
Department of

Computer Science

NAS parallel benchmark

integer sort (IS) performance

on MINT

S. Sur and W. Bohm

Technical Report CS-93-107

May 20, 1993

Colorado State University

NAS parallel benchmark integer sort (IS)

performance on MINT

S. Sur and W. B�ohm

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

May 17, 1993

Abstract

We study several sorting routines written in Id and compare their relative performance in

terms of number of instructions (S1), length of the critical path (S1) and average parallelism.

The sorting routines considered here are of the types (1) Exchange sort (2) Insertion sort (3)

Merge sort and (4) Sorting Networks. We implement them using I-structures (e.g. merge

sort) or M-structures (e.g bubble sort). We optimize the routines with respect to e�ciency,

minimize the number of barriers, and eliminate redundant copying. We compare our results

with expected theoretical performance. It turns out that M-structures improve the performance

and sometimes the elegance of our algorithms, and that the classical sort algorithms outperform

the explicit parallel ones on monsoon. Mergesort outperforms all other algorithms, even with

explicit deallocation.

Address for Correspondence:

A. P. W. B�ohm

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

Tel: (303) 491-7595

Fax: (303) 491-6639

Email: bohm@CS.ColoState.Edu

1

1 Introduction

The NAS benchmark IS deals with sortingN integer keys in parallel. The performance of the sorting

routines depends greatly on the key distribution and the process of key generation described in the

benchmark is carefully followed. To generate uniformly distributed pseudo-random numbers we

made use of the following recurrence:

xk+1 = axk(mod2
46)

where a is set to be 513 and x0 = s is the seed which we set to be 314159265 as speci�ed. We create

the r array (see the code below) by dividing xi by 246. This r-array has values between 0 and 1

and is very nearly uniformly distributed on the unit interval. The keys are generated by averaging

four of such consecutive pseudo-random numbers and scaling it by a factor Bmax. In our case we

set Bmax to be 1000.

def randvec_is m = {

% Generates m keys

n=4*m;

typeof r = I_vector(F); r=I_vector(1,n);

typeof rand = I_vector(I); rand=I_vector(1,m);

v=314159265;

a=round (5.0^13);

range = round (2.0^46);

{for i<-1 to n do

temp = a*v;

next v = mod temp range;

r[i] = (float next v)/(float range) };

bmax=1000.0;

{for i<-1 to m do

j = 4*i;

rand[i] = floor (bmax*(r[j-3]+r[j-2]+r[j-1]+r[j])/4.0) }

in rand

};

To obtain an M-structure �lled with these integers, we simply create the above I-structure and

then store it in an M-structure. To isolate the performance of the sorting routine from that of key

generation we make use of a barrier as shown in the code segment given below, such that random

vector generation happens without overlap with the sorting part. In the parallelism pro�les the

dark portion in the beginning signi�es the key generation part and the lighter shade characterizes

the performance of the sorting routine. In table 1, when we present individual performances of the

sorting routines, we subtract the e�ect of key generation from the instruction count and the critical

path length.

def runsort n ={

v = randvec_ms n;

w= sort v 1 n;

in w

};

2

2 Exchange of keys and Bubble Sort

In this section we present two simple routines for exchanging two elements in an M-array and a code

for bubble sort that is based solely on these exchanges. The function exchange swaps two elements

in an M-structure at the respective indices. Notice the barrier after the reading operations which

prevents out of order writing into the M-structure. This exchange routine is risky in the sense that

if two exchanges are carried out in parallel, e.g an i-j exchange and an i-k exchange, the result

will depend on the order in which the elements are read. Moreover, this kind of exchange has

the potential for deadlock if exchange of i-j, j-k and i-k elements happen simultaneously. In the

sorting routines we developed either the algorithms prevent such problematic exchanges or, more

interestingly, we made use of default k-bound of 1 on loops to avoid this problem. We will mention

when such default k-bounding of loops is needed for the correctness of our algorithms.

def exchange vec i j = {

typeof vec = M_vector(I);

a = vec![i];

b = vec![j];

vec![i], vec![j] = b, a;

in vec

};

The function check and exchange is very similar to the previous one, except here the exchange

is conditional. Note, the absence of a barrier in this case. The condition statement requires

both i-th and j-th element to be read before the exchange occurs. This is an example of implicit

synchronization based on data dependance where we do not need an explicit barrier.

def check_and_exchange vec i j = {

typeof vec = M_vector(I);

a = vec![i];

b = vec![j];

vec![i], vec![j] =if (b < a)

then b, a

else a, b;

in vec

};

The following routine for bubble sorting is a good example where the above exchange routine is

used and default k-bound of 1 is used for synchronization. It consists of a doubly nested loop where

the loop body contains one call to the check and exchange function for exchanging two consecutive

elements of the array. The k-bound of 1 guarantees that no more than one loop body is executed

at one time. Fig. 1 shows the parallelism pro�le for bubble sort for 256 element and as expected,

this method performs very poorly having an average parallelism of only 2.77 (see Table 1). The

instruction count of over 2.5 million is also excessively high.

% BUBBLE SORT

def bubblesort d ={

3

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
200000

|
400000

|
600000

|
800000

|
1000000

|0.00

|0.40

|0.80

|1.20

|1.60

|2.00

|2.40

|2.80

|3.20

 cycles

 In
stru

ctio
ns

Figure 1: Sample idealized pro�le of bubble sort of 256 integers

typeof d = M_vector(I);

(_,n) = bounds d;

{for i<- n-1 downto 1 do

{for j<- 1 to i do

_ = check_and_exchange d j (j+1) }

};

in d

};

3 Heap sort

In this section we consider two implementations of heap sort, the �rst one using I-structures and

the second one using M-structures. The purpose here is to show how costly programming with

I-structures can be compared to programming with M-structures, because of unnecessary copying

of I-arrays. The function heapsort uses I-structures. It consists of three functions (a) heapify, which

builds a heap within the binary sub-tree of a speci�ed node, passed as an argument in the form

of an index to the array, (b) build heap, which uses heapify in a loop to build a complete heap

over the array, and (c) heapsort, which builds a complete heap �rst, strips the top element and

calls heapify to build another heap for the rest of the elements, and continues the process untill all

the elements have come to the top of the heap. Note, the unavoidable copying step in heapsort,

which exchanges two array elements and which cannot be performed without copying. This turns

the heap sort routine has turned into an O(n2) algorithm (see Table 2). The instruction count for

256 elements is about 5 million with critical path length over half a million (see Table 1). Fig. 2.

shows that the average parallelism is about 9.5.

% HEAP SORT with I-structures

def heapsort A ={

typeof A = I_vector(I);

(_,n) = bounds A;

typeof dsort = I_vector(I); dsort = I_vector(1,n);

theap = build_heap A;

heaped= {for j<- n downto 2 do

dsort[j] = theap[1];

typeof temp = I_vector(I);

4

temp = I_vector(1,j-1);

%unavoidable copying of the array elements to perform exchange

{for k<- 2 to j-1 do

temp[k] = theap[k]};

temp[1] = theap[j];

next theap = heapify temp 1;

finally theap

};

dsort[1] = heaped[1];

in dsort

};

def build_heap A ={

typeof A = I_vector(I);

(_,n) = bounds A;

m = div n 2;

theap = A;

heaped= {for j<- m downto 1 do

next theap = heapify theap j;

finally theap

};

in heaped

};

def heapify A i ={

typeof A = I_vector(I);

(_,n) = bounds A;

typeof tempd = I_vector(I); tempd = I_vector(1,n);

l= 2*i;

r= 2*i+1;

larger = if(l > n) then i

else if(A[l] > A[i])

then l else i;

largest = if (r > n) then larger

else if(A[r] > A[larger])

then r else larger;

dheap = if(largest <> i)

%awkward copying of array elements in segments to perform exchange A[i] and A[largest]

then{{for j<- 1 to i-1 do

tempd[j] = A[j]};

tempd [i] = A[largest];

{for j<- i+1 to largest-1 do

tempd[j] = A[j]};

tempd [largest] = A[i];

{for j<- largest+1 to n do

tempd[j] = A[j]};

d2 = heapify tempd largest;

in d2 }

else A;

5

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
60000

|
120000

|
180000

|
240000

|
300000

|
360000

|
420000

|
480000

|
540000

|0.00

|2.00

|4.00

|6.00

|8.00

|10.00

|12.00

|14.00

|16.00

 cycles

 In
stru

ctio
ns

Figure 2: Sample idealized pro�le of heap sort with I-structures of 256 integers

in dheap

};

The function heapsortm shows the implementation of the same algorithm using M-structures.

Here the functions with the same name as above perform the same task. Note that the exchanges of

elements within an array are not as cumbersome or expensive anymore. The overhead here is that

of synchronization which is implemented in the form of barriers. We need one barrier in heapsortm

after building a complete heap to make sure further operations do not start before the heap is built.

The barriers after the exchange operations make sure that that heapi�cation occurs only after the

exchange is complete. The k-bound of 1 is also used implicitly used in the loop for synchronization

purposes so that exchanges may not con
ict. The use of M-structures here paid o� immensely, as

the total instruction count has reduced by a factor of 10 to about half a million (see Table 1) for

256 elements. The critical path length is still very high (159,700) making average parallelism as

low as 3.1 as seen in Fig. 3. This low parallelism is mainly due to use of loop bound of 1, but

a higher loop bound does not perform any better either, since it increases the instruction count

signi�cantly.

% HEAP SORT with M-structures

def heapsortm A ={

typeof A = M_vector(I);

(_,n) = bounds A;

dsort = build_heap A;

sorted={for j<- n downto 2 do

temp = exchange dsort 1 j;

next dsort = heapify dsort 1 (j-1);

finally dsort }

in sorted

};

def build_heap A ={

typeof A = M_vector(I);

6

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
30000

|
60000

|
90000

|
120000

|
150000

|
180000

|0.00

|0.60

|1.20

|1.80

|2.40

|3.00

|3.60

|4.20

|4.80

 cycles

 In
stru

ctio
ns

Figure 3: Sample idealized pro�le of heap sort with M-structures of 256 integers

(_,n) = bounds A;

m = div n 2;

{for j<- m downto 1 do

next A = heapify A j n }

in A

};

def heapify A i n={

typeof A = M_vector(I);

l= 2*i;

r= 2*i+1;

larger = if(l > n) then i

else if(A!![l] > A!![i])

then l else i;

largest = if (r > n) then larger

else if(A!![r] > A!![larger])

then r else larger;

dheap = if(largest <> i)

then{temp = exchange A largest i;

d2 = heapify A largest n;

in d2 }

else A;

in dheap

};

4 Quick sort

In this section we consider two implementations of Quicksort, the �rst one using I-structures and the

second one using M-structures. For the sake of e�ciency we use two slightly di�erent interpretations

of quicksort. In the implementation with M-structures we use exchanges of elements in an array

since exchanging is cheap when M-structures are used. On the other hand, as we have seen in

the case of heap sort, implementing such exchanges with I-structures is extremely expensive and

7

we should avoid it when possible. In the I-structure implementation of quick sort, instead of

partitioning an array into two by a series of exchanges (as is usually done), we create three sub-

arrays: (1) with elements that are smaller than the pivotal element (2) with elements that are bigger

than the pivotal element and (3) with elements that are equal to the pivotal element. The routine

is then called recursively for the lesser and bigger sub-arrays. We use one sweep over the array

to compute the number of elements that are smaller, bigger or equal to the pivotal element. This

information is used for subsequent allocation of the sub-arrays. This implementation of quicksort

performed quite well compared to other algorithms. The instruction count for 256 elements in this

case is only about 300,000 and critical path length being 30,000 (see Table 1). Fig. 4 shows a sort

of gradual increase in the parallelism pro�le with an average parallelism of 10.2. An important

point to note here is that since this routine is recursive, the loss in parallelism caused by a default

k-bound of 1 does not exist and di�erent instances of the recursion can run in parallel.

% QUICK SORT with I-structures

def qcksort d ={

typeof d = I_vector(I);

(_,n) = bounds d;

in

if(n == 1) then d

else

{ less =0; more = 0; eql =1; t1 =0; t2 =0;

typeof d1 = I_vector(I); typeof d2 = I_vector(I);

typeof outvec = I_vector(I); outvec = I_vector(1,n);

less_ct, more_ct, eql_ct={for i <- 2 to n do

next less = if (d[i] <d[1]) then less + 1 else less;

next more = if (d[i] >d[1]) then more + 1 else more;

next eql = if (d[i] == d[1]) then eql + 1 else eql;

finally less, more,eql

};

d1 = I_vector(1,less_ct); d2 = I_vector(1,more_ct);

{for i <- 2 to n do

next t1, next t2 = if (d[i] <d[1])

then { d1[t1 +1] = d[i];

in t1 + 1,t2 }

else if (d[i] >d[1])

then { d2[t2 +1] = d[i];

in t1,t2 + 1 }

else t1,t2

};

outvec2 = if((less_ct>0) and (more_ct >0))

then {sortd1 = qcksort d1;

sortd2 = qcksort d2;

{for i <- 1 to less_ct do outvec[i] = sortd1[i]};

{for i <- 1 to eql_ct do outvec[less_ct+i] = d[1]};

{for i <- 1 to more_ct do

outvec[less_ct+eql_ct+i] = sortd2[i]};

8

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
6000

|
12000

|
18000

|
24000

|
30000

|
36000

|
42000

|
48000

|
54000

|0.00

|5.00

|10.00

|15.00

|20.00

|25.00

|30.00

|35.00

|40.00

 cycles

 In
stru

ctio
ns

Figure 4: Sample idealized pro�le of quick sort with I-structures of 256 integers

in outvec }

else if((less_ct>0) and (more_ct == 0))

then {sortd1 = qcksort d1;

{for i <- 1 to less_ct do outvec[i] = sortd1[i]};

{for i <- 1 to eql_ct do outvec[less_ct+i] = d[1]};

in outvec }

else if((less_ct ==0) and (more_ct > 0))

then {sortd2 = qcksort d2;

{for i <- 1 to eql_ct do outvec[i] = d[1]};

{for i <- 1 to more_ct do

outvec[eql_ct+i] = sortd2[i]};

in outvec }

else { {for i <- 1 to eql_ct do outvec[i] = d[1]};

in outvec }

in outvec2 }

};

The function qcksortm is an M-structure implementation of the same quicksort routine. Here

the function partition divides the array into two by a series of exchanges. We start with a pointer

at the left end of the array and move it to right until a key with larger value than the pivot is found.

Another pointer at the right end is moved to the left until a key will value smaller than the pivot

is found. We exchange these two keys and proceed likewise until the partition point is found. We

use the function quicksort recursively on the partitioned sub-arrays. This method performs really

well, having the minimum instruction count among all the methods we consider. For 256 elements

this method has an instruction count of 244,558 and critical path length of only 17,000 (see Table

1). The parallelism pro�le has a similar appearance (see Fig. 5) as the I-structure implementation

with average parallelism of 14.39.

% QUICK SORT with M-structures

def qcksortm A b u ={

typeof A = M_vector(I);

p = u-b+1;

in

9

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
5000

|
10000

|
15000

|
20000

|
25000

|
30000

|
35000

|
40000

|0.00

|7.00

|14.00

|21.00

|28.00

|35.00

|42.00

|49.00

|56.00

 cycles

 In
stru

ctio
ns

Figure 5: Sample idealized pro�le of quick sort with M-structures of 256 integers

if(p == 1) then A

else

{q = partition A b u;

sort1 = qcksortm A b q;

sort2 = qcksortm A (q+1) u;

in sort2 }

};

def partition A b u={

typeof A = M_vector(I);

x=A!![b];

i=b; j=u; temp =1;

partn={while (i <= j) do

p=j;

tj ={while(A!![p] >x) do

next p=p-1;

finally p };

q=i;

ti ={while(A!![q] < x) do

next q = q+1;

finally q };

next temp = if (ti < tj)

then {_=exchange A ti tj;

in tj-1}

else tj;

next i, next j = (ti+1), (tj-1);

finally temp };

in partn

};

10

5 Merge based Sorting

In this section we consider two algorithms which are based on merging of arrays. I-structures are

used in implementation of both the algorithms. The function mergesort recursively builds a sorted

array by merging two half sized sorted arrays. The actual merging operation of the sorted array is

done by �xing two pointers to the arrays and moving them when an element of the pointer array is

selected, while building a third array. This algorithm outperformed all the other methods, which

came as a surprise! It has one of the lowest instruction counts and by far the lowest critical path

length. In the case of mergesort we have deallocated intermediate arrays, as this could be a useful

algorithm. However, we have not yet implemented explicit deallocation of the intermediate arrays,

which may change the picture considerably. Table 1 shows that for 256 elements, this algorithm,

including deallocation of I-structures, requires in the order of 200,000 instructions and has a critical

path length of 8,000. Fig. 6 shows its idealized parallelism pro�le, and notice the phenomenal peak

parallelism of about 150.

% MERGE SORT

def mergesort A low up ={

typeof A = I_vector(F);

p = up-low+1;

in

if(p == 1) then

{typeof R = I_vector(F); R = I_vector(1,1); R[1] = A[up] in R}

else

{ m = div p 2;

typeof sorted = I_vector(F);

typeof sort1 = I_vector(F);

typeof sort2 = I_vector(F);

sort1 = mergesort A low (low+m-1);

sort2 = mergesort A (low+m) up;

sorted = merge sort1 sort2;

@release sort1; @release sort2;

in

sorted

}

};

def merge A B ={

typeof A = I_vector(I); typeof B = I_vector(I);

(_,m) = bounds A; (_,n) = bounds B;

typeof merged = I_vector(I); merged = I_vector(1,m+n);

ctr = 1; i=1; j=1;

count, lasti, lastj =

{while ((i <= m) and (j <= n)) do

merged[ctr], next i, next j =

if (A[i] < B[j]) then A[i],i+1, j

11

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
4000

|
8000

|
12000

|
16000

|
20000

|
24000

|
28000

|
32000

|0.00

|20.00

|40.00

|60.00

|80.00

|100.00

|120.00

|140.00

|160.00

 cycles

 In
stru

ctio
ns

Figure 6: Sample idealized pro�le of merge sort of 256 integers

else B[j], i, j+1;

next ctr = ctr + 1;

finally ctr, i, j };

ctr2 = 0;

{for k<- count to m+n do

merged[k] = if(lastj > n)

then A[lasti + ctr2]

else B[lastj + ctr2];

next ctr2 = ctr2 +1 }

in merged

};

The following code is that of Todd's sort which is a pipelined version of merge sort. Groups of

size powers of two are merged and the group size is doubled at every step. Our computation here

shows that this sort of algorithm that tries to extract parallelism explicitly does not pay o� in the

functional/data
ow environment. Our paradigm is already capable of pipelining simultaneously

executable processes. Hence, trying to express it explicitly not only increases the instruction count

but also curbs the implicitly available parallelism by a large extent. The parallelism is lost mainly

due to the use of default bound of 1 in the loops and increasing this bound increases the instruction

count excessively. Fig 7 shows the idealized parallelism pro�le and an average parallelism of 4.75

can be seen for an array of size 256. The number of instruction required in this method is 272,844

and critical path length is 57,400 (see Table 1).

% TODD SORT

def todd A ={

% Works only if dimension of input vector is a power of 2

typeof A = I_vector(I);

(_,p) = bounds A;

m = round (2.0^(log_2 p));

in

if(p == 1) then A

else { grpcnt = 1;

dsort = A;

12

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
9000

|
18000

|
27000

|
36000

|
45000

|
54000

|
63000

|
72000

|
81000

|0.00

|2.00

|4.00

|6.00

|8.00

|10.00

 cycles

 In
stru

ctio
ns

Figure 7: Sample idealized pro�le of todd sort of 256 integers

sort={while (grpcnt < p) do

i =1;

typeof temp = I_vector(I); temp = I_vector(1,p);

{while (i < p) do

typeof d1 = I_vector(I); d1 = I_vector(1,grpcnt);

typeof d2 = I_vector(I); d2 = I_vector(1,grpcnt);

{for k<- 1 to grpcnt do

d1[k] = dsort[i+k-1];

d2[k] = dsort[i+k-1+grpcnt] };

sorted = merge d1 d2;

{for k<- 1 to 2*grpcnt do temp[i+k-1] = sorted[k]};

next i = i+2*grpcnt };

next dsort = temp;

next grpcnt = grpcnt*2;

finally dsort };

in sort }

};

% This function returns (nearest power of 2 less than n)

def log_2 n ={

res = floor ((log10 (float n))/(log10 2.0))

in res

};

6 Sorting Networks

We consider two sorting algorithms based on sorting networks. Since sorting networks use element

exchanges, use of M-structures seems natural. The following routine shows an implementation of

odd-even sort in which only elements with an index di�erence (stride) of 2 are checked for exchange

at every step. Alternate steps exchange only the odd or only the even indexed element, hence

the name. The steps are performed n times, making the method an O(n2) one, and executing

sequentially. Since for our implementation only one loop body is executed at one time this method

13

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
200000

|
400000

|
600000

|
800000

|
1000000

|
1200000

|0.00

|0.40

|0.80

|1.20

|1.60

|2.00

|2.40

|2.80

|3.20

 cycles

 In
stru

ctio
ns

Figure 8: Sample idealized pro�le of oddeven sort of 256 integers

performs quite poorly. Fig. 8 shows the paralleism pro�le for the following implementation and

an average parallelism of 2.53 for the input vector size 256. But a very high instruction count of

over 2.8 million and critical path length of over 1.1 million for vector length of 256 questions the

usefullnes of this algorithm.

Note, for this method default loop bound of one destroys almost all the parallelism of this

method. In the following code one can see that two instances of the outer loop and n=2 instances

of the inner loop can run simultaneously without any synchronization problem. We measured the

performance with this modi�cation and the row of oddeven sort (B) in table 1 describes it. We can

observe that the ideal parallelism has increased about 8-fold, but at a signi�cant cost of instruction

count, which almost doubled in everey case. Fig 9. depicts the idealized parallelism pro�le of 256

integers for this case.

% ODDEVEN SORT

def oddeven d ={

typeof d = M_vector(I);

(_,n) = bounds d;

{for p<- 1 to n do

i = if ((mod p 2)==0) then 2 else 1;

{while (i < n) do

m = i+1;

_ = check_and_exchange d i m;

next i = i+2 }

}

in d

};

The last code in this memo is bitonic sort. This routine consists of 5 short functions: (a)

half cleaner: this function compares and exchanges (if necessary) all elements of the array that are

half the array size apart; (b) premerger: works similarly to the half cleaner except the i-th element

from the top and the bottom of the array are compared; (c) sort biton: this function sorts an input

of bitonic sequence (d) merge biton: this function merges two sorted sequences and (e) bitonicsort:

Sort any input array by recursion using the merge biton function like normal merge sort. This

algorithm has an O(n logn) instruction count and low critical path length. Fig 10 shows the ideal

14

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
40000

|
80000

|
120000

|
160000

|
200000

|
240000

|
280000

|
320000

|0.00

|3.00

|6.00

|9.00

|12.00

|15.00

|18.00

|21.00

|24.00

 cycles

 In
stru

ctio
ns

Figure 9: Idealized pro�le of oddeven sort with bounds of 256 integers

parallelism pro�le for this method for 256 elements which indicates an average parallelism of about

43. The instruction count is about 86,000 and critical path length is 19,000 for the same size.

% BITONIC SORT

% Number of elements needs to be a power of 2

def half_cleaner A b u={

typeof A = M_vector(I);

m = div (u-b+1) 2;

{for j<- b to (b+m-1) do

next A = check_and_exchange A j (j+m) };

in A

};

def premerger A b u={

typeof A = M_vector(I);

m = div (u-b+1) 2;

{for j<- b to (b+m-1) do

next A = check_and_exchange A j (u-j+b) };

in A

};

def sort_biton A b u={

typeof A = M_vector(I);

n = u-b+1;

in

if(n == 1) then A

else

{m = div n 2;

D = half_cleaner A b u;

sort1 = sort_biton D b (b+m-1);

sort2 = sort_biton D (b+m) u;

in sort2 }

};

15

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
5000

|
10000

|
15000

|
20000

|
25000

|
30000

|
35000

|
40000

|0.00

|30.00

|60.00

|90.00

|120.00

|150.00

|180.00

|210.00

|240.00

 cycles

 In
stru

ctio
ns

Figure 10: Sample idealized pro�le of bitonic sort of 256 integers

def merge_biton A b u={

typeof A = M_vector(I);

n = u-b+1;

in

if(n == 1) then A

else

{m = div n 2;

D = premerger A b u;

sort1 = sort_biton D b (b+m-1);

sort2 = sort_biton D (b+m) u;

in sort2 }

};

def bitonicsort A b u={

typeof A = M_vector(I);

n = u-b+1;

in

if(n == 1) then A

else

{m = div n 2;

sort1 = bitonicsort A b (b+m-1);

sort2 = bitonicsort A (b+m) u;

mfinal = merge_biton sort2 b u

in mfinal }

};

16

Vector length 128 256 512

S1 S1 � S1 S1 � S1 S1 �

Bubble 688,802 257,500 2.67 2,688,000 972,000 2.77 10,468,594 3,690,000 2.84

Heap (I) 1,181,088 135,500 8.75 4,862,186 509,000 9.55 20,156,000 1,900,000 10.61

Heap (M) 211,898 69,000 3.07 496,735 159,700 3.11 1,121,594 354,000 3.17

Quick (I) 144,453 16,500 8.75 306,117 30,000 10.20 636,407 58,000 10.97

Quick (M) 108,950 10,500 10.38 244,558 17,000 14.39 532,992 46,000 11.58

Merge 93,873 5,000 18.77 199,937 8,000 24.98 424,497 19,000 22.34

Todd 126,841 26,000 4.88 272,844 57,400 4.75 585,343 118,000 4.96

Oddeven 708,565 280,500 2.53 2,826,186 1,118,000 2.53 11,288,347 4,455,000 2.53

Oddeven (B) 1,403,963 68,500 20.50 5,610,186 267,000 21.01 22,426,594 1,060,000 21.16

Bitonic 337,800 10,000 33.78 816,747 19,000 42.99 1,937,594 32,000 60.54

Table 1: Instruction Count, Critical Path length and avg. parallelism of the sorting routines

Vector length 32 64 128 256 512

Bubble [n2] 42.2 42.1 42.0 41.0 39.9

Heap (I) [n2] 82.2 74.5 72.1 74.2 76.9

Heap (M) [nlogn] 226.8 231.4 236.5 242.5 243.4

Quick (I) [nlogn] 184.6 168.8 161.2 149.5 138.1

Quick (M) [nlogn] 137.7 125.6 121.6 119.4 115.7

Merge [nlogn] 126.6 113.8 110.4 97.6 92.1

Todd [nlogn] 170.0 152.9 141.6 133.2 127.0

Oddeven [n2] 44.1 43.1 43.2 43.1 43.1

Oddeven (B) [n2] 86.6 86.0 85.7 85.6 85.6

Bitonic [n(logn)2] 67.41 59.9 53.9 49.9 46.7

Table 2: Constants obtained by dividing the instruction counts by the order

17

7 Conclusion

We have studied nine sort algorithms and measured their performance on monsoon. Table 2 shows

that, in terms of total work, the algorithms conform with their theoretical complexity. It turns

out that M-structures improve the performance and sometimes the elegance of our algorithms, and

that the classical sort algorithms outperform the explicit parallel ones. Mergesort outperforms all

other algorithms, even with explicit deallocation.

18

