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Abstract

We examine the functional cohesion of procedures using a data slice abstraction. Our
analysis identi�es the data tokens that lie on more than one slice as the \glue" that binds
separate components together. Cohesion is measured in terms of the relative number of glue
tokens, tokens that lie on more than one data slice, and super-glue tokens, tokens that lie on all
data slices in a procedure, and the adhesiveness of the tokens. The intuition and measurement
scale factors are demonstrated through a set of abstract transformations and composition
operators.

Index terms | software metrics, cohesion, program slices, measurement theory

1 Introduction

Cohesion is an attribute of a software unit or module that refers to the \relatedness" of module

components. A highly cohesive software module is a module that has one basic function and is

indivisible | it is di�cult to split a cohesive module into separate components. Module cohesion

can be classi�ed using an ordinal scale that includes coincidental, logical, temporal, procedural,

communicational, sequential, and functional cohesion [37]. Using this model, a module exhibits

one of these seven cohesion categories. The cohesion categories vary in desirability ranging from

the most desirable (functional cohesion) to the least desirable (coincidental cohesion). All of these

cohesion categories indicate the extent of the \functional strength" of a module, the contribution

of module parts towards performing one task [9]. Our aim is to develop quantitative measures that
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indicate the degree of functional cohesion, the most desirable of these functional strength cohesion

categories. Note that one can also evaluate cohesion from the perspective of data abstraction [21].

Fenton describes this abstract or data cohesion as a di�erent notion of cohesion with a di�erent

set of measurement attributes [9]. In this paper, we address functional cohesion; we defer the

treatment of abstract or data cohesion to future work.

The relationship between software engineering objectives and cohesion measurement can be

clari�ed through the Goal/Question/Metric (GQM) paradigm of Basili and Rombach [2]. The

GQM paradigm requires that software measurements be tied to a software engineering goal. Our

goal is to improve maintenance programmer productivity and e�ectiveness. This goal leads to

questions (for example, `how can we develop code that is easy to modify?'). The answers to such

questions lead to metrics. Intuition suggests that \cohesive" modules are easier to understand

and are thus easier to maintain. Our intuition concerning cohesion is important, since intuition

is the �rst stage of measurement [10]. Thus, we are motivated to develop cohesion measures. In

particular, we now focus on functional cohesion measures, with the ultimate goal of developing

measures that can predict maintainability.

Measurement techniques used in the physical sciences guide us in our development of func-

tional cohesion measures. Aspects of functional cohesion are internal product attributes related

to properties of programs [9]. Physical science measurement techniques suggest the following

process [1]:

1. Identify and de�ne intuitive and well-understood attributes of cohesion. We must quali-

tatively understand what we want to measure. The categories of cohesion (functional |

coincidental) have been identi�ed and are fairly well understood. Functional cohesion is

a key cohesion category, and thus we focus our current e�orts on developing functional

cohesion measures.

2. Specify precisely the documents and the attributes to be measured. We must be able to

describe precisely the object that we measure, and the property of the object that the

measurement is to indicate. Our e�orts focus on measuring cohesion in program source

code. A major objective of this paper is to de�ne functional cohesion attributes.

3. Determine formal models or abstractions which capture these attributes. Formal models

are required to unambiguously produce numerical measurement values. This is another one

of our objectives.

4. Derive mappings from the models of attributes to a number system. The mappings must

be consistent with the orderings implied by the model attributes. The mappings are the

cohesion measures.

Our objectives include the development of (1) a good model of functional cohesion, and (2)

measures that use the model to quantify functional cohesion. We also validate the measures by

demonstrating that they are consistent with expected cohesion model orderings, and determining

their scale properties.

The role of experimentation in software measurement research is to map structural measures

back to goals. But, before we can conduct e�ective empirical research, we must �rst have sound

measures [1].

Functional cohesion is actually an attribute of individual procedures or functions, rather than

an attribute of a separately compilable program unit or module (depending on the program-

ming language, modules may include several procedures and declarations). We will use the term

\procedure" to refer to both procedures and functions.
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A program slice is the portion of program text that a�ects a speci�ed program variable [33].

A variation on program slices can model and measure functional cohesion [26]. A slice pro�le

is one heuristic tool that can help one visualize the cohesion in a procedure [23]. In this paper,

we focus on the development and analysis of quantitative measures that indicate the \amount

of functional cohesion" in procedures. Procedure cohesion measures must indicate the cohesion

that is expressed in the program text. We cannot measure semantic relations between program

components that cannot be identi�ed from the program text alone.

For cohesion measures to provide meaningful measurements they must be rigorously de�ned,

accurately reect well understood software attributes, and be based on models that capture these

attributes [1]. The measures should be speci�ed independently from the measurement tools, and

such tools should be based on the models. For example, QUALMS [36] is based on the ow graph

model, and the test coverage measurement tools of Bieman and Schultz [4, 5] are based on the

standard representation model [3]. We use a slice abstraction of a program based on data slices

to model cohesion [24].

Functional cohesion itself is a complex attribute and can be described in terms of sub-

attributes. Particular sub-attributes of cohesion must be visible in the cohesion model. To

be measurable on an ordinal scale, an attribute must impart an ordering on the model. That is,

the model of a procedure with \more" of one cohesion attribute must be ranked (according to the

attribute ordering) higher than the model of a procedure with \less" of the attribute [22].

A measure is speci�ed as a mapping from the model to a quantitative value. Such a mea-

sure must be consistent with the cohesion ordering. One way to demonstrate that a measure

is consistent with the ordering is to evaluate the e�ect of code modi�cations to the model and

the measures. We focus on the direction of the changes to cohesion measurements resulting from

relatively simple code modi�cations. The direction of measurement changes provides a ranking

of relative levels of cohesion before and after a code change. Our analysis also demonstrates the

scale properties and the arithmetic operations that can be applied to the measurement values [39].

The scale type of a measure is of critical importance. A useful measure may be of nominal,

ordinal, interval, ratio, or absolute scale. Fenton succinctly describes the requirements for these

scales:

\Broadly speaking any attribute which imposes only a classi�cation on a set of entities

has nominal scale type, and any attribute which imposes only a linear ordering has

ordinal scale type. If in addition to a linear ordering there is a notion of `relative

distance' between entities, then the scale type is interval. If there is also a `zeroness'

relation, i.e. some of the entities observably possess nothing of the attribute, then the

scale type is ratio since the zeroness relation must be mapped to 0. Absolute scales

arise out of attributes which amount to simple counts of entities." [9]

The scale of a measure determines the arithmetic operations that can be meaningfully performed

on measurement values. For example, an arithmetic mean is well de�ned on interval, ratio, and

absolute scale measures. However, an arithmetic mean of ordinal scale measurement values is not

meaningful as an average. Rather, a median should be used for ordinal scale measures.

Our analysis focuses on the relative e�ect of alternative changes in order to determine mea-

surement properties such as scale. A modi�cation to a procedure changes the cohesion model, and

such changes a�ect the cohesion measures. We analyze these changes to insure that the cohesion

orderings of the models before and after a modi�cation are consistent with the orderings.

The paper has the following organization. In Section 2, we de�ne the abstractions used to

model functional cohesion. In Section 3, we examine the cohesion attributes and measures, and

Section 4 evaluates the scale properties of the measures. In Section 5, we provide some examples
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of procedures, cohesion orderings, and cohesion measures. Section 6 is a review of related work.

Our conclusions are given in Section 7.

2 Cohesion Abstractions

In our analysis, functional cohesion is based on procedure outputs. Each output \object" (output

parameter, modi�ed global variable, or �le), represents one component of a procedure's function-

ality. We identify the components of a procedure that contribute to particular outputs. In the

case of procedures with multiple outputs, we see how closely the program parts that contribute

to di�erent outputs are bound. Using this approach, procedures with only one output exhibit

maximum functional cohesion.

2.1 Program Slices

Slicing is a method of program reduction introduced by Weiser [33, 34, 35]. A slice of a procedure

at statement s with respect to variable v is the sequence of all statements and predicates that

might a�ect the value of v at s. Slices were proposed as potential debugging tools and program

understanding aids. They have since been used in a broader class of applications (e.g., debugging

parallel programs [6], maintenance [11, 13, 23], and testing [15, 16, 20, 27]).

Weiser's algorithm for computing slices is based on data ow analysis. It is suggested in [25]

that a program dependence graph representation can be used to compute slices more e�ciently

and precisely. An algorithm for computing slices using a program dependence graph representation

is presented by Horwitz, Reps, and Binkley [14, 29]. A slice is obtained by walking backwards

over the program dependence graph to obtain all nodes which have an e�ect on the value of the

variable of interest. Similarly, a forward slice [14] can be obtained by walking forward over the

program dependence graph to obtain all nodes which are a�ected by the value of a variable. The

algorithm based on the program dependence graph is more restricted than Weiser's in the sense

that it will only compute a slice for variable v at statement s if v is de�ned or used in statement

s. Both intraprocedural slices and interprocedural slices can be computed.

We derive cohesion measures directly from slices rather than dependence graphs. Slices pro-

mote a more intuitive analysis since they are based on program text. Our measurement theory

approach requires that a measure be consistent with intuition, and including program text in our

abstraction eases intuitive analyses.

2.2 Data Slices

In [35], Weiser de�ned several slice based measures. Longworth [19] �rst studied their use as

indicators of cohesion. In [28, 31], certain inconsistencies noted by Longworth are eliminated

through the use of metric slices. A metric slice takes into account both the uses and used by data

relationships [12]; that is, they are the union of Horwitz et.al.'s backward and forward slices.

In order to analyze the e�ects of changes on slice measures, we modify this concept of met-

ric slices to use data tokens (i.e., variable and constant de�nitions and references) rather than

statements as the basic unit. We call these slices data slices.

Using data tokens as the basis of the slices ensures that all changes of interest will cause a

change in at least one slice of a procedure. We consider a change of interest to be any change

which could have an e�ect on the cohesiveness of a procedure. An example of a change that is

not of interest is changing some operator to a di�erent operator. Examples of changes of interest

include adding code, deleting code, or changing the variable used in a given context. Each of
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procedure SumAndProduct( N : integer; var SumN , ProdN : integer );

var

I : integer;

begin

SumN := 0 ;

ProdN := 1;

for I := 1 to N do begin

SumN := SumN + I ;

ProdN := ProdN * I

end

end;

Figure 1: Data slice for SumN . Items included in the slice are contained within boxes.

these changes would result in a change to at least one data slice. (This is in contrast to a metric

slice, where if a statement is modi�ed, the actual statements in the slice might not change.)

Informally, we view a data slice for a data token, v, as the sequence of all data tokens in

the statements that comprise the \backward" and \forward" slices of v. We use intraprocedural

slicing since we are interested in examining the cohesiveness of each procedure as a separate entity.

We compute a data slice for each output of a procedure. An \output" is any single value

explicitly output to a �le (or user output), an output parameter, or an assignment to a global

variable. An output tuple with multiple components is considered to be multiple outputs. Since

we are interested in the cohesion of the whole procedure, we use a concept similar to that of

end-slices [17]. The \backward" slices are computed from the end of the procedure1 and the

\forward" slices are computed from the \top"s of the backward slices.

Figure 1 displays an example of a data slice embedded in a program. The slice for SumN in

Figure 1 is a sequence of data tokens:

N1�SumN1�I1�SumN2�01�I2�12�N2�SumN3�SumN4�I3

where each Ti indicates the i'th data token for T in the procedure. Note that in the slice for

SumN, the subscript in \12" indicates that the token is the second occurrence of data token \1"

in the procedure. We can also compute the slice for ProdN:

N1�ProdN1�I1�ProdN2�11�I2�12�N2�ProdN3�ProdN4�I4

We can pro�le the data slices in an example procedure to give a sense of the relationships

among data slices. Figure 2 shows an example of a metric slice pro�le. We indicate, in the column

for a slice variable, the number of data tokens in that line that are included in the slice. This

pro�le was derived from an earlier method developed for visualizing slices [26, 31].

1That is from the FinalUse nodes as described in [14]
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SumN ProdN Statement

2 2 procedure SumAndProduct( N : integer; var SumN, ProdN : integer );

var

1 1 I : integer;

begin

2 SumN := 0;

2 ProdN := 1;

3 3 for I := 1 to N do begin

3 SumN := SumN + I;

3 ProdN := ProdN * I

end

end;

Figure 2: Data Slice pro�le for SumAndProduct. The number of data tokens included in the data

slice for SumN and ProdN is indicated in columns 1 and 2 respectively.

2.3 Slice Abstractions

Our analysis of functional cohesion is developed using an abstract model of procedures based on

data slices. The Slice Abstractionmodels each procedure as a set of data slices, and a data slice as

a sequence of data tokens. Essentially, we strip away all of the non-data tokens from a procedure

and include only the data tokens in the abstraction.

The slice abstraction for the SumAndProduct procedure of Figure 1 and Figure 2 is:

SA(SumAndProduct) =

fN1�SumN1�I1�SumN2�01�I2�12�N2�SumN3�SumN4�I3,

N1�ProdN1�I1�ProdN2�11�I2�12�N2�ProdN3�ProdN4�I4 g

Figure 3(a) provides another view of a slice abstraction of the SumAndProduct procedure.

The names of the data tokens are listed in the �rst column of Figure 3(a). For each row, a \j" in

the second and third column indicates if the indicated data token is part of the data slice for the

named output.

We �nd an uncluttered view of slice abstractions without labels useful for visualizing important

attributes of functional cohesion in slice abstractions. Figure 3(b) is an unlabeled view of the slice

abstraction of the SumAndProduct procedure. When analyzing functional cohesion, it is important

to know when one token is in more than one data slice, but the actual names of the tokens are not

important. The slice abstractions from two completely di�erent procedures can have the same

cohesion properties, and look identical when viewed in the unlabeled form.

2.4 Glue, Super-glue, and Stickiness

As Figure 3(a) and Figure 3(b) show, several of the data tokens are common to more than one

data slice. Data tokens N1, I1, I2, 12, and N2 are in the data slice for SumN and the data slice for
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Data Token SumN ProdN

N1 j j

SumN1 j

ProdN1 j

I1 j j

SumN2 j

01 j

ProdN2 j

11 j

I2 j j

12 j j

N2 j j

SumN3 j

SumN4 j

I3 j

ProdN3 j

ProdN4 j

I4 j

(a) SA(SumAndProduct)

j j

j

j

j j

j

j

j

j

j j

j j

j j

j

j

j

j

j

j

(b) Unlabeled View

j j

j

j

j j

j

j

j

j

j j

j j

j j

j

j

j

j

j

j

(c) Glue tokens

highlighted.

Figure 3: Three Views of SA(SumAndProduct)
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S1 S2 S3
Super-glue: j j j

j

j

j

Super-glue: j j j

j

Glue: j j

Glue: j j

j

Glue: j j

j

Figure 4: A 3-slice SA with glue and super-glue.

ProdN. Such tokens, common to more than one data slice in a slice abstraction, are the connections

between the slices. We say that these tokens are the \glue" that binds the slices. Thus, we de�ne

the glue in a slice abstraction of a procedure P , G(SA(P)), as the set of data tokens that lie on

more than one data slice in SA(P). A glue token is a token that lies on more than one data slice.

Figure 3(c) shows SA(SumAndProduct) with the glue tokens enclosed in boxes. Although there

are two \j" symbols on each row of glue tokens in Figure 3(c), there is actually only one token

for each row.

It is useful to identify the data tokens that are common to every data slice in a procedure.

These tokens are the super-glue tokens, and SG(SA(P)) denotes the the set of data tokens that lie

on all data slices in SA(P). The notion of super-glue tokens is especially useful in slice abstractions

with more than two data slices. Note that SG(SA(P)) � G(SA(P)) | all super-glue tokens are

also glue tokens. If jSA(P)j � 2 then SG(SA(P))=G(SA(P)). Note that all of the data tokens in

a procedure with only one slice are super-glue tokens.

Figure 4 shows a 3-slice abstraction with glue and superglue tokens. This abstraction has two

super-glue tokens and �ve glue tokens (super-glue is still glue). One of the tokens glues S1 to S2,

one glues S2 to S3, and one glues S1 to S3. The super-glue tokens bind all three slices together.

Six of the tokens lie on only one data slice and are not glue tokens. See Section 5 for examples of

procedures with three or more slices.

The distribution of glue and super-glue tokens indicates how tightly bound the individual slices

are, since the e�ect of glue tokens is to bind slices. Individual glue tokens can have a varying

e�ect on cohesion based on the number of slices that they bind. Thus, we can describe the relative

stickiness or adhesiveness of a glue token. The notion of token adhesiveness can characterize the

adhesiveness property of an entire procedure or slice abstraction. We use the concepts of glue,

super-glue, and adhesiveness to develop functional cohesion measures.

3 Functional Cohesion Attributes and Measures

We de�ne functional cohesion attributes and measures in terms of slice abstractions, data to-

kens, glue and super-glue. We also use the set of data tokens in a slice abstraction a, denoted

tokens(a), and the set of data tokens in procedure p, denoted tokens(p). In general, tokens(p)

= tokens(SA(p)). However, if a value is computed that does not contribute to any output (a
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probable program anomaly), then there may be data tokens that do not lie on any slice and

tokens(SA(p)) � tokens(p). Note that each appearance of a data token in a program is counted

as a di�erent token, and each token can be in more than one data slice.

Metrics based on the relative number of glue and super-glue tokens are intuitive and can easily

be de�ned in terms of slice abstractions. According to Yourdon and Constantine [37], a procedure

with functional cohesion is one in which all parts are cohesive. This view recognizes only the

strongest functional cohesion and is consistent with the use of the super-glue tokens as the basis

for de�ning cohesion attributes and measures. Thus, we de�ne strong functional cohesion (SFC)

as the ratio of super-glue tokens to the total number of data tokens in a procedure p:

SFC(p) =
jSG(SA(p))j

jtokens(p)j
(1)

The SFC is a measure of the minimal functional cohesion in a procedure. SFC is very similar to

the Tightness measure de�ned by Ott and Thuss [28]. However Tightness is de�ned in terms of

statements shared by slices rather than data tokens.

We can also measure cohesion in terms of the glue tokens in a slice abstraction. Such a measure

can be more sensitive than a measure based on only the super-glue tokens | it can indicate that

adding something may \glue" together previously non-cohesive elements even if the token does not

\glue" together all of the slices. Such functional cohesion indicates a \weaker" type of cohesion

than indicated by the super-glue tokens. Thus we de�ne weak functional cohesion (WFC) as the

ratio of glue tokens to the total number of tokens in a procedure. For procedure p:

WFC(p) =
jG(SA(p))j

jtokens(p)j
(2)

Another way to measure cohesion is in terms of the adhesiveness of glue tokens. The ad-

hesiveness is related to the relative number of slices that each token \glues" together. Thus, a

token that \glues" together four slices in a �ve slice procedure is more adhesive than a token that

\glues" together two or three slices. We can de�ne the adhesiveness, �, of token t in procedure p

as follows:

�(t; p) =

8<
:

# slices in p containing t
jSA(p)j

if t 2 G(SA)

0 otherwise
(3)

The overall adhesiveness, A, of an SA is the average adhesiveness of the data tokens in a procedure:

A(p) =

X
t2tokens(p)

�(t; p)

jtokens(p)j
(4)

Another equivalent way to compute overall adhesiveness is based on the sum of the adhesiveness

of individual tokens relative to the adhesiveness space | the sum of the potential adhesiveness

assuming all of the tokens were super-glue. A is calculated as the ratio of the sum of number

of slices containing each glue token in a slice abstraction to the adhesiveness space, the total

potential number of slices containing each token. The adhesiveness space can be calculated as the

number of data tokens in a procedure times the number of slices. For procedure p:

A(p) =

X
t2G(SA(p))

# slices containing t

jtokens(p)j � jSA(p)j
(5)
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In following examples we compute A using equation (5), since it is easier to apply.

Adhesiveness should indicate the relative strength of the glue in a procedure. Adhesiveness

is most closely related to the coverage measure of Ott and Thuss [28]. It should be particularly

sensitive to the cohesion resulting from glue tokens that lie on more than two slices, but do not

lie on all slices.

All of these cohesion measures (strong functional cohesion, weak functional cohesion, and

adhesiveness) range in value from zero to one. They have a value of zero when a procedure

has more than one output and exhibits none of the cohesion attribute indicated by a particular

measure. A procedure with no super-glue tokens, no tokens that are common to all data slices,

has zero strong functional cohesion | there are no data tokens that contribute to all outputs. A

procedure with no glue tokens, tokens common to more than one data slice (in procedures with

more than one data slice), exhibits zero weak functional cohesion and zero adhesiveness | there

are no data tokens that contribute to more than one output. The strong functional cohesion and

adhesiveness are at a maximum value of one for procedures in which all of the data tokens are

super-glue tokens | all data tokens a�ect all outputs. Weak functional cohesion of a procedure is

one if all data tokens are glue tokens | all data tokens a�ect more than one output in procedures

with more than one slice.

The cohesion measures can be applied to the SumAndProduct procedure. SA(SumAndProduct)

has two slices with 17 tokens and 5 glue tokens. Each glue token is a super-glue token since

SA(SumAndProduct) has only two data slices. Thus,

WFC(SA(SumAndProduct)) = SFC(SA(SumAndProduct)) = 5
17 = :294

Adhesiveness is calculated as follows:

A(SA(SumAndProduct)) = 5�2
17�2 = :294

since there are �ve glue tokens and each glue token lies on two slices. The denominator is the

total number of tokens times the number of slices. We see that in this two slice example procedure

all three cohesion measures give the same value. This is not surprising since the WFC and A

measures gain sensitivity on multi-slice procedures | all glue tokens are also super-glue tokens

on a one or two slice procedure.

TheWFC and SFC of the 3-slice abstraction in Figure 4 will di�er since some of the glue tokens

are not super-glue. This abstraction has 5 glue tokens and 2 super-glue tokens out of a total of

11 tokens. Thus WFC(SA(Figure 4))= 5=11 = :455 and SFC(SA(Figure 4))= 2=11 = :182. Since

there are two tokens on three slices and three tokens on two slices, adhesiveness is calculated as

follows:

A(SA(Figure 4)) = 2�3+3�2
11�3 = 12

33 = :36

The adhesiveness measure shows that the data tokens covered slightly more than one third of the

slice space in the slice abstraction of Figure 4.

Adhesiveness and the strong and weak cohesion measures are based solely on the number of

slices and data tokens in a procedure, and the number of glue and super-glue tokens.

4 Discussion of Scale Properties

Fenton de�nes the term \validation" as \the process of ensuring that the measure is a proper

numerical characterization of the claimed attribute" [9]. This kind of validation is very di�cult

when the attribute to be measured is loosely understood. We need to rely on human intuition
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to determine the relative levels of our cohesion properties, to see if they are consistent with

the metric values. Zuse shows that software measures can be validated in terms of their scale

properties [39, 40]. We combine the methods of Fenton and Zuse to analytically validate the

cohesion measures in terms of intuitive notions of cohesion and scale properties. First we show

that the measures are on an ordinal scale that matches our intuition concerning the cohesion

attributes that are measured. Then we determine whether the metrics assume the requirements

of a ratio scale.

4.1 Cohesion Measures and the Ordinal Scale

For a real-valued ordinal scale measure of cohesion attributes to exist, our intuition about these

attributes, called \empirical relations" or \viewpoints", must satisfy three axioms: reexivity,

transitivity, and completeness [38, 39, 40]. These are the requirements of a weak order. From [38]

we de�ne a cohesion viewpoint as binary relations, ?�, ?�, and ?� on programs P where:

P1?> P2 P1 is more \cohesive" than P2
P1?� P2 P1 is equally as \cohesive" as P2
P1?� P2 P1?> P2 or P1?� P2

for P1; P2 2 P .

It is not possible to give a general de�nition of cohesion viewpoints. Rather we can use a subset

of the ?� relation called an elementary viewpoint. An elementary viewpoint is de�ned in terms of a

�nite set of transformations on a program representation. To show that a measure is on an ordinal

scale we need to show that it is consistent with a set of elementary transformations. Thus, we

evaluate the \functional cohesion orderings" of procedures in terms of intuitively obvious e�ects

of program modi�cations on functional cohesion. We model the changes in terms of an ordering

of slice abstractions. In this analysis we assume that it is the \shape" of slice abstractions that is

critical, so two completely di�erent procedures can have the same functional cohesion attributes.

We use unlabeled views of slice abstractions as depicted in Figure 3(b) to demonstrate necessary

attributes and transformations.

4.1.1 Slice Abstraction Transformations

Functional cohesion orderings can be developed in terms of a set of elementary transformations

of slice abstractions. We seek a set of transformations that can generate the set of all slice

abstractions, and provide an ordering. The transformations are developed inductively

Base case: A one slice procedure:

j

j

...

j

A one slice procedure is entirely cohesive, and should have the highest possible SFC, WFC,

and A. All three of our metrics satisfy intuition here. SFC,WFC, and A give their maximum

value of 1 for a one slice procedure.

Transformations:

1. Add one slice. There are two ways to add a slice:

11



(a) Add functionality by adding a new output to the program. This requires adding

at least one new output token.2

j

j

j
=)

j

j

j j�

j � �

The new output is not on any of the previous slices. Thus at least one new non-glue

token is added.

(b) Output existing functionality. This can be accomplished by changing a non-output

token into an output token. The following change to C code is an example of such

a transformation:

y=x =) printf(y=x)

A simple change to the parameters in a Pascal program can also cause existing

functionality to become a new output:

x:integer =) var x:integer

With such transformations a new slice can be created without adding any new

tokens.

2. Extend n slices by adding one token to them. This added token may be a token that

is either

(a) not in any of the slices in the slice abstraction (i.e., a new token):

j

j j

j

j j

j

=)

j

j j

j

j j

j

j � �

(b) a token already in one or more of the other slices in the slice abstraction, but not

in all of the other slices:

j

j j

j

j j

j

=)

j

j j

j j�

j j

j

(c) or, a token already in all of the other slices:

j

j j

j

j j

j

=)

j

j j j�

j

j j

j

A token can be added to a slice without adding new code by moving the token

within a procedure to a location that puts it in the scope of the slice.

2We use \�" to indicate an added token to a slice, when the token is not new to the procedure. We use \��" to

indicate when an added token is new to the program; it is a token that is not on any other slice.
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This set of transformations is complete | we can build all slice abstractions using the base case

and repetitions of the two transformations. Removing and shortening slices are inverse operations

to the add and extend operations.

4.1.2 Strong Functional Cohesion Orderings

We follow the transformations above to evaluate transformations to slice abstraction a creating

a0:

1. Add a slice to a creating a0.

(a) Adding a new output to a. (This requires adding at least one token to the procedure.)

With this transformation, SFC(a0) < SFC(a). Adding an output always reduces SFC

because a new functionality is added. Adding a slice can never increase the super-glue

tokens, but it is likely to increase the non super-glue if a new token is added. Our

intuition about SFC is that fewer functionalities, in terms of output data is always

better.

(b) Output existing functionality without adding any tokens. In this case, SFC(a0) � SFC(a).

Adding a slice still cannot increase the number of super-glue tokens, while the number

of non super-glue tokens might not change.

2. Extend one or more slices in a creating a0. We have two cases here:

Case 1: jaj = 1

SFC(a0) = SFC(a) since a0 is still a one slice abstraction.

Case 2: jaj > 1

Case 2(a): Extend a slice by adding a new data token.

i: SFC(a0) < SFC(a) if the added token is new and is added to only one slice. No

new super-glue tokens are created but the total number of tokens (non-super-

glue tokens) has increased.

ii: SFC(a0) > SFC(a) if the added token is new and is added to all of the slices.

One new super-glue token is created.

Case 2(b): SFC(a0) = SFC(a) if the added token is not new but is not in all of the

other slices in a then no new super-glue or non-super-glue is created.

Case 2(c): SFC(a0) > SFC(a) if the added token is not new and is in all of the other

slices in a. This transformation turns a non-super-glue token into super-glue.

To summarize, when an incremental change increases the number of super-glue tokens

in a procedure with more than one slice, SFC(a0) > SFC(a).

4.1.3 Weak Functional Cohesion Orderings

We follow a similar approach to develop an ordering for WFC.

1. Add a slice to a creating a0.

(a) Add functionality by adding a new output to the program. With this transformation,

WFC(a0) > WFC(a) if and only if the net e�ect is to \glue" previously non-cohesive

parts creating a higher percentage of glue tokens. If g = G(a0)� G(a), the set of new

glue tokens created by the added functionality, and t = tokens(a0)� tokens(a), the set

13



of added tokens, then WFC(a0) > WFC(a) if and only if
jgj

jtj
> WFC(a). The potential

for increasing weak functional cohesion depends on the amount of glue in the original

slice abstraction, a. If there is a signi�cant number of non-glue tokens in a, then there

is a lot of potential to increase the weak functional cohesion in a by adding a slice.

(b) Output existing functionality without adding new data tokens, thenWFC(a0) �WFC(a).

We are creating a new slice, and some tokens that lie on one slice in a may lie on the

new slice in a0 as well. New glue tokens can be created in this manner, but the total

number of tokens does not change. It is possible that all of the tokens on the new slice

do not lie on any other slices. In this case, WFC(a0) = WFC(a). But this can only

happen if there are values produced that are never referenced by any of the slices for

all of the output tokens in a.

2. Extend one or more slices in a creating a0. Again, we have two cases here:

Case 1: jaj = 1

WFC(a0) = WFC(a) since a0 is still a one slice abstraction.

Case 2: jaj > 1

Case 2(a): Add a new token. If it extends only one slice then there is no new glue

added and WFC(a0) < WFC(a). If new glue is added then WFC(a0) > WFC(a).

Case 2(b): WFC(a0) � WFC(a) when the added token is not new but is not in all of

the other slices in a. New glue is created if the token added to the slice is already

in one of the other slices and WFC(a0) > WFC(a). If the added token is not in

any other slice then no new glue is created and WFC(a0) = WFC(a).

(c): WFC(a0) = WFC(a) when the added token is not new and is in all of the other

slices. The added token is already a glue token and thus the WFC value does not

change.

4.1.4 Adhesiveness Orderings

We see how the transitions a�ect the adhesiveness ratio.

1. Add a slice to a creating a0.

(a) Add functionality by adding a new output. If we add only non-glue tokens, then

A(a0) < A(a). We have increased tokens(a) � jaj without adding any glue tokens.

If we add both glue and non-glue tokens then we can determine the increase or decrease

of adhesiveness in terms of the number of new glue tokens, g, created by the added

functionality, the number of new tokens added, n, the number of tokens, jtokens(a)j,

and number of slices, jaj, in the original slice abstraction, a. Using algebraic transfor-

mations, we �nd that A(a0) = g

jtokens(a)j+n+n�jaj . Thus, if
g

jtokens(a)j+n+n�jaj > A(a), then

A(a0) > A(a), if g
jtokens(a)j+n+n�jaj = A(a), then A(a0) = A(a), and g

jtokens(a)j+n+n�jaj <

A(a), then A(a0) < A(a).

(b) Add more glue, but no tokens to the procedure. Then, clearly A(a0) > A(a) since we

increase the numerator but the denominator is unchanged.

2. Extend a slice:

Case 1: jaj = 1

There is no change, A(a) = A(a0), since Adhesiveness= 1 for any one-slice abstraction.

14



Case 2: jaj > 1

Case 2(a): Extend a slice by adding a token:

i. Add a superglue token: A(a0) > A(a)

ii. Add a glue (but not super-glue) token: The relationship between A(a0) and

A(a) depends on the ratio of the number, s, of slices that the new token lies

on and the total number of slices in the abstraction, jaj. If A(a) > s
jaj

then

A(a) > A(a0), otherwise A(a) � A(a0).

iii. Add a non-glue token: A(a0) < A(a)

Case 2(b) and 2(c): Extend a slice without adding a token to the abstraction; the

token(s) used to extend the slice are already in the procedure: A(a0) � A(a).

or A(a0) � A(a). In the normal case the data token(s) added to a slice already

lie on at least one additional slice, thus increasing the adhesiveness of a0, then

A(a0) > A(a). It is only possible for A(a0) � A(a) when a slice is extended by

rearranging code to include token(s) that were not previously in any slice.

4.1.5 Evaluation of Orderings and Cohesion Metrics

To validate that the three measures, SFC, WFC, and A, are on an ordinal scale we need to

demonstrate that the orderings imposed by the measures are consistent with the elementary

viewpoints of the associated cohesion attributes. Such a conclusion relies heavily on intuition,

since elementary viewpoints are de�ned in terms of subjective views of cohesion. Our main goal

here is to demonstrate that the measures are consistent with intuition. At the very least, we are

convinced that the orderings imposed by the measures are not counterintuitive. The measures

are on an ordinal scale to the extent that the orderings imposed by the measures match the users

(of the measures) intuition concerning the elementary viewpoints of cohesion.

4.2 Cohesion Measures and the Ratio Scale

Zuse shows that ratio scale measures are often more meaningful than interval scales [39]. Thus

we evaluate our functional cohesion measures in terms of the requirements for ratio scale mea-

surement. To demonstrate that a measure is on the ratio scale we include a program composition

operator \�" to the relational system. Thus we have a relational system (P ; ?�; �).

According to Zuse, a measure is on a ratio scale if the measure is a real valued function m, is

on an ordinal scale, and the following axioms hold:

P1 ?� P2 , m(P1) � m(P2)

m(P1 � P2) = m(P1) +m(P2)

The �rst axiom requires that the m be consistent with the intuitive ordering of the procedure

imposed by the attribute being measured. The second axiom requires that m be additive. We

examine the three functional cohesion measures to see if they are consistent with these axioms.

One way to view the requirement that a cohesion measure be additive and is on a ratio scale is

to determine the modi�cations to a procedure that will \double" its cohesion. We currently do

not know how to \double" the cohesion in a procedure, however we can evaluate the e�ects of an

intuitive composition operator.
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4.2.1 Composition Operators for Slice Abstractions

Adding more code to a program cannot increase its cohesion, rather adding code will tend to

decrease cohesion. Thus, we expect that the m(P1 �P2) � m(P1), where m is one of the cohesion

measures. Thus we reverse the direction of the inequality of the relation and use � to compare

the real number values produced by the measures instead of the relation ?�.

The binary composition operator is a critical component to Zuse and Bollman's method of

demonstrating whether a measure is on a ratio scale. One demonstrates the scale properties

relative to the binary operation. Zuse and Bollman developed the technique to evaluate control

ow complexity measures [39], where binary composition is fairly easy to de�ne for ow graphs.

The di�culty of de�ning a composition operator for slice abstractions concerns the mechanism

for combining the slices together.

We de�ne two mechanisms for combining two slice abstractions into one:

Option 1: Tie slices together. When two slice abstractions A1 and A2 are \tied" A1 � A2, the

outputs of A1 are connected to the inputs of A2. Each slice in A1 is tied to a maximum

of one slice in A2, and each slice in A2 is tied to a maximum of one slice in A1. This is

an optimistic composition operator, from the perspective of functional cohesion. It assumes

that the output in the �rst program represented by A1 is used by the second program

represented by A2. Thus, jA1 � A2j = max(jA1j; jA2j) The following is an example of this

composition operator:

j

j j

j

j

�

j

j j j

j

j

j

=)

j

j j

j

j

j

j j j

j

j

j

Option 2: Arbitrary composition: When two slices A1 and A2 are \arbitrarily composed", the

slices in A1 are not connected to the slices in A2. This is a pessimistic mechanism for

composition | it minimizes the functional cohesion in the resulting composed program.

We compose the same two slice abstractions using the arbitrary operator:

j

j j

j

j

�

j

j j j

j

j

j

=)

j

j j

j

j

j

j j j

j

j

j

The \width" (number of slices) of the resulting slice abstraction grows using this composition

operator. With this operator, jA1 �A2j = jA1j+ jA2j
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4.2.2 Cohesion Measures and Composition

Because the size attribute jtokens(p)j, the number of tokens in the procedure, is in the denomina-

tor of the calculation for all three of the cohesion measures (SFC, WFC, and A), the requirement

that m(P1 � P2) = m(P1) +m(P2) is not satis�ed. The measures are not additive, and are, thus,

not on a ratio scale. However, the behavior of the measures under composition provides insight.

One property that is required (but not su�cient) for a ratio scale measure is that the measure

be consistent with the axiom of weak monotonicity [38]:

P1?� P2 ) P1 � P3 ?� P2 � P3

We use the axiom of weak monotonicity as a mechanism for comparing the three cohesion mea-

sures.

The axiom of monotonicity does not hold when a one-slice abstraction is composed with an

abstraction that has two or more slices. Monotonicity does not hold because under either com-

position operator, the glue and super-glue tokens (all tokens in a one-slice abstraction are both

glue and super-glue) become non-glue tokens. As a result, the cohesion of a one-slice abstraction

does not contribute to the cohesion of the composition.

We examine the behavior of the cohesion measures to see whether the axiom of weak mono-

tonicity holds when the composition operator is applied to abstractions either of an equal number

of slices, or an unequal number of slices (assuming that neither of the unequal abstractions con-

tains only one slice).

Composition Under Option 1 and Monotonicity

First we look at the case where the abstractions that are composed have an equal number of

slices. In this case, the axiom of weak monotonicity holds for all three measures.

Consider the case where the abstractions a1 and a2 that are composed contain an unequal

number of slices, and neither abstraction contains only one slice. In this case, SFC does not

satisfy the axiom of monotonicity. All of the super-glue in the abstraction with fewer slices is not

super-glue in the composition. The WFC and A measures exhibit the same behavior as when the

composed abstractions contain the same number of slices, and the the axiom holds.

Composition Under Option 2 and Monotonicity

When arbitrarily composing two abstractions, a1 � a2, the outputs of a1 are not connected to the

inputs of a2. As a result, the SFC(a1 � a2)= 0 for any a1 and a2. There is no super-glue in such

a composition. As a result, the axiom of monotonicity does not hold for SFC.

The computation ofWFC is the same under Option 2 as under Option 1, thusWFC(a1�Option 1

a2)=WFC(a1 �Option 2 a2) | a glue token is a glue token whether or not a program segment is

tied to another program segment. Thus, the axiom of monotonicity holds for WFC. The axiom

also holds for the computation of A, although A(a1 �Option 1 a2) > A(a1 �Option 2 a2).

4.3 Scale Properties of the Measures

All three measures are on an ordinal scale to the extent that users accept the orderings of Sec-

tion 4.1 as valid. We have evaluated the three measures in terms of two options for composition,

Option 1 | tying slices together or Option 2 | arbitrary composition. None of the measures are

on a ratio scale since normalization for size prevents the measures from being additive.
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None of the measures satisfy the axiom of weak monotonicity when a one-slice abstraction is

included in the composition. Even after eliminating one-slice abstractions, SFC does not satisfy

the axiom under either composition option. However, if we limit the abstractions to those with two

or more slices, both WFC and A satisfy the axiom of weak monotonicity under both composition

options.

The adhesiveness measure, A, matches our intuition that arbitrary composition results in a

less cohesive program than composition when slices are tied together . WFC does not distinguish

between programs composed of the alternative operations. Thus, Adhesiveness appears to have

the most desirable properties of the three measures.

5 Examples

In this section, we examine a few small code segments to illustrate the di�erences among the three

proposed cohesion measures. The �gures in this section use slice pro�les (as in Figure 2) showing

the entire procedure text rather than slice abstractions showing only data tokens to make it easier

to visualize the connection between program text and slices. As described in Section 2.2, the slices

in the examples are the union of the backward and forward slices of the output variables.

The �rst example uses a procedure that transforms a value in one of two ways depending on

the initial value. A ag that indicates which of the two transformations was used is also returned.

Figure 5 contains a slice pro�le and cohesion measurements for this Decode procedure. In this

case the three measures give equivalent values. The cohesion measurements are always equivalent

for two slice procedures since in such cases G(SA(p)) = SG(SA(p). The :53 measurement values

indicate that approximately half of the tokens lie on both slices.

The three cohesion measurements are lowered after the procedure is modi�ed by adding an

output variable that is not connected to the slices of the original outputs. The modi�ed procedure,

Decode2, is in Figure 6. Decode2 was created by adding a variable count to the original procedure

Decode. The added variable count is incremented when Decode2 is called. It is a global variable

that may indicate the number of times that Decode2 is called. The SFC measure for Decode2

is zero, and clearly indicates the existence of some noncohesive components in the procedure |

the slice for output variable count does not include any tokens that lie on the slices for the other

outputs. WFC has dropped to :42 and A has dropped further down to :28. Of WFC and A, A is

more dramatically a�ected by adding the noncohesive component.

Figures 7, 8, and 9 demonstrates how the measures can behave when functionality is combined.

Procedure Lookup in Figure 7 is a table lookup routine which returns a password and address

associated with a key, and a boolean ag which indicates a successful search. As can be seen in

Figure 7, the three cohesion measures give relatively high values for this procedure, WFC = 1:0,

A = :90, and SFC = :70. Most of the data tokens a�ect or are a�ected by the three outputs.

In Figure 8, we combine procedure Lookup with procedure Decode from Figure 5 to create

procedure Lookup2. The procedures are combined in a manner to simulate the tie slices option

for composition described in Section 4. The cohesion measurement values for this procedure are

lower than for the procedure in Figure 8,WFC = :83, A = :69, and SFC = :43. Procedure Decode

is less cohesive than procedure Lookup. WFC and A fall between their values for the two original

procedures, while SFC has a value that is below the value of either procedure. SFC tends to drop

dramatically, when non-cohesive components are added.

Procedures Lookup and Decode are again combined in Figure 9 creating procedure Lookup3.

This time, we combine the procedures in a manner to simulate the arbitrary composition option

from Section 4. For this combined procedure, the cohesion measurements are WFC = :83, A =
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value small

1 1 procedure Decode(var value: integer;
1 1 var small: boolean);

begin
2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true

end
else begin

3 value:=value mod 10;
2 2 small := false

end;
end;

WFC =
8

15
= :53

A =
8 � 2

15 � 2
= :53

SFC =
8

15
= :53

Figure 5: A slice pro�le and cohesion measurements for a simple procedure
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value small count

1 1 procedure Decode(var value: integer;
1 1 var small: boolean;

1 var count: integer);
begin

2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true

end
else begin

3 value:=value mod 10;
2 2 small := false

end;
3 count := count +1;

end;

WFC =
8

19
= :42

A =
8 � 2

19 � 3
= :25

SFC =
0

19
= 0:0

Figure 6: A slice pro�le and cohesion measurements for a noncohesive procedure.
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success passwd address

3 3 3 procedure LookUp(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
2 2 2 success := true;
3 3 passwd := A.value[i];
3 3 address := A.add[i];

end
else

3 3 3 i := i + 1;
end;

WFC =
27

27
= 1:0

A =
8 � 2 + 19 � 3

27 � 3
= :90

SFC =
19

27
= :70

Figure 7: A table lookup procedure.

:43, and SFC = 0:0. SFC clearly indicates with a value of zero that there are no data tokens

that are common to all of the slices. WFC does not distinguish between Lookup2 and Lookup3

| according to WFC the two procedures are equally cohesive. A does indicate that Lookup3 is

less cohesive than Lookup2, however, unlike SFC, A also indicates that there are some cohesive

components.

6 Related Work

Our current e�orts are based on earlier work using slice based measures as indicators of cohe-

sion [19, 31, 26, 28]. Longworth [19] and Thuss [31, 26] examined the potential of measures

proposed by Weiser [33] as indicators of cohesion. Ott and Thuss �rst �rst noted the visual

relationship that existed between the slices of a module and its cohesion as depicted in a slice

pro�le [26]. The insights gained from this earlier work were instrumental in developing the data

slice model of cohesion and cohesion measures presented here.

Other researchers have also examined the problem of measuring cohesion including Emerson [7,

8], Lakhotia [18], Troy and Zweben [32], and Selby and Basili [30].
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success passwd address

3 3 3 procedure LookUp2(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
3 3 passwd := A.value[i];
2 2 success := true;
3 3 address := A.add[i];

end;
else

3 3 3 i := i + 1;
2 2 if passwd < 5000 then begin

4 passwd := passwd * 8 mod 10;
2 2 success := true;

end
else begin

3 passwd := passwd mod 10;
2 2 success := false;

end
end;

WFC =
33

40
= :83

A =
16 � 2 + 17 � 3

40 � 3
= :69

SFC =
17

40
= 0:43

Figure 8: A table lookup procedure \tied" with a decode procedure.
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success passwd address value small

3 3 3 procedure LookUp3(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string;

1 1 var value: boolean;
1 1 var small: integer);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
3 3 passwd := A.value[i];
2 2 success := true;
3 3 3 address := A.add[i];

end;
else

3 3 3 i := i + 1;
2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true; end

else
3 value := value mod 10;
2 2 small := false; end

end;

WFC =
35

42
= :83

A =
15 � 2 + 20 � 3

42 � 5
= :43

SFC =
0

42
= 0:0

Figure 9: A table lookup procedure \arbitrarily composed" with a decode procedure.
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6.1 Emerson's work

Emerson bases his cohesion measure on a control ow graph representation of a module [7, 8].

The graph contains a node for each statement in the module that contains a variable. After

construction of the graph, a reference set is constructed for each variable in the module which

indicates the nodes in the control ow graph that reference that variable. A ow subgraph,

< R >, is computed for each reference set, R, as the minimal subgraph of F which contains every

complete path in F that passes through an element of R. This is equivalent to generating the

set of vertices which are either reachable from an element of R or from which an element of R

is reachable. A cohesion value is computed for each reference set as the ratio of the cyclomatic

complexity of < R > times the size of R to the cyclomatic complexity of < F > times the size of

F . The cohesion of a module is then computed as the mean of the cohesion values of the reference

sets for each variable in the module. The values for Emerson's complexity measure range from

0 to 1. Discrimination levels are suggested to map these values to three levels of cohesion: data

cohesion, control cohesion, and super�cial cohesion.

Emerson indicates that his ow graph and reference set constructs are related to slicing [8].

Emerson computes ow subgraphs based on generating all vertices which are either reachable

from an element of R or from which an element of R is reachable. Thus, these ow graphs are

more closely related to metric slicing than Weiser's original de�nition of slicing [33]. Weiser only

used \backwards slices" while Emerson's subowgraph is clearly related to both forwards and

backwards slicing.

The measure de�ned by Emerson is somewhat analogous to the coverage measure de�ned in

[26]. (coverage is the average of the lengths of each slice to the module length.) Emerson's measure

is the ratio of the average of the size of the reference sets (weighted by the cyclomatic complexity

of the subgraph generated from the reference set) to the size of the ow graph (weighted by

the cyclomatic complexity of the ow graph). Emerson computes reference sets and subgraphs

for each variable while coverage is based only on slices for output variables. Although there is

an apparent relation between these two measures, the precise meaning of Emerson's measure is

unclear. In particular, the e�ect of multiplying the reference set by the cyclomatic complexity is

to mask the view of cohesion. Cyclomatic complexity is a control ow measure, and combining the

measures of di�erent attributes weakens the discriminating power of a measure [22]. In contrast,

our slice based cohesion measures are based on intuitively sound abstractions that are designed

to isolate functional cohesion attributes from other factors.

6.2 Lakhotia's work

Lakhotia developed a method for computing cohesion based on an analysis of the variable de-

pendence graphs of a module [18]. Pairs of outputs are examined to identify any data or control

dependences that exist between the two outputs. Rules are provided for determining the cohesion

of the pairs. For example, \two variables have sequential cohesion if one has data dependence on

the other." The cohesion of a module is then de�ned to be \functional if it has only one output

variable; it is unde�ned if it has no output variables; else it is the lowest cohesion of all pairs of

the output variables of the module." Through examples Lakhotia argues that this method closely

matches the original classi�cations (coincidental, logical, temporal, procedural, communicational,

sequential, and functional) of cohesion [37]. Rather than develop an algorithmic mechanism to

determine the original levels of cohesion, our objective is to quantify the amount of functional

cohesion. Thus, in certain situations we will obtain di�ering results. For example, our measures

will indicate that a signi�cant part of a module is highly cohesive. In contrast, Lakhotia's method
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will indicate the lowest type of cohesion demonstrated by the module. Only a one output module

exhibits functional cohesion. This is equivalent to identifying functional cohesion only in the

cases when SFG(P) = 1. We are able to generate relative levels of functional cohesion using our

measures.

6.3 Other work related to cohesion

Troy and Zweben examined the quality of structured designs using, in part, some design cohesion

indicators [32]. They used

� The number of e�ects listed in the design document;

� The number of e�ects other than I/O errors;

� The maximum fan-in to any one box in the structure chart, that is, the number of lines

emanating upward from that box;

� The average fan-in in the structure chart; and

� The number of possible return values

as indicators of cohesion. They did not �nd evidence of a clear relationship between these mea-

sures and the \quality" of the software. Quality is measured here by the number of source code

modi�cations. These negative results may mean that cohesion is not related to number of source

code modi�cations or that these measures are not indicative of cohesion. Troy and Zweben did

not attempt to show a relationship between these measures and cohesion.

Selby and Basili examined a measure based on data interactions, called data bindings, as a

basis for computing the cohesion and coupling of the components of a system [30]. Routines are

placed into clusters based on the data bindings and the coupling of a cluster with other clusters is

determined. A ratio of the cluster coupling factor to the internal strength of a cluster is computed.

An experiment indicated that clusters with a high ratio had the most errors and the highest error

correction e�orts. Selby and Basili also did not attempt to show a relationship between their

measure and cohesion.

7 Conclusions

Using principles from measurement theory, we derive a set of three functional cohesion measures.

First we develop an abstraction of procedures to isolate intuitive attributes of functional cohesion.

This abstraction is based on data slices of procedures. Using the data slice abstraction we de�ne

the concept of glue and super-glue data tokens. We also introduce the concept of data token

adhesiveness. Using the slice abstraction and the concept of glue, super-glue and adhesiveness we

derive the measures. Strong functional cohesion (SFC) is based on the relative number of super-

glue tokens in a procedure. SFC is the measure most closely related to the original de�nition of

functional cohesion of Yourdan and Constantine [37]. Weak functional cohesion (WFC) is based

on the relative number of glue tokens in a procedure and includes some notion of Yourdan and

Constantine's weaker categories of cohesion. Adhesiveness is based on the relative \stickiness"

of the glue tokens in a procedure, and is the measure that is most sensitive to minor program

modi�cations.

We show that the measures satisfy the requirements of an ordinal scale to the extent that the

orderings imposed by a set of simple transformations match our intuition concerning functional
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cohesion. We also show that the measures are not on a ratio scale because they are not additive. As

a result, one can use ordinal scale computations but not ratio scale computations when analyzing

the measurement values. Thus, analyses requiring a median value are meaningful, but a statistical

analysis that requires a mean is not valid.

We analyze the monotonicity of the measures when procedures are combined using two options

for composition. One of these options should maximize functional cohesion and the other should

minimize it. We show that the SFCmeasure does not satisfy the axiom of weakmonotonicity, while

both WFC and A do when combining procedures with two or more slices. However WFC is not

able to distinguish between procedures combined via the two alternative options for composition,

while A can. Thus, Adhesiveness appears to be the most sensitive and potentially most useful of

the proposed measures.

Acknowledgements

We are grateful for the support of Michigan Technological University for providing travel support

for this work. We are also grateful for the support provided by the NASA Langley Research

Center, the Colorado Advanced Software Institute, CTA Inc., and Storage Technology Inc. We

thank Colorado State for providing the resources for Prof. Ott during her sabbatical year when

this collaborative research e�ort began.

We especially thank Norman Fenton, Horst Zuse, Kurt Olender, Scott Gordon, Sakari Karstu,

Litao Wu, and Hwei Yin who reviewed earlier versions of this manuscript. Their comments greatly

improved the paper. We also received valuable insights from the graduate students in Linda Ott's

seminar in software metrics at Michigan Technological University.

References

[1] A.L. Baker, J.M. Bieman, N. E. Fenton, A. C. Melton, and R.W. Whitty. A philosophy for

software measurement. Journal of Systems and Software, 12(3):277{281, July 1990.

[2] V.R. Basili and H.D. Rombach. The TAME project: Towards improvement-oriented software

environments. IEEE Trans. Software Engineering, SE-14(6):758{773, June 1988.

[3] J. Bieman, A. Baker, P. Clites, D. Gustafson, and A. Melton. A standard representation of

imperative language programs for data collection and software measures speci�cation. The

Journal of Systems and Software, 8(1):13{37, January 1988.

[4] J. Bieman and J. Schultz. Estimating the number of test cases required to satisfy the all-

du-paths testing criterion. Proc. Software Testing, Analysis and Veri�cation Symposium

(TAV3{SIGSOFT89), pages 179{186, December 1989.

[5] J. Bieman and J. Schultz. An empirical evaluation (and speci�cation) of the all-du-paths

testing criterion. Software Engineering Journal, 7(1):43{51, January 1992.

[6] J.-D. Choi, B. Miller, and P. Netzer. Techniques for debugging parallel programs. Technical

Report 786, Univ. Wisconsin-Madison, 1988.

[7] T. J. Emerson. Program testing, path coverage, and the cohesion metric. Proc. Computer

Software and Applications Conf. (COMPSAC-84), pages 421{431, 1984.

26



[8] T. J. Emerson. A discriminant metric for module cohesion. Proc. 7th Int. Conf. on Software

Engineering (ICSE-7), pages 294{303, 1984.

[9] N. Fenton. Software Metrics - A Rigorous Approach. Chapman and Hall, London, 1991.

[10] L. Finkelstein. A review of the fundamental concepts of measurement. Measurement, 2(1):25{

34, 1984.

[11] Keith Brian Gallagher and James R. Lyle. Using program slicing in software maintenance.

IEEE Trans. Software Engineering, 17(8):751{761, 1991.

[12] Matthew S. Hecht. Flow Analysis of Computer Programs. North-Holland, 1977.

[13] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. ACM

Trans. Programming Languages and Systems, 11(3):345{386, 1989.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM

Trans. Programming Languages and Systems, 12(1):35{46, 1990.

[15] B. Korel and J. W. Laski. Dynamic program slicing. Information Processing Letters,

29(3):155{163, 1988.

[16] B. Korel and J. W. Laski. Stad { a system for testing and debugging: User perspective. In

Proc. 2nd Workshop on Software Testing, Veri�cation and Analysis, 1988.

[17] Arun Lakhotia. Insights into relationships between end-slices. Technical Report CACS TR-

91-5-3, University of Southwestern Louisiana, September 1991.

[18] Arun Lakhotia. Rule-based approach to computing module cohesion. In Proc. 15th Int. Conf.

on Software Engineering (ICSE-15), pages 35{44, 1993.

[19] H. D. Longworth. Slice based program metrics. Master's thesis, Michigan Technological

University, 1985.

[20] H. D. Longworth, L. M. Ottenstein [Ott], and M. R. Smith. The relationship between program

complexity and slice complexity during debugging tasks. In Proc. IEEE COMPSAC, pages

383{389, 1986.

[21] A. Macro and J. Buxton. The Craft of Software Engineering. Addison Wesley, 1987.

[22] A.C. Melton, D.A. Gustafson, J.M. Bieman, and A.L. Baker. A mathematical perspective

for software measures research. Software Engineering Journal, 5(5):246{254, 1990.

[23] Linda M. Ott. Using slice pro�les and metrics during software maintenance. In Proc. 10th

Annual Software Reliability Symposium, pages 16{23, 1992.

[24] Linda M. Ott and James M. Bieman. E�ects of software changes on module cohesion. Proc.

Conf. on Software Maintenance, November 1992.

[25] K. J. Ottenstein and L. M. Ottenstein [Ott]. The program dependence graph in a software

development environment. In Proc. ACM SIGSOFT/SIGPLAN Software Eng. Symp. on

Practical Software Development Environments, 1984. See also SIGPLAN Notices, 19,5, 177-

184.

27



[26] Linda M. Ott and Je�rey J. Thuss. The relationship between slices and module cohesion. In

Proc. 11th International Conference on Software Engineering, pages 198{204, 1989.

[27] Linda M. Ott and Je�rey J. Thuss. Using slice pro�les and metrics as tools in the production

of reliable software. Technical Report CS-92-8, Dept. Computer Science, Michigan Techno-

logical Univ., April 1992. Also published as Technical Report CS-92-115 Dept. Computer

Science, Colorado State Univ.

[28] Linda M. Ott and Je�rey J. Thuss. Slice based metrics for estimating cohesion. Proc.

IEEE-CS Int. Software Metrics Symp., pages 71{81, 1993.

[29] T. Reps and W. Yang. The semantics of program slicing and program integration. In Proc.

Colloquium on Current Issues in Programming Languages, pages 360{374, 1989. Lecture

Notes in Computer Science, Vol. 352, Springer-Verlag, New York, NY.

[30] R. Selby and V. Basili. Analyzing Error-Prone System Coupling and Cohesion. Technical

Report UMIACS-TR-88-46, Computer Science, University of Maryland, June 1988.

[31] Je�rey J. Thuss. An investigation into slice based cohesion metrics. Master's thesis, Michigan

Technological University, 1988.

[32] D. Troy and S. Zweben. Measuring the Quality of Structured Designs. Journal of Systems

and Software, 2:113{120, 1981.

[33] M. D.Weiser. Program slicing. In Proceedings of the 5th International Conference on Software

Engineering, pages 439{449, 1981.

[34] M. D. Weiser. Programmers use slices when debugging. Communications of the ACM,

25(7):446{452, 1982.

[35] M. D. Weiser. Program slicing. IEEE Trans. Software Engineering, 10(4):352{357, 1984.

[36] L. Wilson and L. Leelasena. The QUALMS program documentation. Technical Report Alvey

Project SE/69, SBP/102, South Bank Polytechnic, London, 1988.

[37] E. Yourdon and L. Constantine. Structured Design. Englewood Cli�s, NJ, Prentice-Hall,

1979.

[38] H. Zuse and P. Bollmann. Software metrics: using measurement theory to describe the

properties and scales of software complexity metrics. ACM SIGPLAN Notices, 24(8):23{33,

August 1989.

[39] H. Zuse. Software Complexity Measures and Methods. W. de Gruyter, Berlin, 1991.

[40] H. Zuse. Support of validation of software measures by measurement theory. Invited Presen-

tation at the 15th Int. Conf. on Software Engineering (ICSE-15) and the First IEEE-CS Int.

Software Metrics Symp., Baltimore, MD, May 1993.

28


