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Abstract

Volume visualization techniques extract and display structures from three dimensional ar-
rays of sample values representing physical objects. The shading of surfaces of the structures
to simulate natural lighting makes the features of these structures visible in images. An impor-
tant step in the image rendering process is the determination of the orientation of an extracted
surface in the form of a gradient vector at each point on the surface. This gradient vector
is then used as a surface normal vector for shading calculations. In addition, some volume
visualization techniques used the gradient vector for classification of structures contained in
the volume. A common method for estimation of the gradient vector is the center difference,
which also acts as a fixed-response low pass filter, smoothing details in the image.

This paper presents an improved method for computation of the gradient. The center
difference method is extended to allow control of sensitivity to fine details in the source data.
The amount of smoothing performed by the gradient computation can be tuned to filter out high
frequency noise and aliased energy while retaining as much as possible of the valid frequency
content which may be lost using the conventional center difference.

1 Introduction

Volume imaging processes such as Magnetic Resonance Imaging (MRI) and Computed Tomog-
raphy (CT) produce a three dimensional array of sample values (voxels). Each voxel typically
represents a density measure of some physical property (for example, values resulting from CT
represent density of tissue which absorbs X-rays). The volume visualization process attempts to
classify the voxels by tissue or material type and produce renderings of structures composed of
particular tissues or materials.

A number of different methods have been described in recent literature for classifying and
displaying volume data. One common thread in many of these methods is the way in which
shading is performed to generate images. The goal is typically to display the best approximation
possible to a surface (detected by some classification method), shading the surface using the
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standard Gouraud [Gou71] or Phong [Bui75] shading models. The surface normal vectors required
by these shading models are usually found using gradient vectors calculated from the voxel values
(sometimes known as the gray-level gradient [T+90]). These gradient vectors are perpendicular to
the estimated surface of constant density, and so can be used as surface normal vectors.

The most commonly used method for approximation of the volume gradient vector is the center
difference. For voxel value vi;j;k at location i; j; k in the volume, the three components of the
gradient vector ~g are computed by taking the scaled difference along each axis of the voxels on
either side of the point of interest (the division by the distance 2 is frequently omitted since the
length of the gradient vector is normalized before performing shading calculations):

gx =
vi+1;j;k � vi�1;j;k

2

gy =
vi;j+1;k � vi;j�1;k

2

gz =
vi;j;k+1 � vi;j;k�1

2

The surface normal ~n used for shading is the unit vector in the direction of ~g

~n =
~g

j~gj
The volume visualization algorithms which use this method can be divided into two broad

classes. One class of algorithm extracts surface information as a 3D model, which can then be
rendered using conventional rendering techniques. Lorensen, Cline, et. al. [LC87, CLL+88] use
the center difference calculation to compute the gradient vector for shading of models extracted
from volume data: polygonal models constructed from a volume in the “marching cubes” algorithm
and point primitives in the “dividing cubes” algorithm.

The other broad class of volume visualization algorithms generate pixel values directly from
the source data without an intermediate geometric model. Levoy describes a ray-casting method
[Lev88, Lev90] which uses the center difference to compute gradient vectors used for classification
as well as for shading. Westover [Wes90] uses the the same shading techniques for some images
with a forward (voxel to pixel) mapping rendering technique. Drebin, Carpenter, and Hanrahan
[DCH88] use the center difference to compute gradient vectors for both classification and shading
in a voxel to pixel projection method.

Höhne, Tiede, et. al. [H+90, T+90] also use a technique originated by Zucker and Hummel
[ZH81] which computes a weighted average of center differences along each axis and the diagonals
closest to that axis. The use of additional off-axis data reduces sensitivity to noise and aliasing,
although it is computationally expensive and produces additional smoothing which may or may not
be desired.

Cohen et. al. [CKBB90] consider using a larger neighborhood with a depth-buffer (Z-buffer)
based gradient calculation. In this case increasing the neighborhood size using the depth-buffer
congradient shading technique will smooth the picture while a smaller neighborhood will be more
sensitive to small changes on the surface.

It is possible to use a larger neighborhood for gradient calculation to increase sensitivity to
small changes on a surface. To see how this may be done, the gradient calculation will be examined
as a digital filtering process. The properties of the center difference as a filter will be analyzed, and
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it will be shown that it is possible to design a filter with greater sensitivity to small changes. This
filter will be designed to have adjustable sensitivity to high frequencies which can be reduced in
the presence of high frequency noise or aliasing.

2 Gradient Calculation Under Ideal Conditions

Under ideal conditions, volume data would be sampled from a source which contained no noise,
and had been filtered before sampling to remove any frequencies above half the sampling frequency.
Under these ideal conditions, this low pass filtered source data could be perfectly reconstructed
from the samples (in practice, of course, noise and aliasing are always present to some degree).

Ideal low pass filtering produces a continuous function in three dimensions. For such a function,
the components of the gradient vector are the partial derivatives in the direction of each primary
axis. The first derivative (slope) of a one dimensional cross section in a particular direction can
therefore be used to calculate the component of the gradient vector in that direction.

For a one–dimensional analog function in space xa(t) of continuous variable t (for example,
a cross section of the original data from which a volume data set was constructed) samples can
be taken at some regular interval T to produce the sequence x(n) = xa(nT ) for integer n. In
order to correctly reconstruct the original function xa(t) from samples x(n), the sample spacing T
must satisfy the relationship T < 1

2F , where F is the highest frequency present in xa(t) (2F is the
Nyquist sampling rate) [OS75].

For samples of a periodic function with period NT , the Discrete Fourier Transform (DFT)
allows a finite sequence of samples x(n) of length N to be transformed from the space domain to
the frequency domain using the relationship

X(k) =

N�1X
n=0

x(n)e
2�ikn
N

�
�N

2
� k � N

2

�

where X(k) (k is an integer) is a sample of the frequency spectrum of xa(t) at frequency k

NT
, and

i =
p�1.
The inverse of the DFT (IDFT) transforms frequency samples X(k) back to the space domain

samples x(n):

x(n) =
1
N

N=2X
k=�N=2

X(k)e
�2�ikn

N (0 � n � N )

Given the frequency samples X(k) and the IDFT relationship, the original function xa(t) can be
reconstructed:

xa(t) =
1
N

N=2X
k=�N=2

X(k)e
�2�ikt
NT

The slope (first derivative) can also be reconstructed from the frequency samples; differentiating
both sides of the above gives:

d

dt
xa(t) =

1
N

N=2X
k=�N=2

X(k)
�2�ik
NT

e
�2�ikt
NT
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Define a filter H(k) =
�2�ik
NT

and then define G(k) = X(k)H(k); the above then becomes

d

dt
xa(t) =

1
N

N=2X
k=�N=2

G(k)e
�2�ikt
NT

Sample this slope function at the same locations as the samples of xa(t) to get slope samples g(n)
corresponding to each function sample x(n); it can be seen from the form of this result that g(n)
can be generated using the IDFT of G:

g(n) =
d

dt
xa(nT )

=
1
N

N=2X
k=�N=2

G(k)e
�2�ikn

N (0 � n � N )

For the more common case of non-periodic data, a good approximation can be obtained by applying
a leveling procedure to compute the slope [GP93]. The leveling procedure subtracts a line having
the mean slope of the samples (x(N)�x(0))

(N�1)T , finds the slope g of this leveled function, and then adds
the mean slope to each g(n).

The frequency domain filterH(k) defines the frequency response for the ideal slope calculation.
The magnitude is linearly proportional to the frequency k

NT
, indicating that the slope calculation

is very sensitive to high frequencies. Since in real data the high frequencies are most affected by
noise and aliasing, it is necessary to control this sensitivity.

3 Analysis of the Center Difference Method

The center difference method estimates the slope of a one-dimensional function along each axis
using only the two samples adjacent to the point at which the slope is desired.

For a one–dimensional signal x at point n the center difference is

cx(n) =
1
2
xn+1 � 1

2
xn�1

This is a convolution of samples x(n) with the three element sequence

hc(n) =

�1
2
; 0;�1

2

�
(n = �1; 0; 1)

The performance of this calculation in accurately estimating the slope can be analyzed by examining
the frequency response of this filter. The DFT of the sequence gives the frequency response, which
is

Hc(k) =
1
2

�
e�2�ik=N � e2�ik=N

�

= �i sin 2�
k

N

�
�N

2
� k � N

2

�

Figure 1 compares the frequency response of this filter with the frequency response of the ideal slope
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Figure 1: Center Difference Filter and Frequency Response Compared to Ideal

filter (DFT method) discussed above. While the center difference provides a good approximation
of the ideal at lower frequencies, it shows a rapid fall off in response in the higher frequencies,
corresponding to loss of response to fine detail in the resulting slope values.

This fall off at higher frequencies has some desirable properties. Volume data (along with many
other types of data) often contains noise and aliased energy. The ratio of this spurious energy to
the actual signal is usually highest in the upper frequencies, where the sensitivity of the ideal filter
is greatest. By attenuating the higher frequencies, artifacts caused by noise and aliasing can be
reduced.

The undesirable property of the center difference is that the frequency response is fixed. For
data with little noise or aliasing, the center difference still removes fine detail in the data, resulting
in a blurred appearance.

4 An Adjustable Gradient Filter

A gradient filter which could be adjusted in sensitivity to high frequencies would retain the desirable
properties of the center difference without undesired blurring. A simple spatial filter for gradient
computation can be generated by truncation of the (infinite duration) impulse response of an ideal
gradient filter. For a filter with M non–zero elements (even M , with M=2 elements to each side of
the 0 center), this results in the filter:

ht(n) =

8><
>:

cos�n
n

for n 6= 0 and � M

2 � n � M

2

0 otherwise

Note that
cos�n
n

=

8><
>:
� 1

n
for n odd

1
n

for n even

The convolution with the voxel data along a single axis direction (for example, in the x direction)
is computed by

M=2X
m=�M=2

ht(�m)vi+m;j;k
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Figure 2: Truncated Gradient Filter with Frequency Response

The resulting filter and its frequency response are shown in Figure 2 for the 7-element (M = 6)filter
[0:333;�0:5; 1; 0;�1;0:5;�0:333]. Ideal and center difference frequency responses are shown for
comparison.

The large ripples throughout the frequency range due to the abrupt truncation of the filter must
be dealt with in order to use this filter. Multiplying the filter by a window function (a function
which gradually tapers off toward 0 at the edges) can be used to reduce the effects of truncation
of the filter. The Kaiser window [Ant79] is particularly useful since it has an adjustable parameter
� (alpha) which controls how quickly it tapers off to zero at the edges. A Kaiser window of N
samples with parameter � is computed as

w�(n) =
I0(�)

I0(�)

�
�N

2
� n � N

2

�

where I0(x) is the order 0 modified Bessel function [PFTV88] of x, and � is calculated from � as

� = �

s
1�

� 2n
N � 1

�2

Kaiser windows with values of � near 0 approximate a rectangular window, while increasing
values of � smooth the transition to 0 at the edges of the window. When the Kaiser window is
multiplied by the gradient filter, larger values of � reduce ripple in the frequency response at the
cost of attenuation of the higher frequencies. Figure 3 shows Kaiser windows computed with three
different values of �. Figure 4 shows the filters which result from multiplication of the truncated
gradient filter by Kaiser windows with � values of 4.0, 8.0, and 16.0. At � = 4:0, the ripples
in the frequency response have been almost completely smoothed out, but the response to high
frequencies is still quite good compared to the center difference (shown for comparison).

By adjusting the Kaiser window parameter�, the response to higher frequencies can be adjusted
to any degree desired. As can be seen in Figure 4, as the value of � increases, the response of the
filter to high frequencies decreases, approaching the response of the center difference. If the noise
and aliasing characteristics of the data can be estimated, a value of � can be selected to optimize the
gradient filter response. If sufficiently fast processing hardware is available, the rendering software
could even allow a user to interactively adjust the value of � to produce a satisfactory image.
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Figure 4: Windowed Gradient Filters with Frequency Responses
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5 Results

Figures Img–1 through Img–3 show images generated from two volume data sets. MRbrain is
a 256 � 256 � 109 voxel magnetic resonance image of a head with the brain surface exposed.
CThead is a 256 � 256 � 113 voxel CT image of a head. Both source data sets come from the
University of North Carolina Volume Rendering Test Dataset, Volume II.

The images in the figures were generated using ray casting techniques based on [Lev88], but
the effect of the gradient filter on the level of detail visible in the images should be similar using
other volume visualization techniques. The images were rendered at a resolution of 400 � 400
pixels, using the Phong shading model.

The upper two images in Figure Img–1 show approximately a quarter of the MRbrain
data set towards the top and back of the head, while the lower two images show close-up
views generated using the same rendering parameters. In the images on the left the center
difference was used for gradient computations. A 7 element gradient filter was used to gen-
erate the images on the right. The filter was generated with � = 4:0, giving filter values
[0:1086;�0:3167; 0:8964; 0;�0:8964;0:3167;�0:1086]. In the images on the right, the greater
response to high frequencies of the 7 element gradient filter results in sharper contrast and better
visibility of the smaller features on the surface when compared to the images on the left.

Figure Img–2 shows a similar comparison with images generated from the CThead data set.
Because the bone surface is smoother (and therefore has fewer high frequency components), the
differences are not as marked as in the MRbrain images, but some improvement can still be seen.

Figure Img–3 shows images from MRbrain with high frequency filtering at levels in between
those of the images in Figures Img–1(c) and (d). The upper image (a) was generated with � = 8:0,
giving gradient filter values [0:0276;�0:1845; 0:7888;0;�0:7888; 0:1845;�0:0276]. The lower
image (b) was generated with � = 16:0, giving gradient filter values [0:0018;�0:0631; 0:6116;0;
�0:6116; 0:0631;�0:0018]. These two images show how the value of � can be used to adjust the
level of high frequencies to which the gradient filter responds. The higher � value in (b) results in
a controlled blurring of the image by reduction of the high frequencies.

6 Conclusions

Frequency response is an important consideration in calculation of the gradient of volume data. The
fixed frequency response of the center difference gradient computation method prevents rendering
of high frequency detail. Use of the adjustable gradient filter described in this paper provides
the flexibility to tune the gradient calculation in order to provide any desired balance between
sensitivity to high frequency detail present in the data and attenuation of high frequency noise and
aliasing which may also be present.
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format (.xwd) via anonymous ftp from site beethoven.cs.colostate.edu in directory pub/TechReports/1993/tr-105-images.

The compressed image files are named after the figure numbers; for example, figure Img–2(c) would be named Img2c.xwd.Z. The following
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(a) Center Difference (b) 7 Element Filter

(c) Center Difference (d) 7 Element Filter

Figure Img–1: MRbrain rendered using two different gradient computation techniques



(a) Center Difference (b) 7 Element Filter

(c) Center Difference (d) 7 Element Filter

Figure Img–2: CThead rendered using two different gradient computation techniques



(a) � = 8.0

(b) � = 16.0

Figure Img–3: MRbrain rendered with 7 element gradient filter, varying � values


