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INTRODUCTION

For small zero-one knapsack problems, simple depth-�rst and branch-and-bound methods gen-

erate solutions much faster than our genetic algorithms. For large problems, simple depth-�rst and

branch-and-bound methods outperform the genetic algorithms both for �nding optimal solutions

and for �nding approximate solutions quickly. The simple methods perform much better than ge-

netic algorithms on this class of problem in spite of the existence of a genetic encoding scheme

which exploits useful local information. The results highlight the need for a better understanding

of which problems are suitable for genetic algorithms and which problems are not.

ZERO-ONE KNAPSACK PROBLEMS

The zero-one knapsack problem is de�ned as follows. Given n objects with positive weights Wi

and positive pro�ts Pi, and a knapsack capacity M , determine a subset of the objects represented

by a bit vector X such that
P

n

i=1XiWi �M and
P

n

i=1XiPi maximal. A greedy approximation

is found by inserting objects by pro�t weight ratio until the knapsack cannot be �lled any further.

The greedy approximation tends to be closer to the global optimum for larger problems.

Random instances of the zero-one knapsack problem were generated based on �ve user-de�ned

parameters: number of objects (n), knapsack capacity (p) as a percentage of total weight of the

objects, minimum weight/pro�t of any object (o), variance of weight/pro�t of any object (v) such

that o + v represents the maximum weight/pro�t of an object, and a random seed (s). We always

use p = 80%, and try to adjust o and v to create a small variance in pro�t/weight ratio. This

seems to generate harder knapsack problems with poor greedy estimates. The test cases include a

20-object problem, an 80-object problem, and several 500 and 1000-object problems.

A simple genetic encoding scheme for zero-one knapsack problems is as follows. Let each bit

represent the inclusion or exclusion of one of the n objects from the knapsack, by pro�t/weight

ratio from left to right. Note that it is possible to represent infeasible solutions by setting so many

bits to \1" that the corresponding set of objects over
ows the capacity of the knapsack.

We consider two methods of handling over
ow. The �rst penalty method assigns a penalty equal

to the amount of over
ow. The second method, partial scan, adds items to the knapsack one at a

time, scanning the bitstring left to right, stopping at the end of the string or when the knapsack

over
ows, in which case the last item added is removed.

Since the objects are sorted by pro�t weight ratio, the greedy approximation appears as a series

of \1" bits followed by a series of \0" bits. The partial scan method has the interesting property

that a string of all \1" bits always evaluates to the greedy approximation. This provides an easy

way of seeding the greedy approximation into the population if desired.
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Our 20-object problem has a global optimum of 445 and a greedy approximation of 275. The

80-object problem has a global optimum of 25729 and a closer greedy approximation of 25713.

Using our genetic algorithms, the 20-object knapsack problem is harder to solve than the 80-object

knapsack problem. Further, we �nd that the penalty evaluation method works better on the 20-

object problem, and the partial scan method works better on the 80-object problem [GW93].

COMPARATIVE RESULTS

Bohm and Egan have described �ve Sisal implementations of existing algorithms for exactly

solving zero-one knapsack problems [BE92]: divide and conquer , dynamic programming, depth �rst

with bound , memo functions, and branch and bound . We consider only depth-�rst and branch-and-

bound since these were reported as being the most e�ective. Since our genetic algorithms are also

written in Sisal [GWB92], we can compare performance by executing the various algorithms on a

simulator of the Manchester Data
ow Machine [GKB87]. The simulator provides useful statistics

such as total instructions executed, critical path, average parallelism, etc.

We tried several genetic algorithm implementations [GW93], including a Simple Genetic Al-

gorithm, Genitor, a simpli�ed CHC, several Island Models, and a Fine Grain Cellular Genetic

Algorithm. For our knapsack problems, the cellular version achieved better solutions and required

less running time. The results reported here are therefore based on the cellular algorithm.

The genetic algorithm takes an average of 26 generations (over 30 runs) to solve the 80-object

knapsack. Our fastest time-to-solve was achieved with a population size of 25. Table 1 compares

the statistics generated by the data
ow simulator for the various algorithms.

Algorithm Total Inst Crit Path

Massively Parallel GA 7390718 42874

Depth-First Search 1142637 355711

Branch-and-Bound 128636 16582

Table 1: Comparison of GA vs. other methods on 80-object knapsack

Both depth-�rst and branch-and-bound �nd solutions faster (fewer total instructions) than the

genetic algorithm. The short critical path for branch-and-bound indicates that this algorithm also

has greater potential parallelism than the genetic algorithm. Overall, depth-�rst is about six times

faster than the genetic algorithm, and branch-and-bound is about sixty times faster.

Since knapsack problems de�ne a search space of 2n combinations of objects, exhaustive search

methods will eventually fail on very large problems. While this is likely also true for genetic

algorithms, perhaps the genetic algorithm can provide better solution estimates part way through

the search than standard methods. On the other hand, recall that for larger problems the greedy

estimate is close to the global optimum, which helps simple exact methods prune the search space

more e�ectively. We found it necessary to generate thirty knapsack problems of 500 and 1000

objects in order to �nd four that the exhaustive methods did not solve immediately.

\Best-so-far" values for each algorithm at various times during the search are compared. On

500-object problems, the genetic algorithm requires 3 minutes just to reach the greedy estimate.

On 1000-object problems the genetic algorithm requires 20 minutes to reach the greedy estimate.

Branch-and-bound performs signi�cantly faster than either algorithm, but space demands cause

it to fail on one of the problems. Depth-�rst also clearly beats the genetic algorithm, since the
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knapsack5001 knapsack5002 knapsack10001 knapsack10002

Global solution 55928 56448 336983 630972

Greedy estimate 55907 56366 336699 630397

Depth-�rst

time-to-solve 1 hour > 3 hours > 3 hours 25 min

est @ 10 sec 55927 56446 336982 630972

Branch-bound

time-to-solve 1 sec 7 sec 24 sec never�

Genetic Algorithm

N = 25, T = 90s 55879 56349 334963 626398

N = 100, T = 90s 55820 56315 329672 616064

N = 100, T = 180s 55912 56419 336583 630154

N = 400, T = 20m 55924 56437 336852 630594

(*) Branch-and-bound exceeds memory for the knapsack10002 problem.

Table 2: GA vs. other methods on large knapsacks. N = population size, T = running time.

genetic algorithm never reaches the estimate which the depth-�rst algorithm �nds after 10 seconds.

It is interesting to note that on knapsack10002 , the depth-�rst algorithm �nds the global optimum

after only 10 seconds, but requires 25 more minutes to know that it is the optimum. Further tests

indicate that seeding the population with the greedy estimate does not a�ect the results.

CONCLUSIONS

These �ndings strengthen the notion that genetic algorithms are general-purpose algorithms not

intended to supplant existing methods for solving all problems. The algorithms used here are also

rather simple general purpose search algorithms. Martello and Toth report solving much larger

knapsack problems than ours in under one minute using more specialized forms of branch and

bound [MT90]. It seems reasonable to infer that a genetic algorithm could not match this kind of

performance since the cost of evaluating a population large enough to adequately sample such a

huge space would be excessive. Gendreau et al are producing similarly superior results (over genetic

algorithms) on traveling salesman problems [GHL92]. We clearly need a better understanding of

which problems are suitable for genetic algorithms, and which problems are not.
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