
Department of

Computer Science

A Functional Implementation of

the Jacobi Eigen-Solver *

A.P.W. Bohm and R.E. Hiromoto

Technical Report CS-93-106

May 5, 1993

Colorado State University

A Functional Implementation of the Jacobi Eigen-Solver �

A.P.W. B�ohm

Computer Science Department

Colorado State University

R.E. Hiromoto

Computer Research Group

Los Alamos National Laboratory

May 4, 1993

Abstract

In this paper, we describe the systematic development of two implementations of the Ja-

cobi eigen-solver and give their performance results for the MIT/Motorola Monsoon data
ow

machine. Our study is carried out using MINT, the MIT Monsoon simulator. The design

of these implementations follows from the mathematics of the Jacobi method, and not from

a translation of an existing sequential code. The functional semantics with respect to ar-

ray updates, which cause excessive array copying, has lead us to a new implementation of a

parallel \group-rotations" algorithm �rst described by Sameh. Our version of this algorithm

requires O(n3) operations, whereas Sameh's original version requires O(n4) operations. The

implementations are programmed in the language Id, and although Id has non-functional fea-

tures, we have restricted the development of our eigen-solvers to the functional sub-set of the

language.

1 Introduction

A fundamental strength of functional languages is their power to concisely express the imple-

mentation of algorithms in general, and numerical algorithms in particular, closely following

their mathematical formulation. This combined with their ability to implicitly and machine-

independently express parallelism at the function, loop, and instruction levels provides strong

arguments for the use of functional languages and development of functional algorithms for high

performance computing. As functional languages provide a machine independent and implicitly

�This work is supported by a grant from Motorola Inc. and in part by NSF grant MIP-9113268, and under the

auspices of the U.S. Department of Energy under contract # W-7405-ENG-36.

1

parallel gateway to novel parallel machine architectures, such as multithreaded or hybrid von

Neumann/data
ow, it is of vital interest to computational scientists and designers of numerical

algorithms for these machines that functional languages provide expressive power and e�cient

implementation. Id[9] is a language with the potential to provide all of this.

It is our opinion that there is a need for careful study of the e�ectiveness of the functional lan-

guage paradigm in expressing numerical algorithms, as the suitability of a programming language

extends beyond mere elegance. As an example, it would be clumsy to have to express numerical

algorithms in a functional language that lacks loop constructs and array datatypes, given that

many of these algorithms are based on linear algebra. The ultimate goal is an e�cient mapping

of the problem speci�cation from the language, through the compiler, onto the parallel hardware.

As imperative languages are capable of providing e�cient computational performance, although

at the cost of programming inelegance and machine dependence, they still represent the princi-

ple programming languages for high performance computing. Functional languages have yet to

provide su�cient evidence that they can achieve the same levels of performance. Some recent

results of an applicative language have demonstrated this capability[4].

In this paper, we present the design and complexity analysis of a numerical algorithm, the Jacobi

eigen-solver, written in the functional data
ow language Id[9]. The programming constructs

are functional, but we are using explicit I-structures in implementing array computations. We

have used none of the non-functional programming features provide by the Id language such as

mutable-arrays.

Algorithms for eigen-solvers represent an important class of numerical software typically found

in standard Fortran system libraries. The Jacobi algorithm exhibits an interesting matrix calcu-

lation where the ordered update of each matrix element is governed by a sequences of previously

computed updates. From the description of this algorithm given below, the computational use

and organization of the data is initially seen to be a challenging task for implementation in a

functional language. As in previous work[2], we will use the notion of abstracted complexity , �rst

used as a metric for comparing the computational complexity between sequential and parallel For-

tran implementations[6]. This metric will provide us with a quantitative measure of equivalence

between functional and non-functional implementations.

We begin with a direct functional implementation taken from the speci�cations of the numerical

algorithm. We show, based on our notion of abstracted complexity , that this direct approach is

marred by an intolerable amount work caused by data copying required to maintain functional

semantics. A second implementation is designed that avoids this problem and is of the same

order of total work complexity as the original sequential algorithm but provides a high degree of

parallelism.

The Jacobi algorithm selected is one of several methods used in solving the eigenvalues of a sym-

metric matrix. Surprisingly, our parallel Jacobi algorithm is an improved version of an algorithm

that was designed for the ILLAC-IV [11]. The algorithm can be e�ciently expressed in Id in a

highly elegant fashion.

2

2 Description and Complexity of Jacobi Eigenvalue Solver

Given a symetric N � N matrix A, the eigenvalue problem is the determination of the corre-

sponding eigenvectors x and eigenvalues � de�ned by the relationship

Ax = �x: (1)

Any standard reference on numerical methods [10] will provide a number of methods available for

determining the solution to this problem. One such method is known as the Jacobi algorithm uses

two-dimensional rotations applied successively to each o�-diagonal element of the matrixA which,

when the rotations are done systematically, converges to a diagonal matrix, thereby producing

both the eigenvectors and the corresponding eigenvalues. The \plane" or Jacobi rotation Rpq is

described by an orthogonal transformation matrix of the form

Rpq =

2
666666666666664

1

: : :

c : : : s

: :

: 1 :

: :

�s : : : c

: : :

1

3
777777777777775

In Rpq all diagonal elements are unity except for the two elements c located at Rpp and Rqq, and

all o�-diagonal elements are zero except for s and �s located at Rpq and Rqp, respectively. The

rotation is de�ned by the numbers c (cosine) and s (sine) with respect to the angle �. A rotation

is performed by the matrix product

A
0 = R

T
pqARpq: (2)

can be shown to preserve the eigenvalues of A and allow for a simple recovery of the eigenvectors.

A Jacobi rotation (p; q) changes only the p and q rows and columns of A as shown Fig. 1.

3

A
0 =

2
666666666666666666666664

: : : a0

1p : : : a0

1q : : :

: : : :

: : : :

: : : :

a0

p1 : : : a0

pp : : : a0

pq : : : a0

pn

: : : :

: : : :

: : : :

a0

q1 : : : a0

qp : : : a0

qq : : : a0

qn

: : : :

: : : :

: : : :

: : : a0

np : : : a0

nq : : :

3
777777777777777777777775

Figure 1. Elemental updates induced by RTp;qARp;q.

Solving for Eqn. 2, we get the following set of equations:

a0

rp = carp � sarq (3)

a0

rq = carq + sarp (4)

a0

pp = c2app + s2aqq � 2scapq (5)

a0

qq = s2app + c2aqq + 2scapq (6)

a0

pq = (c2 � s2)apq + sc(app � aqq) (7)

where r 6= p; r 6= q.

The Jacobi method de�nes the choice of the free angular parameter � such that a0

pq = 0. Given

this choice of �, the corresponding values of a0

rp, a
0

rq, a
0

pp, and a0

qq can be evaluated. It is

important to notice that elements zeroed under this method are likely to be unzeroed as a result

of a subsequent tranformations applied to a di�erent o�-diagonal element. Fortunately, it can

be shown that the systematic application of the Jacobi method to the o�-diagonal elements will

converge to zero. Let t = s
c
, and

c =
1p

t2 + 1
;

4

s = tc:

We now replace the Eqns. 3-7 with

a0

rp = arp � s(arq + �arp); (8)

a0

rq = arq + s(arp � �arq); (9)

a0

pp = app � tapq; (10)

a0

qq = app + tapq; (11)

a0

pq = 0; (12)

where �(= tan�
2
) is de�ned by

� � s

1 + c

Using the property that the matrix A is symmetric, the pattern of element updates as induced

by the similarity transformation RT3;5AR3;5 is depicted in Fig. 2a. These updated elements

are denoted by a(1) with the (3; 5) element zeroed by the choice of �. In Fig. 2b, we again

depict the results of following the RT3;5 similarity transformation with the rotations de�ned

by RT5;7AR5;7. Under the later rotations, the correpsonding element updates are denoted by

(a(2)). There are two important features to note. First, the zeroed element (3; 5) is now rescaled

to the value a(0) which may be di�erent from zero. Second, the application of each similarity

transformation a�ect the change of only n � 1 elements.

5

2
66666666666666666666666666664

: : a(1) : a(1) : : :

: a(1) : a(1) : : :

a(1) a(1) 0 a(1) a(1) a(1)

: a(1) : : :

a(1) a(1) a(1) a(1)

: : :

: :

:

3
77777777777777777777777777775

Figure 2a. Elemental updates induced by RT3;5AR3;5.

2
66666666666666666666666666664

: : : : a(2) : a(2) :

: : : a(2) : a(2) :

: : a(0) : a(2) :

: a(2) : a(2) :

a(2) a(2) 0 a(2)

: a(2) :

a(2) a(2)

:

3
77777777777777777777777777775

Figure 2b. Elemental updates induced by RT5;7AR5;7.

When elements are zeroed in a strict order using Eqns. 8-12, we talk of a cyclic Jacobi method.

It can be shown that the convergence of this method is generally quadratic for nondegenerate

eigenvalues (i.e. eigenvalues that are not identical). Because the matrix A is symmetric, one

sweep of the Jacobi method is applied to n(n� 1)=2 distinct o�-diagonal elements. Furthermore,

6

each rotation requires O(n) operations, sothat the total computational complexity is of order n3

for each sweep.

3 Implementations

3.1 A Row Major Order Implementation

In the following implementations of the Jacobi algorithm A stands for the input matrix, D for the

diagonal elements that will be converted into eigenvalues by a number of rotations, and V stands

for the matrix that will be converted from an identity matrix into the matrix of eigenvectors.

A sequential implementation of Jacobi's algorithm performs sweeps of rotations around points in

the upper triangle in row major order, until the sum of the absolute values of the upper triangle

of the matrix is su�ciently small. In the following sketch of the main program, some of the details

concerned with not rotating around a point that is relatively small, are left out:

{ while abs_sum_upper_triangle A > epsilon do

next A, next V, next D =

{ for p <- 1 to (N-1) do

next A, next V, next D =

{ for q <- (p+1) to N do

next A, next V, next D = Rotate A V D p q

finally A,V,D };

finally A,V,D }

finally A,V,D }

The function Rotate does the actual work. Rotate computes the values for s = sin(�), t =

sin(�)=cos(�) and � = s=(1 + c), as de�ned in the previous section, and with these values it

creates a next versions of A, V , and D. In the following sketch of function Rotate, only the

creation of the next value of A is shown, and again complications considering small values are

left out:

def Rotate A V D p q = {

% compute t,s and tau . . .

newA = { matrix ((1,N),(1,N)) of

|[i,j] = A[i,j] || i <- 1 to N ; j <- 1 to p-1

|[j,p] = {g=A[j,p]; h=A[j,q] in g-s*(h+g*tau) }

|| j <- 1 to p-1

|[i,p] = A[i,p] || i <- p to N

|[i,j] = A[i,j] || i <- 1 to p-1 ; j <- p+1 to q-1

|[p,j] = {g=A[p,j]; h=A[j,q] in g-s*(h+g*tau) }

|| j <- p+1 to q-1

7

|[i,j] = A[i,j] || i <- p+1 to N ; j <- p+1 to q-1

|[j,q] = {g=A[j,p]; h=A[j,q] in h+s*(g-h*tau) }

|| j <- 1 to p-1

|[p,q] = 0.0

|[j,q] = {g=A[p,j]; h=A[j,q] in h+s*(g-h*tau) }

|| j <- p+1 to q-1

|[i,q] = A[i,q] || i <- q to N

|[i,j] = A[i,j] || i <- 1 to p-1 ; j <- q+1 to N

|[p,j] = {g=A[p,j]; h=A[q,j] in g-s*(h+g*tau) }

|| j <- q+1 to N

|[i,j] = A[i,j] || i <- p+1 to q-1 ; j <- q+1 to N

|[q,j] = {g=A[p,j]; h=A[q,j] in h+s*(g-h*tau) }

|| j <- q+1 to N

|[i,j] = A[i,j] || i <- q+1 to N ; j <- q+1 to N

};

in newA,newV,newD

};

Although this �rst implementation follows the mathematics of the Jacobi transformation closely

and allows for natural exploitation of parallelism, and therefore demonstrates the power of the

functional approach, the problem is that of this algorithm is too ine�cient. For example, to

update O(n) elements in A, Rotate performs O(n2) work, most of which is just copying. This

makes a sweep (involving O(n2) rotations) an O(n4) operation, which is one order of magnitude

too high, and is therefore not acceptable. A non-functional approach would be to use updatable

(mutable) structures (M-structures in Id). However, this would complicate the code considerably

and cause loss of parallelism. Also, the implementation would loose its elegance.

3.2 An Implementation based on Sameh's parallel group rotations

A more parallel and at the same time more space e�cient implementation of the Jacobi algorithm

allows a number of rotations to be performed concurrently. A group of rotations (p1; q1) : : :(pk; qk)

is valid if each point (pi; qi) occupies its own row and column in the upper triangle of A. Clearly

there cannot be more then bN=2c points in a group. In a parallel rotation based an such a group,

each point in the matrix A is in
uenced by at most two points. A set of groups partitions and

covers the upper triangle of A i� all points in the upper triangle of A are included in exactly one

group. In [11] Sameh de�nes a minimal number of 2n� 1 groups k of maximal size bN=2c. These
groups are essentially anti-diagonals which wrap around the matrix boundaries. Sameh's group

de�nition can be translated into the following loop:

def MakePQs n =

{ m = floor(float (n+1)/2.0);

PQs = 2D_I_array ((1,2*m-1),(1,n))

in { for k <- 1 to 2*m-1 do

8

if k <= (m-1)

then

{ for q <- (m-k+1) to (n-k) do

p = if (((m-k+1) <= q)

and (q <= (2*m-2*k)))

then ((2*m-2*k+1)-q)

else if (((2*m-2*k) < q)

and (q<=(2*m-k-1)))

then ((4*m-2*k)-q)

else n;

(i,j) = if p < q then (p,q) else (q,p);

PQs[k,i] = (i,j); PQs[k,j] = (i,j)

}

else

{ for q <- (4*m-n-k) to (3*m-k-1) do

p = if (q < (2*m-k+1))

then n

else if (((2*m-k+1) <= q)

and (q<=(4*m-2*k-1)))

then ((4*m-2*k)-q)

else ((6*m-2*k-1)-q);

(i,j) = if p < q then (p,q) else (q,p);

PQs[k,i] = (i,j); PQs[k,j] = (i,j)

};

{for i <- n to 2*m-1 do PQs[k,2*m-k] = (0,0)}

finally PQs

}

};

The following are Sameh's groups for N=5 and N=6:

N = 5

2
666664

: 2 4 1 3

: 1 3 5

: 5 2

: 4

:

3
777775

N = 6

2
66666664

: 2 4 1 3 5

: 1 3 5 4

: 5 2 3

: 4 2

: 1

:

3
77777775

9

Sameh uses these groups to create an orthogonal transformation Qk for each group, consisting of

sin-s and cos-s, of the various �s, which all occupy disjoint elements of the transformation matrix,

and then performs the transformation using a matrix product given in eqn. 2. As there are 2n�1

groups, this method requires O(n) matrix multiplications, which renders the complexity of one

sweep to be O(n4).

We now present a new implementation of the parallel group rotations algorithm that requires

only O(N3) operations. Instead of forming a transformation matrix and performing a matrix

product, we register for each element in the transformed matrix A
0

which two rotations a�ect it

and perform the two rotations in a well-de�ned order, guaranteeing that for two elements a�ected

by the same rotations, the rotation orders are the same. For this we de�ne a table PQs where

row PQsk de�nes the k-th group rotation, such that PQs[k; i] and PQs[k; j] contain the points

a�ecting A
0

[i; j]. A tuple (0; 0) in PQs[k; i] signi�es that there is no rotation in row or column

i in group rotation k. The array-element assignments in the function MakePQs accomplish the

creation of PQs, which is constant throughout the computation, and needs to be created only

once. A parallel group rotation now involves the computation of the s, t and � values associated

to all points in the group, and one array comprehension de�ning A
0

. The following function

GroupRot sketches this process for the creation of the next value of A, again with complications

concerning small elements of A left out. The next values of V and D are computed similarly.

def GroupRot A V D PQs k N = {

Ts, Taus, Ss = MakeTsTausSs A D PQs k N

in % next A

{ matrix((1,N),(1,N)) of

| [i,j] =

{p1,q1,p2,q2 =

{ p1,q1 = PQs[k,i]; p2,q2 = PQs[k,j]

in if (p1 < p2)

then p1,q1,p2,q2

else p2,q2,p1,q1 }

in if (p1 == 0)

then rot1 A Taus Ss i j p2 q2

else if ((p1 == i) and (q1 == j))

then 0.0

else rot2 A Taus Ss i j p1 q1 p2 q2 }

|| i <- 1 to N-1; j <- i+1 to N

}

};

def rot1 A Taus Ss i j p q =

if (Ss[p] == 0.0)

then A[i,j]

else if (j == p)

then {g=A[i,p]; h=A[i,q]

10

in g-Ss[p]*(h+g*Taus[p]) }

else if (j == q)

then

if (i < p)

then {g=A[i,p]; h=A[i,q]

in h+Ss[p]*(g-h*Taus[p]) }

else {g=A[p,i]; h=A[i,q]

in h+Ss[p]*(g-h*Taus[p]) }

else

if (i == p)

then

if (j < q)

then {g=A[p,j]; h=A[j,q]

in g-Ss[p]*(h+g*Taus[p]) }

else {g=A[p,j]; h=A[q,j]

in g-Ss[p]*(h+g*Taus[p]) }

else

if (i == q)

then {g=A[p,j]; h=A[q,j]

in h+Ss[p]*(g-h*Taus[p]) }

else A[i,j];

def rot2 A Taus Ss i j p1 q1 p q =

if (Ss[p] == 0.0)

then rot1 A Taus Ss i j p1 q1

else if (j == p)

then {g = rot1 A Taus Ss i p p1 q1;

h = rot1 A Taus Ss i q p1 q1

in g-Ss[p]*(h+g*Taus[p]) }

else if (j == q)

then

if (i < p)

then {g = rot1 A Taus Ss i p p1 q1;

h = rot1 A Taus Ss i q p1 q1

in h+Ss[p]*(g-h*Taus[p]) }

else {g = rot1 A Taus Ss p i p1 q1;

h = rot1 A Taus Ss i q p1 q1

in h+Ss[p]*(g-h*Taus[p]) }

else

if (i == p)

then if (j < q)

then {g = rot1 A Taus Ss p j p1 q1;

h = rot1 A Taus Ss j q p1 q1

in g-Ss[p]*(h+g*Taus[p]) }

else {g = rot1 A Taus Ss p j p1 q1;

h = rot1 A Taus Ss q j p1 q1

in g-Ss[p]*(h+g*Taus[p]) }

11

else {g = rot1 A Taus Ss p j p1 q1;

h = rot1 A Taus Ss q j p1 q1

in h+Ss[p]*(g-h*Taus[p]) };

The creation of the s, t and � values involves O(n) operations. As for each element of A
0

only a

constant amount of operations is needed, the creation of A
0

takes O(n2) operations. Consequently

a sweep now takes O(n3). Furthermore, all n2 elements of A
0

can be computed in parallel.

3.3 Simplifying MakePQs

Observe that in the example for n=5, Sameh's group numbers start at b(n� 1)=2c and increment
(modulo n) with b(n � 1)=2c in both row and column directions. In the case of n=6, the last
column consists of the group numbers n down to 1. A general proof for this is provided in the
appendix. This implies that our rather complex function MakePQs can be simpli�ed and made
more e�cient, especially if we separate the cases for odd and even n:

def EvenPQs n = {

m = floor(float n/2.0); mm = n-1;

PQs = 2D_I_array ((1,mm),(1,n))

in

{ for p <- 1 to mm do

{ for q <- p+1 to mm do

h = (mod (q*(m-1)-p*m+1) mm);

k = if (h == 0) then mm else h;

PQs[k,p] = (p,q); PQs[k,q] = (p,q);

};

PQs[p,n] = (n-p,n); PQs[p,n-p] = (n-p,n)

finally PQs

}

};

def OddPQs n = {

m = floor(float (n+1)/2.0);

PQs = 2D_I_array ((1,n),(1,n))

in

{ for p <- 1 to n do

{ for q <- p+1 to n do

h = (mod (q*(m-1)-p*m+1) n);

k = if (h == 0) then n else h;

PQs[k,p] = (p,q); PQs[k,q] = (p,q);

};

PQs[p,n+1-p] = (0,0)

finally PQs

}

12

Row Major Order Group Rotations

n Instr Cycles Rots Instr Cycles Sweeps
* 1000 *1000 * 1000 *1000 (Rots)

4 133 8 21 84 12 4(24)
6 527 34 64 313 42 4(60)

8 773 59 72 866 130 5(140)

10 1,769 140 132 1,928 244 5(225)

12 4,295 350 261 3,367 460 5(330)

14 7,144 630 359 6,492 900 6(546)
16 11,248 1000 476 9,791 1350 6(720)

Table 1: Monsoon performance of the algorithms

};

We have left the de�nition of PQs in OddPQs and EvenPQs in the form of a side-e�ecting loop,

as an array-comprehension would force us to compute k twice, for index expression [k; p] and for

[k; q].

4 Monsoon Performance

The run time behaviour of Jacobi algorithms is highly input dependent. Most importantly, the

convergence rate is data dependent. Also, the convergence rate is dependent on the order in

which the rotations take place. Section 5 discusses convergence issues further. The order of the

rotations di�ers in the two implementations. Table 1 contains the simulation results of both jacobi

implementations, run for a matrix A with 1.0 on the diagonal and A[i,j] = i+j o� the diagonal.

Instr stands for the number of instructions executed, Cycles stands for the number of Monsoon

machine cycles the algorithms take and relates to the critical path length of the algorithms, Rots

stands for the number of rotations performed, and Sweeps for the number of sweeps performed.

As the diagonal elements are smaller than the o� diagonal elements, this type of input gives rise

to relatively slow convergence. Notice that the row-major order algorithm performs much less

rotations than the group rotation algorithm, but that the group rotation algorithm still executes

less instructions (except in cases n=8 and n=10). The number of Monsoon machine cycles is

always less for the row major order algorithm than for the group rotations algorithm. This is an

unexpected result, given the abstract complexity of the algorithms, and has to do with the way

Id loops are compiled. (The default \K-bound" { the number of loops bodies that execute in

parallel { is one.) By explicitly changing the loop bounds, the group rotations algorithm can be

made more parallel.

13

5 Numercial Convergence

Given that there are (n(n� 1))=2)! ways of choosing the updating order for the Jacobi method,

one particular ordering is important since it can be proved to converge. This particular ordering

is a cyclic by row ordering, where the rotations are chosen according to the following rule. The

�rst rotation in the sweep is (1; 2). A rotation (p; q) is followed by

(p; q+ 1) if p < n� 1; q < n;

(p+ 1; p+ 2) if p < n� 1; q = n;

(1; 2) if p = n� 1; q = n:

Under this cyclic row major ordering, we have the following theorem by Forsythe and Henrici [3].

THEOREM 1. Let a sequence of Jacobi transformations be applied to a symmetric matrix A.

Further, let the angle �k be restricted as follows:

�k2 [a; b] and � �

2
< a < b <

�

2
:

If the o�-diagonal elements are annihilated using a cyclic row major ordering, then this Jacobi

method converges.

It was this cyclic row major ordering that when initially implemented substantially increased the

computational complexity, because of the functional array semantics of Id. This undesireable

feature �nally lead to the parallel cyclic ordering described above.

However, with the new ordering it is important that convergence is still guaranteed. Fortunately,

Shro� and Schreiver [12] have introduced the notion of \cyclic wavefront" orderings where in a

cyclic ordering of pairs

f(i; j); 1� j < j � ng
the rotation index I(i; j) at the which the pair (i; j) occurs. If

I(i; j � 1) < I(i; j)< I(i+ 1; j)

for all 1 � i < j � n, then the ordering is called a cyclic wave front ordering.

The important point is the Theorem that follows

THEOREM 2. A cyclic Jacobi ordering is equivalent to the cyclic by rows ordering if and only if

it is a cyclic wavefront ordering.

14

Moreover, under shift-equivalent orderings and transpositions of commuting rotations a class of

weakly wavefront orderings is shown to be equivalent to the cyclic wavefront ordering and thus

also convergent. Finally a permutation equivalent ordering is also show to be weakly equivalent

to this ordering.

N = 6

2
66666664

: 2 4 1 3 5

: 1 3 5 4

: 5 1 3

: 2 2

: 1

:

3
77777775

(13)

We now consider the following permutation given by

(123456) �! (135246)

1strow : element (12) �! (13)

element (13) �! (15)

element (14) �! (12)

element (15) �! (14)

element (16) �! (16)

2strow : element (23) �! (35)

element (24) �! (32)

element (25) �! (34)

element (26) �! (36)

3strow : element (34) �! (52)

element (35) �! (54)

element (36) �! (56)

4strow : element (45) �! (24)

element (46) �! (26)

Under these permutations, the following cyclic ordering results:

2
66666664

: 1 2 3 4 5

: 3 4 5 1

: 5 1 2

: 2 3

: 4

:

3
77777775

(14)

15

Therefore (1) is a P(ermutation)-wavefront ordering that is equivalent to (2). (2) converges and

under the permutation equivalence so does (1) [12].

6 Conclusion

In this paper we have discussed the design of an e�cient, parallel implementation of the Jacobi

eigen-solver algorithm.

It is often claimed that without some form of destructive updates, the computational e�ciency of

some algorithms can be increased. In this paper, we have demonstrated that the Jacobi method,

though initially encumbered by the functional semantics of non-destructive array updates, is

e�ciently expressible in the functional paradigm. Without relaxing this fundamental restriction,

an e�cient implementation was still possible by resorting to parallelism at the algorithmic level,

so that unnecessary copying of array elements could be totally eliminated.

Given their implicit nature, it is not always clear how to assess the complexity of functional

algorithms. We have used the notion of abstracted or computational complexity to guide the

design of our functional numerical algorithms

7 Appendix

THEOREM

For N odd, the congruence k � [m � p + (q � p � 1)(m � 1)]mod(2m � 1) is equivalent to

the Sameh parallel rotation groups (see function MakePQs in the text) which de�nes the minimal

number of groups that are consequently of maximal size, covering all points (p; q) of the upper

triangle of A.

PROOF

In the range k = 1; 2; : : : ; m � 1; the following holds

m � k + 1 � q � 2m � 2k;

p = 2m � 2k + 1 � q;

and

2m � 2k + 1 � q � 2m � k � 1;

p = 4m � 2k � q;

16

whereas in the range k = m; m + 1; : : : ; 2m � 1; we have

2m � 2k + 1 � q � 2m � k � 1;

p = 4m � 2k � q;

and

4m � 2k � p � 3m � k � 1;

p = (6m � 2k � 1)� q:

Consider a symmetric matrix of dimension N times N: We will consider the case for N odd,

N = 2m � 1: The elements of the matrix (p,q) are ordered so that p � q:

Case a.

k = 1; 2; : : : ; m � 1;

Case a1.

m � k + 1 � q � 2m � 2k;

p � q = 2m � 2k + 1: (15)

Solving for k in Eqn. 15, gives

k = m � p + q � 1

2
: (16)

Eqn. 15 restricts the index pair (p; q) to p + q, odd. Setting k to the value in Eqn. 15, the

following di�erence is formed:

(m � p + q � 1

2
) � (m � p + (q � p � 1)(m � 1))

and with a little manipulation, it is easy to show that

(m � p + q � 1

2
) � (m � p + (q � p � 1)(m � 1))

=
p � q + 1

2
(2m � 1):

From Eqn. 15, p + q is odd and so p � q + 1 is even and divisible by 2: Thus

m � p + q � 1

2

� m � p + (q � p � 1)(m � 1)mod(2m � 1): (17)

17

Case a2.

2m � 2k + 1 � q � 2m � k � 1;

p � q = 4m � 2k; (18)

Solving for k in Eqn. 18, gives

k = 2m � p + q

2
: (19)

and restricts the index pair (p; q) to p + q, even.

Using Eqn. 19, the di�erence between k and (m � p + (q � p � 1)(m � 1)) gives

(2m � p + q

2
) � (m � p + (q � p � 1)(m � 1))

=
p � q + 2

2
(2m � 1): (20)

From Eqn. 19, p + q is even, then so is p � q + 2: Thus

m � p + q

2

� m � p + (q � p � 1)(m � 1)mod(2m � 1): (21)

Case b.

k = m; m + 1; : : : ; 2m � 1;

Case b1.

See Case a2 above.

Case b2.

4m � 2k � p � 3m � k � 1; (22)

p = (6m � 2k � 1)� q:

So p + q is even.

k = 3m � p + q + 1

2
: (23)

18

Since p + q + 1 is even, k is integral. Forming the di�erence

k � (m � p + (q � p � 1)(m � 1))

=
p � q + 3

2
(2m � 1): (24)

Since p + q is odd so is p � q + 3 and thus

k � m � p + (q � p � 1)(m � 1)mod(2m � 1): (25)

QED

19

References

[1] Arvind, R.A. Ianucci, Instruction Set De�nition for a Tagged Token Data
ow Machine LCS,

MIT, 1983

[2] A.P.W. B�ohm, R. E. Hiromoto, The Data
ow Time and Space Complexity of FFTs, Sub-

mitted to the Journal of Parallel and Distributed Computing, a special Datalow issue, guest

edited by Gao et al.

[3] G.E. Forsythe and P. Henrici, The Cyclic Jacobi Method for the Principal Values of a Com-

plex Matrix, Trans. Amer. Math. Soc., 94 (1960), pp. 1-23.

[4] David Cann, Retire Fortran? A Debate Rekindled, Proceedings of Supercomputing '91, IEEE

Computer Society Press, 1991, pp. 264-272.

[5] J.R. Gurd, A.P.W. B�ohm and Y.M. Teo, Performance Issues in Data
ow Machines, Future

Generation Computer Systems, 3, 1987, pp. 285-297.

[6] J.J. Lambiotte, Jr., R. Voigt, The Solution of Tridiagonal Linear Systems on the CDC

STAR-100 Computer, ACM Transaction on Mathematical Software, 1, pp. 308-329, 1975.

[7] Id World User's Manual, Motorola, Inc., 1992.

[8] D. R. Morais, ID World: An Environment for the Development of Data
ow Programs Writ-

ten in ID, MIT LCS TR-365, may 1986.

[9] R.S. Nikhil, Id (version 90.0) Reference Manual. TR CSG Memo 284-1, MIT LCS 1990.

[10] W.H. Press et al., Numerical Recipes, the art of Scienti�c programming, Cambridge Univer-

sity Press.

[11] A. H. Sameh, On Jacobi-like Algorithm for a Parallel Computer, Math. Comput., 25 (1971),

pp. 579-590.

[12] G. Shro� and R. Schreiver, On the Convergence of the Cyclic Jocobi Method for Parallel

Block Orderings, SIAM J. Matrix Anal. Appl., Vol. 10, No. 3, pp. 326-346, July 1989.

20

