
Department of

Computer Science

C-Patrol: Design and Usage

Hwei Yin and James M. Bieman

Technical Report CS-93-111

August 20, 1993

Colorado State University

C-Patrol: Design and Usage

Hwei Yin James M. Bieman

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
(303) 491-7096

yin@cs.colostate.edu, bieman@cs.colostate.edu

Technical Report CS{93{111

July 28, 1993

Abstract

The C-patrol system is a simple but powerful CASE tool for C software systems. The heart

of the proposed prototype is the labeled code system, a procedure-like mechanism that invokes

blocks of code through a database-like associative system rather than through explicit procedure

names. The C-patrol design resolves several di�cult issues in enforcing object-oriented invariants

in a language that o�ers little to no support for object-oriented programming. Applications of C-

patrol include object-oriented programming, executable speci�cations and oracles, debugging,

and test script generation. The highly general nature of of this utility makes compatibility

with other tools and languages likely, implying that a wide variety of new applications may be

uncovered during prototype testing.

1 Introduction

C-patrol is a CASE tool design with the virtues of both simplicity and power. C-patrol has potential

applications in a wide range of areas, including executable oracles, speci�cations, testing, and

debugging; however, the design was originally meant to aid object-oriented programming methods

in C. C-patrol design concepts are unusually exible in both implementation and application, and

we anticipate a wide spectrum of uses well beyond what is currently envisioned. C-patrol design

concepts are independent of C itself; thus, major portions of the implementation are likely to be

portable to other languages. This independence also makes compatibility with other software tools

likely. Like its inspiration, Anna [LvH85], C-patrol consists of a system of comments that can be

Address correspondence to Dr. James M. Bieman, Department of Computer Science, Colorado State University,

Fort Collins, CO 80523. Voice: (303)491-7096, Fax: (303) 491-6639, Email: bieman@cs.colostate.edu
Research partially supported by the Colorado Advanced Software Institute (CASI) and Storage Technology Inc. CASI

is sponsored in part by the Colorado Advanced Technology Institute (CATI), an agency of the state of Colorado.

CATI promotes advanced technology teaching and research at universities in Colorado for the purpose of economic
development.

Copyright c1993 by Hwei Yin and James M. Bieman. Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for direct commercial advantage, the copyright notice

and the title of the publication and its date appear, and notice is given that copying is by permission of the author.

textually converted into C code by a special pre-processor. C-patrol, however, is a much simpler

system that derives its expressive power from a new procedure-like mechanism, the labeled code

system, rather than from a large inventory of high-level constructs. This emphasis on simplicity is

a result of a highly pragmatic approach designed to reduce implementation and user training time.

A prototype is currently being implemented; results from the user testing of this prototype will

undoubtably uncover new uses for the system and will heavily inuence future developments and

design goals.

We begin by describing the C-patrol prototype and its major feature, the labeled code system.

After surveying potential uses for the system, we discuss the critical design decisions and issues

that were instrumental in shaping the current system. We conclude by surveying related work and

discuss new enhancements that may be implemented in future versions.

2 C-patrol Description

The following description is only intended to cover the main concepts behind C-patrol { a complete

reference manual is beyond the scope of this document. In the interest of clarity, we will defer

detailed discussion about the reasons behind design decisions until later sections.

At its simplest level, C-patrol is simply a code insertion technique. The user places virtual C

code within special C-patrol comments. These comments are skipped by the C compiler and do not

a�ect the performance of the underlying system. To activate this virtual code, the user invokes the

C-patroller, a special pre-processor that translates virtual code into regular C and inserts it based

on a set of instructions called directives. This augmented program may then be compiled and run

as normal C.

In the current design, virtual code is nothing more than regular C: there is no special meta-

language that has to be learned, and there are no restrictions placed on the virtual code written. It

is the user's responsibility to ensure that virtual code does not produce any undesired side-e�ects.

C-patrol comments thus consist mainly of normal C interspersed with C-patrol directives.

At this point it is important to mention that simplicity is the crucial theme that pervades C-

patrol design. In general, the system will not attempt to control the behavior of the user; it is up

to the user to be self-regulating. To make this task easier, the system is designed to be as intuitive

and as easy to understand as possible so that the user can readily comprehend the consequences of

his or her actions before they are taken.

Finally, it is important to remember that the C-patroller is a pre-processor designed only to

textually insert code, not compile it. This becomes a factor when we discuss procedure-like features

such as labeled code and templates.

2.1 Code Insertion Directives

Insertion directives simply control where code is to be inserted:

/*? %%insert:

printf("hello");

x = f(y);

%%call r, s;

printf("goodbye"); ?*/

In this example, the /*? and ?*/ tokens delimit the C-patrol comment, and the %%insert directive

indicates that the enclosed virtual code is to be inserted exactly where it appears in the surrounding

code. The %%call directives that appear within the virtual code will be replaced by normal C before

2

insertion (a process to be explained later). Since virtual blocks will consist entirely of standard

C, the resulting insertion can be compiled and executed along with the rest of the surrounding C

code.

Other insertion directives, such as the %%pre and %%post directives, specify insertion at the

entry and exit points of a target function. These directives provide a clear and simple format for

specifying code that is to be executed on function boundaries.

2.2 Labeled Code

Much of the power of C-patrol comes from its system of labeled code. Much like the more familiar

macro, labeled code consists of a block of virtual code that is inserted when invoked by a %%call

directive. Unlike more traditional procedures or functions, labeled code is not identi�ed by a single

name, but by a label consisting of a series of tags called label identi�ers:

/*? %%label bill, ted:

printf("code block one");

printf("one done");

%%label ted;

printf("code block two");

%%label bill, fred:

printf("code block three");

?*/

Note that, unlike procedure or macro names, label identi�ers are not unique to blocks of code.

Also note that virtual code in labeled blocks consists only of pure C { no special C-patrol directives

or parameters may appear within. A call directive invokes labeled code by making reference to

individual identi�ers rather than entire labels. Thus:

%%call bill, fred;

will cause the �rst and third blocks to be inserted in their declared order since identi�ers in their

labels are mentioned by the call. Essentially, %%call refers to all labels that contain any of the

identi�ers listed. Thus, the labeled code system is much like a database system, where keywords

(label identi�ers) access related records (labeled blocks) by association.

2.3 Extensions to the Labeled Code System

The user can subdivide label identi�ers through the use of sub�elds:

/*? %%label bill.x.v, bill.y:

assert(bill.x.v < bill.y);

%%label display, bill;

printf("bill y:%d, x.v:%d, x.q:%s\n", bill.y, bill.x.v, bill.x.q);

?*/

In the example, the label identi�er bill has been divided into sub�elds x and y; sub�eld x has been

further divided by sub�eld v. The resulting hierarchy of identi�ers provides a simple but powerful

addition to the labeled code system. Note how we use the labeling system in conjunction with the

assert and printf facilities to enforce and display data-oriented information about object bill.

The exclusive call is an alternative to the normal call directive that allows greater power in

\weeding out" unwanted invocations of labeled blocks:

3

%%ex-call r, s.v

In essence, no label that contains items outside of those listed in the %%ex-call will have its code

included.

To clarify the actions of labeled code directives, it is useful to view the system in terms of

mathematical sets:

� label identi�ers

Label identi�ers describe individual, disjoint sets.

� commas

Commas between listed identi�ers indicate set union. Thus, the space described by listing

several identi�ers in a label or call is the union of the individual sets.

� sub�elds

Sub�elds within an identi�er describe disjoint strict subsets within the parent set.

� %%call

The %%call invokes a label if the space described by the call intersects in any way with the

space of the label; in other words, the intersection between the two sets must be non-null.

� %%ex-call

The %%ex-call invokes a label only if the space described by the label is a subset of the call.

Thus, the %% ex-call is much more restrictive than the %%call, but provides the user with

more control over which code is invoked.

2.4 Templates

Template blocks of virtual code provide greater exibility than labeled code through the use of

parameters. Their declaration is almost identical to the declaration of a traditional procedure or

macro:

/*? %%template printme($a, $b);

printf("%i $a", $b.c); ?*/

The template printme has two parameters: $a and $b. When given character string bindings, the

C-patroller will look for the $a and $b tokens within the virtual block and textually substitute

them for the passed strings.

Template blocks can be converted into normal labeled blocks through the use of binding direc-

tives:

/*? %%bind r = printme("is the value","my_array[j]"); ?*/

The printme template (de�ned earlier) is passed the strings "is the value" and "my array[j]"

for parameters $a and $b respectively. The resulting code is then given the label r. Thus, the

above binding directive is equivalent to the declaration:

/*? %%label r:

printf("%i is the value", my_array[j].c); ?*/

Note that identi�er r may still be used in other labels.

Templates may be invoked directly by %%call and %%ex-call directives, as long as all param-

eters are bound.

4

2.5 Pre-Processing

To make C-patrol comments a part of the underlying program, the C-patroller must �rst substitute

virtual code for all the template and label calls that appear within insertions. After these trans-

formations, insertions will consist entirely of standard C, so the C-patroller may then insert the

new code directly into the host program without further translation. For %%insert directives, the

C-patrol comment is simply replaced by the new code. For %%pre directives, the insertion must be

made so that the new code is executed just before any statements in target function are. Similarly,

%%post directive insertions are made so that new code is executed just before any exit from the

function. After insertions are complete, the program may be compiled and run as a normal C

program since it then consists entirely of standard C code.

3 Uses for C-Patrol

One of the most important aspects of C-patrol is its exibility. The ability to hide code within

comments can be used to insert debugging code without interfering with system performance.

\Forbidden path" checks, for instance, can be written in C-patrol to handle contingencies that

shouldn't occur in normal program operation. However, it is in the labeled code system that

C-patrol really shows potential for new applications.

Although the labeled code system was designed speci�cally to implement object-oriented invari-

ants, there is nothing application-speci�c about the concept. Calls to labeled code are simply a way

of accessing blocks of code in an associative, database-like method. In the following demonstration,

note how test states can be organized with labeled code:

/*? %%label A: x = f(3);

%%label B: x = f(20);

%%label A,B: y = g(8); ?*/

We realize, of course, that these simple settings of x and y are only representative of potentially

complex manipulations. Now we demonstrate calls that set up and use these test states:

/*? %%insert:

switch(toggle) {

case '1': %%call A; break;

case '2': %%call B; break;

case '3': %%ex-call A; y = g(43); break;} ?*/

The toggle variable can controlled by the testing user to bring up these various states. The �rst

two cases are direct calls to suites A and B. Note how both suites share the settings for variable y.

In the third case, we use the %%ex-call to activate only part of the A setting, and then complete

the setting explicitly. Finally, we note that this example does not even take advantage of the

organizational power in the sub-�eld system.

The power of C-patrol undoubtably leads to many applications; however, C-patrol was designed

as a system for implementing automated oracles and speci�cations, so it is important to consider

it in that context.

An oracle is a method of determining whether a program has performed according to speci�-

cation [RAO92]. For most systems, the oracle is human: users determine from system and debug

output whether the program worked correctly. C-patrol is a tool that can help automate aspects of

this process. We can use the C assert primitive to check conditions on the state of the program:

5

/*? %%insert:

assert(<condition>); ?*/

The pre, post, and insert directives give us power is specifying where in control ow the con-

dition is to be checked.

Note that the mission of oracle code is di�erent from the mission of the actual code or an

executable speci�cation. Oracle code is designed only to recognize correct and incorrect data, not

produce such data. The choice of C as a virtual language means that the oracle is written in the

concrete domain of actual structures used by the program. A full discussion of the advantages and

disadvantages of using C as a virtual language appears in a later section.

Checking code can also be used as a method of speci�cation. E�orts such as VDM [Jon86] and

Z [Hay87] use pre- and post-condition checks to specify the actions of functions. C-patrol goes a

step farther by providing invariants that can be applied to data structures. Objects can be linked

to label identi�ers, thus associating invariants to objects:

int X; /*? %%label X: assert(X < 20); ?*/

Calls to identi�er X can then used to invoke this invariant.

We can also link types to template blocks:

struct the_type

{ int a; int b; } /* this is a type definition */

/*? %%template the_type($P):

assert($P.a < $P.b); ?*/

We can then create an object out of this type by assigning a label identi�er to an instantiation of

the template:

struct the_type the_var; /* this is a variable declaration */

/*? %%bind the_val = the_type("the_val");

%%label the_val:

assert(the_val.a < 10); ?*/

Note how a new condition, the val.a < 10, was added to the existing template condition, the val.a

< the val.b. C-patrol is thus capable of expressing one level of inheritance: special conditions can

be added to an object of a type.

The current limitation to speci�cations in C-patrol is that that virtual blocks are not su�ciently

parameterized to allow for any abstraction: actual implementation data structures must be accessed

when expressing constraints. One of the objectives in future work is to provide a way of better

shielding abstract speci�cations from the details of implementation. In conjunction with traditional

methods of speci�cation, such checking code can be used throughout the life cycle of a project to

ensure that the original intent of the designer is satis�ed.

Prototype testing will be a crucial factor in determining what the chief uses of C-patrol will be.

Our software engineering background is also a bias, blinding us to potential applications in other

areas. We will rely on the spontaneous ingenuity of the user ful�lling his or her immediate needs

as a guide towards understanding the full power of this system.

6

4 Design Decisions in C-Patrol

The work leading to C-patrol was primarily centered around invariant enforcement for functional

languages; however, the system developed appears to have strong potential for applications not

anticipated by the initial design. Examination of industrial code provided by our client revealed

a heavily object-oriented programming style, which, due to the reliance on side e�ects, was not

appropriate for purely pre- and post-condition analysis. The formidable task of enforcing object-

oriented invariants in a language that has no support for such methods led to the current system

of labeled code and templates. Thus, it is important to remember that although the C-patrol

system is not restricted to a particular application, its design was oriented toward speci�cation and

enforcement problems for object-oriented invariants.

Another important factor inuencing C-patrol design is the emphasis on industrial practicality

over academic exercise. Restrictions in implementation manpower and user training time led to a

design that emphasized simplicity whenever possible. The prototype currently being implemented

is quite basic: more ambitious features will not be included unless a clear indication is received from

users during testing. A consequence of such simplicity is that little automatic checking is provided

to protect users from dangerous operations. C-patrol relies on a design that is as transparent as

possible so that the user can either anticipate problems beforehand or quickly debug the ones that

arise.

4.1 Virtual Code

A major issue in the C-patrol design was the content of virtual code. Three major approaches were

considered:

� Meta-Language

An approach that occurs frequently in speci�cation-oriented systems is to introduce a new

meta-language that describes invariants at a more abstract level than is possible in C.

� Restricted C

Another important approach is to modify or limit the C that can appear as virtual code. If

the system is designed to passively check the program without modifying it, such enforcement

can protect the program from accidental state modi�cations caused by insertions.

� Unrestricted C

This is the approach currently adopted by the C-patrol design.

The merits and disadvantages of each of these approaches will be discussed in detail.

4.1.1 Meta-Languages as Virtual Code

One common approach to expressing executable speci�cations or oracle constraints is to implement

powerful, high level constructs, such as those found in VDM [Jon86] or Z [Hay87], in virtual code.

The clear syntax and high level primitives of such languages allow the user to express complex

requirements in a clear and abstract manner. Furthermore, a language can be designed that

inherently protects the underlying program from the actions of virtual code. The intent of such

code thus becomes more apparent to the user as primitives come closer to a documentation level

of abstraction.

One important reason for using C instead of meta-language virtual code was user training

overhead. Although meta-languages provide greater expressive power, some transparency may be

7

lost if users do not fully understand the actions of very high level primitives. Furthermore, users will

be naturally reluctant to devote the time necessary to develop the needed comprehension of such

languages. By using the host language, C, the problem of misuse due to incomplete comprehension

is minimized. In addition to these bene�ts, there is a gain in practicality: pre-compilers that

implement high level primitives can be quite complex and cannot compete in the e�ciency or

reliability of proven C compilers.

Another problem lies in determining the type of high order primitives to be included. Most high

level primitives are specialized toward particular applications: the types of high level operations

needed vary with paradigms of use. When used outside of its intended application, the language

becomes awkward to use. Furthermore, a computational argument posed by Hayes and Jones

[HJ89] shows that there are classes of high level primitives that are impractical or impossible to

implement. We chose to open C-patrol to as many applications and uses as possible rather than

attempt to anticipate the primitives that will be of service to the user. It is possible that feedback

from prototype testing may cause the addition of special primitives; however, there are a plethora

of C libraries with specialized functions that may provide the high level power needed for most

applications. The inclusion of such libraries can be hidden within C-patrol comments.

4.1.2 Restricted C as Virtual Code

One approach considered to protect the user from harmful virtual code was to restrict the code to

a subset of C that guarantees that a certain level of safety. The chief C subset we considered was

read-only code: code that is guaranteed to not modify state information. This condition would be

enforced in one of two ways: eliminate certain C constructs (such as assignment statements) from

virtual code, or scan the code for destructive operations and warn the user.

There are several di�culties with using restricted C in the prototype. Eliminating modifying

constructs (such as assignment statements) also eliminates computations that use and modify local

computation variables, thus severely limiting the expressive capabilities of virtual code. Attempting

to statically separate local variable manipulation from outside variable manipulation will either add

a great deal of complexity (and unreliability) to the prototype or will burden the user with tedious

or unclear regulation. Furthermore, it may be di�cult to identify which uses of outside variables

modify and which uses simply read, especially in the presence of variable aliasing or renaming.

Perhaps the most important reason that no restrictions are placed on virtual code is that we

are uncertain of how C-patrol will be used. In some testing applications, for instance, the user may

intentionally modify the state to produce certain debugging conditions. By opening virtual code

to all possible C, we also open C-patrol to all possible applications. Results from prototype testing

will be critical for determining whether restrictions will be placed on virtual code.

4.1.3 Unrestricted C as Virtual Code

As described above, there are disadvantages to using un-modi�ed C as virtual code. In general, we

have accepted these dangers in exchange for simplicity and application independence. Essentially,

the C-patroller is unaware of the content of user insertions: virtual code is treated simply as a block

of text that is to inserted into a program. This approach also gives us a certain level of language

independence: since the language in which virtual code is written is unimportant to the C-patroller,

large portions of the C-patrol implementation will be portable to other imperative languages, such

as Fortran or Pascal.

8

4.2 Insertion Methods and Stability

One strong objection against using labeled code in enforcing object-oriented invariants is that all

labeled code must be invoked explicitly by the user. Automatic execution of such invariants would

better approximate the concept of an extended type: enforcement of these additional constraints

would be implicit and could be viewed as a kind of rigorous type check. A limited form of automatic

insertion is currently being considered (see Future Work); however, problems relating to stability

[Mey92] were the predominant force in shaping the current system of labeled code.

Stability is de�ned relative to an object, its invariant, and a point in program control ow.

An unstable state is a program state where the object's invariant is temporarily violated. These

states occur frequently during an operation on an object, where the object is being incrementally

modi�ed to a new state. In the following example, we assume the invariant X.a < X.b holds for

object X:

X.a = X.b + 2;

X.b = X.a + 10;

The invariant is maintained in this operation; however, between the two C statements, there is a

temporary instability where X.a is less than X.b. Before an operation is complete, it is possible that

relationships between sub-�elds of the object may be temporarily violated while �elds are being

updated. An attempt to check an invariant at such a point can result in a misleading error or, in

the case of uninitialized data, aborted execution.

To help identify the problems related to unstable states, we have identi�ed three types of read-

only invariants based on their access levels:

1. constant: the invariant does not relate the data to other objects or �elds, as in A.x < 10.

2. internal: the invariant relates �elds from the same object to each other, as in A.x < A.y.

3. external: the invariant relates di�erent objects to each other, as in A.x < B.x.

Invariants written at each of these access levels require di�erent levels of stability. State stability

and access levels thus have a direct e�ect on the safety of various insertion techniques.

The C-patrol labeling system provides the user with a tool for identifying the access level of an

invariant. By mapping label identi�ers to objects, the user can specify the level of access by listing

all objects or sub-�elds referenced in the code's label:

/*? %%label A.x: assert(A < 10);

%%label A.x, A.y: assert(A.x < A.y);

%%label A.x, B.x: assert(A.x < B.x); ?*/

Once identi�ed, the access level desired by the insertion can be speci�ed by the call directive:

%%ex-call A.x; {* constant level only *}

%%ex-call A; {* constant or internal *}

%%call A.x; {* all levels *}

Another method of controlling access levels is to make such restrictions an inherent property of

virtual code. This would involve the use of either restricted C or meta-language virtual code: the

merits and di�culties of such an approach was discussed previously.

9

4.2.1 Statement Boundary Insertion

One possible automatic insertion method places invariants immediately after all statements that

modify an object. Static implementations of this method encounter problems in discriminating

statements that modify the object from statements that simply read it (i.e. separating L-value

from R-value accesses). Further di�culties may occur due to aliasing; the object may be referenced

indirectly through pointers, or local variables may temporarily assume the same name, thus confus-

ing the insertion algorithm. One solution to these problems is to intercept references to the object

in the symbol table; however, even this method is subject to problems of stability. Only constant

access level invariants are guaranteed to be appropriate for such insertions. Identifying constant

level invariants can be facilitated by correct labeling or by using a virtual language that inherently

guarantees such a condition. Key-jerk code is a potential statement level insertion system: it relies

on constant access levels to ensure the safety of insertions. Key-jerk code is further discussed in

Future Work.

4.2.2 Function Boundary Insertion

Internal stability problems result from interrupting an object's operation with a check before the

procedure is complete. This problem can be circumvented by performing checks only at function

boundaries { essentially, adding the checks to the operation's pre- and post-conditions. This is the

approach favored by Ei�el [Mey92] and A++ [CL90]: any function that operates on the object has

the object's invariants enforced as an additional pre- and post-condition constraint, with special

pre-condition exceptions made for initialization routines.

The main factor facilitating this approach for Ei�el and A++ is that the underlying languages

support object-oriented programming. With imperative languages like C, determining which func-

tions are operations on an object is non-trivial. The problems encountered are similar to those

that exist at the statement level: it is di�cult to separate read-only usage from modifying usage

and unexpected aliasing can either cause excessive or insu�cient enforcement. Furthermore, the

symbol table access solution is no longer trivial, since the execution of the check must be delayed

until the next function boundary is recognized.

Stability can be a problem for function boundary insertions as well. External access level

invariants may state relationships between di�erent objects; after an operation on one object is

complete, there may be a temporary violation of an inter-object condition until the other object is

adjusted accordingly.

4.2.3 Explicit Insertion with Labeled Blocks

By relying on explicit invocation of invariants, C-patrol defers the problem of identifying object

operations and their access level to the user. It is thus the user's responsibility to be complete in

locating all functions that modify an object. This seems reasonable since many industrial standards

require that a list of objects modi�ed be supplied in function documentation. The %%call directive

can be used to emulate such documentation:

/*? %%pre:

%%call A, B; {* just like many doc standards *} ?*/

The %%pre and %%post insertion directives allow convenient function boundary insertion. In-

variant invocations can be placed within %%pre and %%post directives, thus yielding the bene�ts of

function boundary enforcement. The problem of external access can be handled by the %%ex-call

10

directive. Assuming the labels on blocks are reliable, the user can deny execution to invariants that

contain accesses to objects whose state is uncertain.

/*? %%ex-call A; {* will not invoke blocks w/ other objects *} ?*/

The sub-�eld system can be used to provide this service at the internal access level.

4.3 Toward Extended Types

One of the object-oriented objectives of C-patrol is to provide the user with some form of an

extended type. Essentially, the user should be able to annotate a type with additional checking

code: any time an object of that type is modi�ed, the checking code is automatically executed,

producing warnings if any conditions have been violated.

The labeled code system does not have parameters, a crucial feature needed in extended type

checking code. Without parameters, checking code must be directed toward a speci�c object rather

that the group of objects of the same type. Template blocks were provided to alleviate this problem,

as demonstrated in the Uses for C-Patrol section.

Initial e�orts toward providing parameters attempted to incorporate them directly into the

labeled code system; however, it proved di�cult to ensure that all parameters were bound by

the time the virtual code was inserted into the program. This is because there is no one-to-

one relationship between label identi�ers and the virtual code they are attached to. This point

is made more clear when we note that each code block contains a unique set of parameters to

be bound; however, call directives do not know which of these blocks are being invoked when a

particular identi�er is used, so there is no way of knowing which parameters need to be bound. Our

current solution is to create a special structure, the template directive, that ensures a one-to-one

mapping between the code block and the identi�er that references it. Fortunately, we were able to

incorporate bound template blocks into the labeled code system, thus preserving some of the power

of the labeled system while adding a system for parameterized code.

Another barrier impeding the implementation of extended types is the stability at the points

of code insertion. If the type is de�ned relative to another value, then the resulting code is either

internal or external in access level, which can lead to invocation in unstable states. The simplest

solution to this problem is to restrict such code to constant access levels; as demonstrated earlier,

this is facilitated by the %%ex-call feature.

The �nal problem with extended types is type inference. In the presence of complex structures,

pointers, and aliases, it can be di�cult for the pre-compiler to recognize which variables belong to

the type being enforced. A solution being considered will force the user to syntactically specify

which variables are of the type via regular expressions. The pre-processor will scan the program

for occurrences of these expressions and insert code at the next statement boundary. The string

that matched the expression would be used to instantiate the parameter in the type code. This

proposed system, called key-jerk code, is described in the Future Works system.

5 Related Work

C-patrol research covers a wide spectrum of areas: software speci�cations, testing, CASE tools,

C tools, and object oriented programming to name a few. Thus, it is di�cult to identify sources

for related work. We briey discuss work that we are aware of and work that inuenced C-patrol

design.

11

Our original objective was to bring abstract concepts from an earlier project, Prosper [Yin91]

[BY92] [LB89], into the highly pragmatic world of C. Prosper is an experimental pre- and post-

condition enforcement language designed for a purely functional language. With functional lan-

guages, side e�ects are not a factor; however, the industrial C code we analyzed showed a heavily

object-oriented style of programming, prompting us to create the labeled code system.

One inspiration for C-patrol work comes from Annotated Ada, or Anna [LvH85]. It is from

Anna that the method of using comments to hide insertions was derived. C-patrol extends Anna

work by adding the labeled code system; however, it does not provide the Anna primitives that

make expressing constraints more intuitive (see Design Decisions in C-Patrol). Executing

checking code can be expensive, and one Anna implementation [SM93] relies on concurrency to

o�oad checking overhead. The use of pure C for virtual code makes C-patrol execution more

e�cient, reducing the need for such measures.

The labeled code system began as an attempt to imitate the methods of Ei�el [Mey92]. Ei�el

object invariants are inserted as additional pre- and post-conditions to all operations on the object.

Such methods are di�cult to execute in C due to the lack of language support in identifying the

operations of an object. Ei�el also has a system for selectively activating insertions, a feature that

will eventually have to be implemented in C-patrol.

The object-oriented nature of C++ also simpli�ed the task of the Annotated C++ project, A++

[CL90], which seeks to do for C++ what Anna does for Ada. A++ exploits the object-oriented

nature of C++ to explicitly provide more advanced object-oriented concepts, such as encapsulation

and inheritance. Such features may be the subject of future C-patrol research.

Anna also inspired another cousin, APP, or the Annotation Pre-Processor for C [Ros92]. APP,

like all Anna cousins, closely echos C-patrol its highly pragmatic philosophy. Unlike C-patrol,

APP has been operational for some time, although testing has been limited to relatively private

experiments by the researcher. APP provides primitives that function much like C-patrol insertion

directives; however, APP also provides more advanced features, such as the ability to recall old

variable values for comparison and an advanced assertion reporting facility, that are not yet provided

by C-patrol. C-patrol exibility makes is quite possible that the features of tools such as APP can

be organized and inserted into code by the C-patrol labeled code system, resulting in a combined

power beyond that of either tool.

In his PhD thesis, Rubinfeld [Rub90] demonstrated a form of parallel programming called self-

checking code. Systems like C-patrol may be ideal for such applications, allowing users to shield

their programs from the e�ects of checking code by hiding them in comments.

6 Future Work

There are many re�nements and features envisioned for C-patrol that will not be provided in

the prototype. The following section discusses items in consideration for future development and

research.

6.1 Multiple File Organization

The prototype version of C-patrol is not yet capable of handling complex, multi-�le systems with

interlocking C-patrol comments appearing within di�erent �les. In the current system, all C-patrol

comments must appear within the same �le. Multi-�le system capability will be essential to any

industrial application of C-patrol.

12

6.2 Selective Activation of Insertions

The C-patroller activates all insertions when invoked. Users may wish to block some insertions

from activation without altering the program. Currently, C-patrol does not provide any system for

doing this without altering program text.

An approach under consideration labels insertions with the same system used for labeled code.

When the pre-compiler is invoked, a call directive can be issued at the operating systems level to

select which insertions will be pre-compiled and which will be ignored. The labeled code system

provides the power of hierarchical organization and multiple identi�ers without creating excessive

complexity; moreover, using the same system twice reduces training time for users.

6.3 C-patrol Speci�cations

One of the main goals of the C-patrol project is to express speci�cations that can exist and execute

throughout the software development cycle. The choice of C as a virtual language, however, creates

the problem of implementation-dependent speci�cations. One approach to better disguising the

underlying implementation is to provide parameterized virtual code that allows all implementation-

dependent structures to be aliased by an abstract identi�er. A system for mapping such aliases to

C constructs has yet to be de�ned.

6.4 Advanced Primitives

C-patrol does not provide any features to make the virtual C code more abstract or easier to

use. All desired functions of the virtual code must be coded explicitly by the user. Tools such

as A++ [CL90] and APP [Ros92] demonstrate that such features may be necessary to make C-

patrol practical for industrial use; however, the exibility of C-patrol makes determining the sort

of primitives required di�cult because of the unpredicatably wide spectrum of future applications.

Furthermore, C already provides a rich body of library functions that perform advanced services,

such as the assert function for checking code. We will therefore not provide such features until

clear needs and applications develop in prototype testing.

6.5 Scoping of Label Identi�ers

In the C-patrol prototype, it is the user's responsibility to ensure that label identi�ers are unique.

This may be di�cult to ensure in a complex multi-�le and multi-user system, where identi�ers

from other �les may coincidentally conict with local identi�ers. This may result in the inclusion

of labeled code not relevant to the insertion.

A structured programming approach to this problem is to introduce some sort of scoping feature

to distinguish local identi�ers from identi�ers from other areas of code. The sub-�eld system allows

the user to explicitly arrange label identi�ers into a hierarchy, but it is a strong possibility that a

more implicit system will eventually be required.

6.6 Automated Insertion

C-patrol code insertion techniques rely on explicit invocation and little to no automation. Although

this allows the user to better control and protect his or her code from spurious insertions, it also

increases the user workload per insertion. A new insertion technique, tentatively named key-jerk

insertion, provides a more implicit form of virtual code insertion.

Instead of a procedure name, key-jerk virtual blocks are associated with a regular expression

or key. Whenever the target regular expression appears within the program text, it is treated as a

13

call to the virtual code. The block is then inserted at the next statement boundary. The key may

be bound to a parameter, as in the following:

/*? %%key-jerk $X = my_array[*]:

assert($X < 20); ?*/

We assume that the asterisk in the key is a wild card; thus, this code fragment would be invoked

by the appearance of a token such as my array[512]. At the next statement boundary, C-patrol

would insert the expression:

assert(my_array[512] < 20);

Note that the key-jerk de�nition allows for only one parameter. This will encourage the user to

limit assertions to the constant access-level, making stable insertions a great deal more likely. For

other problems, the key-jerk method relies on its intuitive nature to guide the user in correct usage.

There are many implementation details a problems associated with key-jerk code that have yet

to be resolved. Clearly, there will be a need for some sort of scoping mechanism so that the target

area for these insertions can be limited to a manageable portion of the program. However, this

method, with further development, appears to have strong potential for increasing the utility of

C-patrol.

7 Conclusions and Summary

C-patrol is a code insertion system that o�ers powerful features without sacri�cing practicality.

This is achieved by a design emphasis on simplicity. A simple system is a system that is easily

comprehended by the user, which in turn allows a design that can rely on the user for self-regulation

rather than implement complex constraints and monitors. This design philosophy results in a

prototype that should be relatively simple to implement.

The central feature of the C-patrol prototype is the labeled code system. This feature allows the

speci�cation and enforcement of object-oriented invariants while e�ectively dealing with problems

in e�ciency, implementation, and state stability. The labeled code system is a procedure-like

invocation system that calls code blocks based on their association to a series of label identi�ers

rather than explicit names. This powerful feature is application independent, and has a variety

of applications beyond its object oriented objective. The concept is also language independent.

C-patrol features can just as easily be implemented in other imperative languages, such as Pascal

or Fortran. This broad potential makes it di�cult to predict what sort of additional capability will

be required, resulting in a \wait-and-see" approach to further development.

Future work will be heavily dictated by prototype test results; however, the powerful features

and re�nements planned promise to strongly enhance the capabilities of C-patrol. \Key-jerk" code

is one of the most intriguing new ideas: it is a method of invoking code blocks by association with

regular expressions.

The C-patrol design thus relies on a network of innovative constructs that balance simplicity,

generality, and power. It has shown potential in a spectrum of applications far beyond those

originally intended and quite possibly beyond those currently envisioned. Future development of

C-patrol will continue to emphasize the combination of abstract software engineering and industrial

pragmatism that has already provided an extremely promising design.

14

References

[BY92] James M. Bieman and Hwei Yin. Designing for software testability using automated

oracles. International Test Conference, pages 900{907, 1992.

[CL90] Marshall P. Cline and Doug Lea. The behavior of C++ classes. Proc. Symp. on Object

Oriented Programming Emphasizing Practical Applications, Marist College, 1990.

[Hay87] Ian Hayes, editor. Speci�cation Case Studies. Prentice-Hall International, Cambridge,

London, 1987.

[HJ89] Ian Hayes and C. B. Jones. Speci�cations are not (necessarily) executable. Software

Engineering Journal, pages 330{338, November 1989.

[Jon86] Cli� B. Jones. Systematic Software Development using VDM. Prentice-Hall Interna-

tional, Cambridge, London, 1986.

[LB89] Jacek Leszczylowski and James M. Bieman. PROSPER, a language for speci�cation by

prototyping. Computer Languages, 14(3):165{180, 1989.

[LvH85] Donald C. Luckham and Friedrich W. von Henke. An overview of ANNA, a speci�cation

language for Ada. IEEE Software, pages 9{22, March 1985.

[Mey92] Bertrand Meyer. Ei�el the Language. Prentice Hall Intl., 1992.

[RAO92] Debra J. Richardson, Stephanie L. Aha, and T. Owen O'Malley. Speci�cation-based

test oracles for reactive systems. 14th Intl. Conf. on Software Engineering, Melbourne,

Australia, May 1992.

[Ros92] David S. Rosenblum. Toward a method of programming with assertions. Proc. 14th Intl.

Conf. on Software Engineering, Melbourne, Australia, pages 92{104, May 1992.

[Rub90] Ronitt Rubinfeld. A mathematical theory of self-checking, self-testing and self-correcting

programs. Intl. Computer Science Inst., October 1990. Technical Report TR-90-054.

[SM93] Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally speci�ed

programs. IEEE Computer, pages 32{41, March 1993.

[Yin91] H. Yin. Automatic enforcement of invariants: The implementation of prosper. Colorado

State University, 1991.

15

