaluating the three programming methods,

and a description of the programming e�ort of each approach. Section 4 provides the performance

of each of the programs and an analysis of the results. Section 5 provides a brief description of

related research projects, and we conclude in Section 6.

2



2 The Design and Implementation of VISA

VISA is a distributed memory runtime system that provides a single addressing space and general

data decomposition functions to a programmer or compiler. The compiler augments a parallel

program with VISA primitives for allocating and accessing the data structures to be kept in

the single addressing space. Any variables not placed in the VISA space are una�ected by the

system. The augmented program is then compiled using the native language compiler of choice,

and linked with the VISA library to create the object program, which can then be executed on

a distributed memory multiprocessor.

2.1 Message Passing

All message passing required for accessing remote values is handled implicitly by the VISA sys-

tem through the use of a message passing abstraction, supporting both synchronous (blocking)

and asynchronous (non-blocking) operations. Since these operations are provided by most host

operating systems for distributed memory multiprocessors, VISA can be easily ported to other

distributed memory multiprocessors by modifying the message passing abstraction to make the

proper native calls.

Speci�cally, the abstraction supports a non-blocking send abstraction (WriteMsg), a blocking

receive abstraction (ReadMsg), and an asynchronous receive abstraction using interrupts and

an interrupt handling routine (MsgInterruptHandler). Asynchronous message reception requires

polling at some level to determine when a message arrives and take appropriate action. Most

systems, including the nCUBE/2, provide hardware polling for incoming messages, resulting in

a hardware trap that is caught by the operating system, and then passed into the user-level in

the form of an interrupt. The interrupt causes a VISA message interrupt handler to deal with

the message. If the interrupt handler is allowed to be invoked at any arbitrary time during the

computation, it cannot modify the global state of the computation. Therefore, either the interrupt

handler must be selectively disabled during the times when global data structures are accessed,

or it must be prevented from modifying global data structures. The former option requires the

placement of expensive system calls for enabling and disabling interrupts around all global data

structure accesses, which can be costly and error-prone. Therefore, the VISA system employs

the latter option: Any message requiring a global modi�cation is enqueued onto a message list

for handling outside of the scope of the interrupt handler.

2.2 Data Distribution

As depicted in Figure 1, the VISA address space is allocated in part of the local memory of each

participating node. This creates two types of addressing space for each participating node in the

system: a shared virtual addressing space that spans all of the processors, and a local address

space for data visible only to the local processor. Each data structure allocated to the VISA

3



VISA Addressing Space

MemoryMemoryMemory

LocalLocalLocal

ProcessorProcessorProcessor

Memory

Local

Processor

...

Figure 1: The VISA Addressing Space

Mapping Function Blocksize Start PE Replicate

scalar map n map arg No

replicate map n Pid Yes

block map n=p map arg No

variable block map map arg P0 No

interleave map 1 map arg No

Table 1: Control Parameter Settings for Various 1D Mapping Functions

space receives a contiguous set of virtual addresses shared among the nodes, which are mapped

onto physical addresses from each node.

Data distribution determines how the physical storage for a global data structure is to be divided

among the participating nodes. The goal is to divide the data structure among the nodes so

as to minimize the number remote references caused by the distribution. This means that the

distribution of data must be tied to the access pattern of the parallel computation, and therefore

data distribution needs to be 
exible to support a wide variety of access patterns. For VISA,

data distribution is accomplished by dividing a data structure into a set of blocks, where each

block contains blocksize elements. The blocks are then allocated to the physical memories of

the nodes in round-robin fashion. To facilitate a variety of distribution schemes, we assign a set

of control parameters to each data structure that de�ne the blocksize (blocksize), the node to

which the �rst block is assigned (start node), and the processor stride at which the blocks are

distributed (stride). A fourth control parameter speci�es whether or not a data structure is

to be replicated. Table 1 details these parameter settings for several one-dimensional mapping

functions, where the map arg is passed in from the allocation routine, typically specifying the

starting node. The stride is always 1 for these one-dimensional mapping functions, but varies for

some of the multi-dimensional mapping functions. VISA provides support for multi-dimensional

data structures, but we restrict ourselves to one-dimensional data structures in this paper.

Speci�cation of the distribution function is accomplished by passing the name of a mapping

function, such as de�ned in Table 1, to the VISA memory allocation routine, visa malloc().

4



Field Function

visa base The range of global virtual addresses

local base The range of local physical addresses for locally-owned blocks

optimized base The range of optimized virtual addresses

nelems The number of elements

size The size of each element

blocksize The blocksize (elements per block) used for distribution

start node The node ID on which to begin distributing the blocks

stride The stride at which to distribute the blocks

replicate A boolean to determine if this data structure is replicated

table index The index into the range map table for this entry

next A utility pointer

Figure 2: Description of a range map entry

Although a wide range of common mapping functions are pre-de�ned by the VISA system, it is

possible for the user to de�ne a new mapping function, such that the mapping function establishes

the desired values of the control parameters.

2.3 General Address Translation

Address translation is the process of obtaining the physical address of a datum given its virtual

address. For a distributed memory multiprocessor, a physical address consists of the tuple (node,

pa), where node is a node designator and pa is the physical address within that node. Since VISA

employs a block-based addressing scheme, where the blocksize, starting node, and stride may all

vary, it is necessary to store these control parameters, along with other information about each

data structure, in a descriptor called a range map entry. The entire VISA space is therefore

described by the collection of these entries, called the range map table. The term \range" refers

to the fact that, since all data structures are assigned contiguous addresses in both virtual and

physical spaces, the range (low, high) is su�cient to represent all of the addresses within a data

structure. To ensure local access of the range map entries, the range map table is replicated.

In addition to the control parameters, each range map entry (see Figure 2) contains three address

ranges for each data structure:

� The visa base represents the range of global virtual (VISA) addresses for this data structure.

� The local base represents the range of local physical addresses of the blocks that are allocated

locally for this data structure.

5



� The optimized base represents the optimized range of global addresses, as explained in

Section 2.4.

Address translation proceeds as follows:

� The range map entry for the desired data structure is fetched by the �nd rm() routine,

which is exposed to the compiler so that the range map entry for a data structure that is

to be accessed many times need only be fetched once.

� From a virtual address, the relative element position within the data structure (element),

the block containing the desired element (block), and the o�set of the element within this

block (block offset) are computed:

element = address - low range

block = element / blocksize

block offset = element mod blocksize

� Now the node which possesses the block (node), the relative block number within that node

(node block), and the relative o�set of the actual datum within the node (rel offset) are

computed, where P is the number of participating nodes:

node = (start node + (block * stride)) mod P

node block = block / P

rel offset = node block * blocksize + block offset

node block is necessary to accommodate more than one block from the same data structure

being assigned to the same node, such as where there are more blocks then nodes.

� If the access is local (i.e. node is equal to the local node designator) the rel offset is

incremented by the local base from the range map entry to produce the actual o�set in

local physical memory:

offset = rel offset + local base.

If the access is remote, a message is sent to the speci�ed node, requesting that the desired

datum be fetched and returned.

An alternative to this address translation scheme is to have a �xed blocksize, start pe, and stride

for every data structure. Address translation calculations can then proceed directly from the

virtual address bits. We have implemented this �xed addressing scheme and found that although

the actual translation process is faster, the �xed control parameters often cause mis-alignment

with the parallel loops which access the data structures, resulting in an excessive number of

remote references and severely degraded overall performance of the application [5]. Thus we have

found it more e�ective to provide 
exible decompositions using the variable control parameters,

and to eliminate address translation for local references, which we refer to as optimized address

translation.

6



10 Elements 10 Elements 10 Elements10 Elements

40 Elements (160 Bytes)

block_map

P0 P1 P2 P3

local_base = 1000
opt_base = 1000

local_base = 1300
opt_base = 1260

local_base = 900 local_base = 1000
opt_base = 820 opt_base = 880

VISA Space

Figure 3: Sample VISA data structure with computed optimized base values

2.4 Optimized Address Translation

In order to eliminate address translation for local VISA accesses, we introduce a new function,

called visa opt, which re-writes the virtual base address with the structure's optimized base ad-

dress, and establishes a pair of \water mark" registers to hold the low and high values of the range

corresponding to the local base. The optimized base is the local base minus the o�set necessary

to generate a global address that will result in a local access. For example, suppose an array of

40 integers (4 bytes each) is allocated using block map among 4 nodes, as depicted in Figure 3,

where the local base values are di�erent for each node, which is possible since each node manages

its local memory independently of the other nodes. Each processor would allocate local storage

for blocksize = 10 elements (40 bytes), and set the local base accordingly. If, for example, the

third node wishes to optimize the base address for this structure, then the optimized value is the

local base minus 20 elements (80 bytes), corresponding to the two blocks of 10 elements each that

proceed it in the distribution. Once the base address for a structure has been optimized, any

further access to this structure, represented as some o�set from the base, will be checked against

the low and high water marks. If the computed address falls within the water marks, then the

access can proceed without translation, otherwise the address is passed along to the VISA access

routines for general address translation and proper remote handling. Special macros are de�ned

to perform the water mark checks, so that the total overhead for a local access has been reduced

to the time required for three comparisons.

7



Explicit Implicit

Memory Management

Message Passing
Parallel C Parallel C

VISA

Sisal Sisal
Message Passing

E
xp

lic
it

Im
pl

ic
it

VISA

3 4

1 2

T
as

k 
M

an
ag

em
en

t

Figure 4: Parallel Programming Style Combinations

3 Benchmarks

A parallel program executing on a distributed memory multiprocessor must address two issues,

either explicitly or implicitly:

1. Task management. Parallel execution is achieved by dividing the portions of code which may

be executed in parallel into parallel tasks, distributing the tasks among the participating

nodes for parallel execution, and synchronizing their results so that the computation remains

determinate.

2. Memory management. Global data structures need to be distributed among the partic-

ipating nodes in such a way as to minimize the number of remote references generated

by the execution of the parallel tasks. Once a distribution is agreed upon, the program

must identify those references that fall outside of the local distribution (i.e. remote), and

communicate the request to the node which contains the value.

Given these two orthogonal programming issues, either of which may be handled explicitly or im-

plicitly, there are four possible parallel programming style combinations, as depicted in Figure 4:

1. Explicit task management using parallel C and explicit memory management using message

passing primitives. Similar to assembly language, this style represents the lowest level of

abstraction, but the possibility for the highest level of performance.

2. Explicit task management using parallel C and implicit memory management provided

by the VISA runtime system. This style alleviates the programmer from the details of a

distributed memory system and explicit message passing.

8



3. Implicit task management using Sisal and explicit memory management using message

passing primitives. This represents a machine-dependent Sisal compiler that has been given

the ability to generate explicit distributed memory code, much like the distributed memory

Fortran compilers [7, 15]. However, such a modi�cation to the compiler has not been

undertaken, and thus we cannot expand on this style in our analysis.

4. Implicit task management using Sisal and implicit memory management provided by the

VISA runtime system. This represents the opposite end of the programming e�ort spectrum

from explicit parallel C with message passing.

To measure the relative merits of each style, in terms of programming e�ort and execution speed,

we encode two applications in the three programming styles (1, 2, and 4) speci�ed above. In

selecting our benchmarks, we wanted programs that utilized one-dimensional data structures

using relatively simple access patterns that could exploit the explicit memory management style

and would be simple enough to encode using explicit parallel C with message passing. We selected

two codes, where each code is designed to highlight the e�ectiveness of either task or memory

management techniques. The programs are:

� Lawrence Livermore Loop #7. This program creates an array A from an input array B and

constants R, T , C1, and C2, where Ai is de�ned as: Ai = Bi+R �C1+R2
�C2+T �Bi+3+

T �R �Bi+2 + T �R2
�Bi+1 + T 2

�Bi+6 + T 2
�R �Bi+5 + T 2

�R2
�Bi+4: With very little

task management required, this problem highlights the di�erences between the implicit and

explicit memory management styles.

� Successive Over-Relaxation (SOR). This problem performs a \smoothing" operation on an

array by iterating over the array and computing each new Ai as the average of the previous

iteration'sAi�1, Ai, and Ai+ 1. The access pattern is �xed over all of the iterations, and the

array is distributed among the nodes in equal-sized blocks, matching the distribution of the

parallel (inner) loop to minimize the remote references. The iteration loop in this program

provides a method of controlling the amount synchronization required, thus highlighting

the di�erences between implicit and explicit task management.

Both of these programs were encoded using the three programming styles as follows:

� Sisal with VISA. Both codes were transformed into Sisal directly from their mathematical

descriptions. The code only speci�es what is to be computed, not how the computations

are to proceed. The result is a machine-independent speci�cation of the problem that runs

on any machine Sisal supports.

� Explicit parallel C with VISA. Moving into explicit task management, the codes have to

specify how the parallel loop is to divided among the workers, and how explicit synchro-

nization is to be performed. Memory management is handled by the VISA system, however,

for the Livermore Loop #7 code, special registers were employed to cache the values of the

B array so that multiple remote references to retrieve the same value were eliminated.

9



LLNL Loop #7 SOR

Measure SISAL C+VISA C+MP SISAL C+VISA C+MP

Lines of code 25 163 338 24 184 459

Time to encode (hrs) 0.25 2.5 9.5 0.25 3.0 11.0

Table 2: Comparison of programming e�ort, in both time and space

� Explicit parallel C with message passing. Moving away from the VISA system, the explicit

task management code is augmented with explicit message passing designed to optimize the

number of remote references required and perform all remote references before the compu-

tation loop is initiated (pre-fetching). Also, the communication model is changed from an

interrupt-driven request/reply model used in VISA to a synchronous read/write model so

that the overhead of the interrupt handler can be avoided. This allows the computation

(inner) loop to run completely without remote references. Special bu�ers are used to hold

the pre-fetched values, and synchronous communication phases are necessary to avoid dead-

lock. The distribution of data among the processors is also explicitly stated, and altering

this distribution would require re-coding both the explicit communication and computation

phases.

4 Results and Analysis

We compare the relative merits of each programming style using two metrics: programming

e�ort and performance. Table 2 displays the programming e�ort in terms of lines of code that

the user is responsible for writing, and approximate time it took us to code and debug each of the

programs, where, as in all of our tables, SISAL represents the Sisal codes, C+VISA represents

the explicit parallel C with VISA codes, and C+MP represents the explicit parallel C with

message passing codes. The claim that implicit parallel languages ease the task of programming

distributed memory multiprocessors is clearly supported by these numbers. We acknowledge that

these measurements are subjective as to the overall programming e�ort, however, they do paint

a realistic picture of the relative di�culties of these programming styles. As we move from Sisal

to explicit C with VISA, and to explicit C with message passing, the code becomes increasingly

more complex, requiring increasingly more lines of code, and becoming more machine-dependent.

The question, then, is whether increased performance justi�es the additional programming e�ort.

Table 3 gives the execution results for LLNL Loop #7, where a constant blocksize of 65536 (216)

double-precision elements is used and Array Size represents the total size of the A and B arrays,

Sp1 represents the speedup in going from Sisal to C with VISA (TSISAL=TC+V ISA), and Sp2 rep-

resents the speedup in going from C with VISA to C with message passing (TC+V ISA=TC+MP ). In

order to highlight the performance gain achieved by explicit memory management, the blocksize,

or number of array elements per processor, was kept constant at 65,536 (216) double-precision

10



SISAL C+VISA C+MP

PEs Array Size Time (s) Time (s) Sp1 Time (s) Sp2

1 65536 1.8002 1.3232 1.36 0.7462 1.77

2 131072 1.8699 1.3868 1.35 0.7479 1.85

4 262144 1.9307 1.3983 1.38 0.7493 1.86

8 524288 1.9322 1.3922 1.39 0.7518 1.85

16 1048576 2.0143 1.3959 1.44 0.7569 1.84

32 2097152 2.2006 1.4029 1.57 0.7673 1.83

64 4194304 2.5794 1.4173 1.81 0.7882 1.80

Ave. 1.47 1.83

Table 3: Execution times for LLNL Loop #7

SISAL C+VISA C+MP

PEs Blocksize Ratio Time (s) Time (s) Sp1 Time (s) Sp2

1 65536 .002 114.7980 119.6738 0.96 51.9780 2.30

2 32768 .004 58.2668 60.8672 0.96 41.1032 1.48

4 16384 .008 30.2806 30.4173 0.99 21.0470 1.46

8 8192 .016 15.5127 15.4519 1.00 10.6547 1.45

16 4096 .032 9.1281 8.1962 1.11 5.5524 1.48

32 2048 .063 7.2312 5.0998 1.42 3.1722 1.61

64 1024 .125 8.8509 4.4798 1.97 2.6409 1.69

Ave. 1.20 1.64

Table 4: Execution times for SOR

elements. The data reveals that an average speedup of 1.47 is achieved when going from Sisal to

explicit C with VISA, which is due to the memory caching optimization rather than the explicit

control of tasks. Additionally, an average speedup of 1.83 is achieved when moving from explicit

C with VISA to explicit C with message passing, demonstrating the overhead of the VISA system

and the e�ectiveness of the pre-fetching optimization. In terms of space requirements, Sisal uses

the minimum: two arrays of size n, one for A and one for B. Explicit C with VISA allocates an

additional 7 double-precision locations per array to cache the values of Bi through Bi+6 so that

they need only be retrieved once. Explicit C with message passing also allocates an additional

block of 7 elements to store the values of B that reside on the neighboring node.

Table 4 gives the execution results for SOR, where a constant array size of 65536 (216) double-

precision elements and 128 iterations is used. In order to highlight the performance gain achieved

by explicit task management, the array size is held constant, causing the blocksize to decrease

11



and the ratio of iterations to blocksize to increase as the number of processors increases. This

ratio represents the increasing emphasis being placed on task management. In moving from

Sisal to explicit C with VISA, there is an average speedup of 1.20, which starts as a performance

decrease and gains as the ratio of iterations to blocksize increases, placing greater emphasis of task

management on the total execution time. This initial loss in performance is due to the ability of

the Sisal compiler to generate code that is highly optimized, which sometimes outperforms normal

hand-coded C. However, this small gain is quickly lost as the complex Sisal task management

system is outperformed by the hand-coded C task management. In moving from explicit C with

VISA to explicit C with message passing, there is an average speedup of 1.64, again representing

the overhead of VISA and the e�ectiveness of pre-fetching all remote references. The single

processor time of explicit C with message passing shows the enormous overhead of synchronization

that this problem creates, which is not as visible in the other two approaches due to the overhead

of VISA. In terms of space requirements, explicit C with VISA uses the minimal two arrays of

size n, one for the previous iteration and one for the current iteration, and pointers are swapped

at the end of each iteration. The Sisal compiler also recognizes this optimization, but generates

the two swap arrays only after generating an array to hold the initial values, resulting in a space

overhead of n elements. The explicit C with message passing uses only the two necessary arrays,

but allocates an additional two elements per processor to hold the pre-fetched remote values from

neighboring nodes.

5 Related Research

The most common alternatives to programming distributed memory multiprocessors using an

explicit parallel language with message passing are distributed memory language compilers, such

as FortranD [7], Kali [8], and Superb [15]. These systems o�er the advantage of implicit man-

agement for both tasks and memory, and allow the programmer to use a familiar programming

paradigm: sequential shared memory. Although these systems have had success in implementing

some applications, there are several problems that have kept them from wide-spread use:

� Parallelizing a sequentially written program requires extensive dependence analysis that

can be hampered with common imperative programming phenomena such as aliasing. Also,

symbolic subscript terms with unknown values, coupled subscripts, and nonzero or nonunity

coe�cients of loop indices often make dependence analysis impossible for even the most

sophisticated parallelizing compilers [13].

� Due to the complexity of these compilers and the di�culties in porting them to new ma-

chines, their availability is limited to only of few of the currently available distributed

memory multiprocessor systems. As stated earlier, such a compiler is not commercially

available for the nCUBE/2.

� Though parallelizing/vectorizing compilers have proven to be successful for some applica-

tions on shared memory multiprocessors and vector processors with shared memory, they

12



are largely unproven for distributed memory multiprocessors. Also, the way in which data

distribution is controlled and the amount of programmer interaction varies widely from

system to system, which can make porting an application from one DMMP compiler to

another a non-trivial task.

� Programmers have long been aware that the language design has a signi�cant impact on how

easily an algorithm can be transformed into working code [11]. Even the so-called "general

purpose" languages are recognized as being suited for certain problem solving approaches.

The transformation process is more tedious and error prone when the conceptual models

supported by the language relate only peripherally to the problem-solving model of the

programmer. Unfortunately, though the compilation ideas for these compilers are applicable

for a wide range of languages, almost all of these systems o�er the same programming

language, drastically restricting the choice of languages for distributed memory machines.

By utilizing a strict functional language, we can ease many of the dependence analysis problems

for a compiler, such as aliasing and subscript analysis. Also, our runtime-based approach to

providing a shared memory paradigm has the advantage of being language independent, o�ering

the possibility of being used by any shared memory compiler, and leaving the programmer with

more freedom to choose the best language to match the application, and o�ering a consistent

approach to data distribution and access. However, runtime address translation can be expensive

if the translation is not optimized out, and the compiler does need to be modi�ed to generate

the appropriate VISA primitives. Strict functional programming languages can also be restrictive

in terms of expressibility, sometimes requiring complex and convoluted code to perform simple

tasks.

Another area of research that o�ers a language-independent shared memory paradigm is Dis-

tributed Shared Memory [1, 9, 12]. However, the inability to couple parallel tasks tightly with

the distribution of data, controlled implicitly by the operating system, can result in misalignment,

causing excessive message passing. Also since the granularity of sharing data in these systems is

often very large (typically a page), contention, or false sharing can occur, in which two unrelated

data items exist on the same sharable unit, prohibiting simultaneous access. Since the sharable

unit in VISA is an individual data structure, false sharing does not occur.

6 Conclusions

We have introduced the design and implementation of a runtime-based approach to providing a

shared memory paradigm and implicit memory management for a distributed memory multipro-

cessor. Using this runtime system, we have explored the advantages and disadvantages of explicit

and implicit programming styles for both task management and memory management.

Sisal with VISA provides implicit management of both tasks and data, and o�ers reasonable per-

formance while alleviating the programmer from the implementation details of an architecture.

13



The result is e�cient machine-independent code that is portable among a wide range of archi-

tectures [3]. Furthermore, since the current Sisal compiler is unaware of distributed memory and

costs associated with accessing remote data, we expect a performance gain when such information

is exploited by the compiler [14].

Explicit parallel C with VISA o�ers the ability to increase the performance of an application,

but at the cost of increased size, programming e�ort, and machine-dependence. For our simple

programs, an average speedup of 1.34 over Sisal is achieved, but at the cost of increasing the

code size by an average factor of 7, and increasing the time required to encode and debug the

programs by an average factor of 11.

Explicit parallel C with explicit message passing o�ers the ability to exploit the problem and

machine details to obtain the highest performance for a particular machine. For our programs,

average speedups of 1.74 over C with VISA, and 2.34 over Sisal are achieved. Once again, this

increase in performance is obtained at the cost of increasing program sizes by an average factor

of 2 over explicit C with VISA, and by a an average factor of 15 over Sisal, while increasing the

time required to encode and debug the programs by an average factor of 4 over explicit C with

VISA, and by an average factor of 40 over Sisal.

The results show that although implicit parallel programming can o�er reasonable performance,

it is possible to increase the performance by taking explicit control over task management or data

management. It is the decision of the applications programmer as to whether the increase in

performance warrants the increase in programming e�ort when moving from implicit to explicit

programming styles, but the option should nonetheless be available.

Distributed memory multiprocessors represent today's most powerful computer systems, yet ef-

�cient support for high-level abstractions lags. We must make a concerted e�ort to alleviate the

programmer from the details of programming distributed memory multiprocessors, but not at

the expense of performance. Clearly this is a challenging goal.

14



References

[1] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Shared memory for distributed

memory multiprocessors. Technical Report Rice COMP TR89-91, Rice University, April 1989.

[2] Wim B�ohm, J.C. Browne, David Forslund, Andre Goforth, Ken Kennedy, and James McGraw. Polit-

ically incorrect languages for supercomputers { a panel discussion. In Proceedings of Supercomputing

92, pages 704{706. IEEE, November 1992.

[3] David Cann. Retire Fortran? A debate rekindled. Communications of the ACM, 35(8):81{89, August

1992.

[4] Matthew Haines and Wim B�ohm. Thread management in a distributed memory implmentation of

sisal. In Proceedings of the Data
ow Workshop, International Symposium on Computer Architecture,

May 1992. To Appear.

[5] Matthew Haines and Wim B�ohm. Task management, virtual shared memory, and multithreading in

a distributed memory implementation of sisal. In Proceedings of Parallel Architectures and Languages

Europe, June 1993. To Appear.

[6] Matthew Haines and Wim B�ohm. The VISA user's guide. Technical Report CS-93-102, Colorado

State University, Fort Collins, CO, February 1993.

[7] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.

[8] C. Koelbel and P. Mehrotra. Compiling global name-Space parallel loops for distributed execution.

IEEE Transactions on Parallel and Distributed Computing, 2(4):440{451, October 1991.

[9] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale University,

September 1986.

[10] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R. Oldehoeft, J. Glauert, C. Kirkham, W. Noyce,

and R. Thomas. SISAL: Streams and iteration in a single assignment language: Reference manual

version 1.2. Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA, March

1985.

[11] Cherri M. Pancake and Donna Bergmark. Do parallel languages respond to the needs of scienti�c

programmers. IEEE Computer, 23(12):13{24, December 1990.

[12] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi. Unifying synchronization

and data transfer in maintaining coherence of distributed shared memory. Technical Report GIT-CS-

88/23, Georgia Institute of Technology, June 1988.

[13] Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An emperical study of Fortran programs for paralleliz-

ing compilers. IEEE Transactions on Parallel and Distributed Systems, 1(3):356{364, July 1990.

[14] R. Wolski and J. Feo. An extended data 
ow model for program partitioning on NUMA architectures.

In Proceedings of the Second Sisal User Conference, October 1992.

[15] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parallelization.

Parallel Computing, 6:1{18, 1986.

15



Appendix A: VISA Functions

� Allocation

{ V ADDRESS visa malloc (int nelems, int size, map function map, int map arg)

This function allocates a block of VISA space (nelems * size bytes), which will be distributed

according to map, and returns a pointer to the start of the allocated space. A range map entry

is also created and distributed among the nodes, and local space is allocated, according to the

map, to store the data structure.

� Deallocation

{ void visa free (V ADDRESS address)

This function returns the given portion of VISA space to the free pool, removes the correspond-

ing range map entry from each of the range map tables, and deallocates the local storage used

for storing the structure.

� Access

{ range map type * �nd rm (V ADDRESS address)

Return a pointer to the range map entry corresponding to the given VISA address. This

pointer is then passed into each of the access routines as an argument so that the fetch does

not have to be done for each access.

{ char visa get c (V ADDRESS address, range map type *rm)

int visa get i (V ADDRESS address, range map type *rm)


oat visa get f (V ADDRESS address, range map type *rm)

double visa get d (V ADDRESS address, range map type *rm)

These functions return the desired value from the given VISA address. If the range map entry

rm is not de�ned, then the corresponding range map entry for this structure will be fetched,

which is true for all of the access functions.

{ void visa get m (POINTER data, int size, V ADDRESS address, range map type *rm)

This function copies the block of data starting at the given VISA address and for a length of

size into the local address pointed to by data.

{ void visa put c (char value, V ADDRESS address, range map type *rm)

void visa put i (int value, V ADDRESS address, range map type *rm)

void visa put f (
oat value, V ADDRESS address, range map type *rm)

void visa put d (double value, V ADDRESS address, range map type *rm)

These functions place value into the given VISA address location.

{ void visa put m (POINTER data, int size, V ADDRESS address, range map type *rm)

This function copies the local data block of size size and pointed to by data into the given

VISA address location.

{ void visa update c (uchar red, char value, V ADDRESS address, range map type *rm)

void visa update i (uchar red, int value, V ADDRESS address, range map type *rm)

void visa update f (uchar red, 
oat value, V ADDRESS address, range map type *rm)

void visa update d (uchar red, double value, V ADDRESS address, range map type *rm)

These functions update the value stored in the given VISA address with value, according to

the reduction red. Currently supported reductions include V SUM and V PRODUCT.

16


