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Abstract

The measurement and prediction of software
reliability require the use of the Software Reliability
Growth Models (SRGMs). The predictive quality can
be measured by the average end-point projection er-
ror [9]. In this paper, the e�ects of two orthogonal
classes of approaches to improve prediction capability
of a SRM have been examined using a large number of
data sets. The �rst approach is preprocessing of data
to �lter out short term noise. The second is to over-
come the bias inherent in the model. The results show
that proper application of these two approaches can be
more important than the selection of the model.

1 Introduction

In order to achieve high reliability at an acceptable

cost, developers need to be able to estimate the reli-

ability of software under development, and, for man-

agement and planning purposes, they should be able

to project the additional e�ort needed for their soft-

ware to reach a certain reliability level. The reliability

of software can be estimated statically or dynamically.

The static approach is based on the software size, com-

plexity and other static parameters and can be used

even before the software being tested. It can however

provide only preliminary estimates. The dynamic ap-

proach is based on the software failure data, which is

collected during the system test phase. It can be used

when the software has been tested for a while and some

failure data have been collected. This approach, how-

ever, has the advantage of being able to predict the

general trend of the software reliability improvement

during the test phase.

�This work was partly supported by SDIO/IST and moni-

tored by ONR

Quite a few SRGMs have been proposed for the dy-

namic approach [1, 9, 17, 20]. The steps involved in

the process of using a model to make prediction about

a system's reliability include: collecting software fail-

ure data during the testing phase and/or operational

use; preprocessing the failure data to �lter out noise;

selecting the best SRGM for the data (project); apply-

ing the failure data to drive the model; applying the

�tted model to make claims about the reliability level

of the software and/or to make projection about the

additional e�ort needed to achieve a desired reliability

level. The accuracy of projection can be a�ected by

each activity during the process, so appropriate deci-

sions must be taken at each step.

First we consider the problem of the noise inher-

ent in software failure data. Di�erent inputs applied

can have signi�cantly di�erent defect detection capa-

bilities. Since the order in which inputs are applied is

never truely random, it is possible for a few \weak" or

a few \strong" inputs to be applied close to each other

causing a relatively low or high failure intensity for

a short duration. Idealy, a preprocessing step should

�lter out the short-term variations as noise while pre-

serving the longer term trend. As we would expect

some smoothing generally improves predictability but

excessive smoothing makes it worse. Malaiya et al [10]

tried to smooth the noise by data grouping. By group-

ing a few adjacent failure data points, they noticed

that the predictability of SRGMs improves initially as

the group size increases, and then gets worse as larger

group sizes are involved. For the four data sets used,

they found that there was an optimal grouping size,

given by the total number of defects divided by 20, or

equivalently the optimal number of groups is about 20.

In this study, we did more detailed experiments with

a much larger number of data sets. We also tried some

other methods to smooth the noise, including window-

ing and data dependent grouping. Currently we have



more than forty data sets from various sources, which

cover a wide range of software, including system soft-

ware, realtime control, data base applications, mili-

tary applications, and students' projects. These span a

wide range of software sizes and defect densities. Since

grouping is not appropriate if only a small number of

data points are available, we used 21 software failure

data sets with 73 to over 800 data points. Table 1 is a

summary of the data sets used in our experiments.

Table 1: Software Failure Data Used
Data Ref. Code Size #Bugs Project Type

SS1A [2] 100; 000+ 112 O.S.

SS1B [2] 100; 000+ 375 O.S.

SS1C [2] 100; 000+ 277 O.S.

SS2 [2] 100; 000+ 192 Time Sharing

SS3 [2] 100; 000+ 278 Word Proc.
SS4 [2] 100; 000+ 196 O.S.

T1 [2] 21,700 136 Realtime

T2 [1] N/A 86 Realtime

T3 [2] N/A 207 N/A

T5 [2] 2,445,000 831 Realtime

T6 [2] 5,700 73 Commercial

T18 [1] N/A 163 Military

T40 [2, 19] 180,000 101 Military

Proj1 [22] 14,000 132 Space System
Proj3 [22] N/A 210 N/A

Proj4 [22] N/A 196 N/A

YT1 [20] 200,000 111 Realtime
YT3 [21] 870,000 535 Realtime

HP2 [14] N/A 74 N/A

TSW [5] N/A 129 N/A
Usbar [5] N/A 397 N/A

The second concern is the bias that all major mod-

els have [4, 11]. While some speci�c models have been

shown to have better �t or predictability, none of them

describes the fault detection process exactly. In addi-

tion, the characteristics of individual data sets may

vary because of di�erent testing practices. One pos-

sible way to overcome this is to emphasize the most

recent data points by using a weighted [12] parame-

ter estimation. The other approach is to adaptively

adjust the projections. The results suggest that using

such recalibration improves the accuracy.

Finally we have also examined combinations of pre-

processing and recalibration. The results show that

if near-optimal choices are made, the accuracy can be

greatly enhanced.

Section 2 describes the experiments performed. Sec-

tion 3 presents a summary of the results obtained using

real data sets, and the observations are discussed.

2 The Experiments

2.1 The SRGMs

Table 2: Software Reliability Growth Models

Models Mean Value Function Failure Intensity

Exponential �0[1� exp(��1t)] �0�1e
��1t

Logarithmic �0 ln(1 + �1t)
�0�1
1+�1t

Delayed S �0[1� (1 + �1)e
��1t] �0�

2
1te

��1t

Power �0t
�1 �0�1t

�1�1

Four of the major SRGMs are considered here: Ex-

ponential model, logarithmic model, delayed S-shaped

model and power model. Table 2 is a summary of

these models. All of these are two parameter models,

and thus can be compared [11].

The past software failure data is generally in the

form <defect number, failure time>, all the data sets

used contain the points: < �1, t1 >, < �2, t2 >, < �3,

t3 >, ... ... < �n, tn >. where �i is the number

of defects detected by time ti We can use
�i+1��i
ti+1�ti

as

an estimation of the actual failure intensity �i at time

ti. With this, we can �t the SRGMs and evaluate the

model parameters �0 and �1. For each data set, we

repeated this with subsets of the data set containing

2, 3, ..., n data points. In each case, using a SRGM,

we predict the number of defects pi to be observed

at the time of last failure data point tn and compare

the predicted number pi with the actual number of de-

fects found by that time �n. This allows us to obtain

the relative error,
jpi��nj

�n
, corresponding to that �t-

ted model. By averaging the relative error over time

points from t2 to tn, we get the average error (AE) as

introduced in [9, 11]. We will use AE as a measure to

evaluate the predictive accuracy.

2.2 Data Preprocessing

As mentioned earlier, the noise in the software fail-

ure data a�ects the predictability of SRGMs. The

main objective here is to �nd some guideline that will

allow us to select the smoothingmethod and the degree

of smoothing to improve the predictability of SRGMs.

Five di�erent smoothing schemes were considered.

Grouping with �xed group size By grouping a

�xed number of data points into one point, we ex-

pected that the noise values may compensate each

other for that period and thus the noise inherent in the

failure data reduced sigini�cantly. This is carried out

by selecting data points < �1, t1 >, < �1+g, t1+g >,

< �1+2g, t1+2g >, < �1+3g, t1+3g >, ... ..., where g is

the group size, which is the number of defects grouped

for most of data sets we experimented.



This scheme was experimentally examined in [10],

where the �tness of the projected number of defects

pn against �n at time tn was used as a measure to

evaluate the goodness of di�erent group sizes. Here we

use the variable-step predictability measure, AE [9], as

the measure which is a better predictability measure.

PROCEDURE lump_grouping();

i:INTEGER; /* loop variable */

data_size:INTEGER;/* #data points before lumping*/

data_cnt:INTEGER; /* #data points after lumping */

rising:BOOLEAN; /* rising failure intensity */

rfail, rftime, lemda: ARRAY [1..N] of REAL;

/* failure data before lumping*/

fail, ftime: ARRAY [1..N] of REAL;

/* failure data after lumping */

BEGIN

data_cnt := 0;

rising := TRUE;

FOR i := 1 TO data_size DO

BEGIN

IF lemda[i] < lemda[i+1] THEN

BEGIN

IF rising THEN continue ELSE

BEGIN

fail[data_cnt] := rfail[i];

ftime[data_cnt]:= rftime[i];

data_cnt := data_cnt + 1;

rising := TRUE;

END

END ELSE rising := FALSE;

END;

fail[data_cnt] := rfail[data_size];

/* always keep the last data point */

ftime[data_cnt]:= rftime[data_size];

END;

Figure 1: Procedure for lump grouping

Grouping failure intensity lumps When test-

ing proceeds by focusing on one kind of defects at

a time, or by applying one testing technique during

a stage, the failure intensity would typically increase

initially and then decrease until the next stage. When

one �nds a special type of fault, it is possible that he

will soon �nd other faults of the same kind, and then

as he proceeds further, since fewer such faults exist,

the failure intensity decreases. Thus each lump in fail-

ure intensity could be associated with the transition

from one testing stage to another during the testing

process. By grouping failure intensity lumps in the

data, we hope to minimize the noise associated with

transition points during testing.

The data points are selected according to neigh-

bouring failure intensities. For example, if �i < �i+1 <

::: < �j, and �j > �j+1 > ::: > �k then all the data

points between ti and tk, excluding < �i; ti > and

< �k; tk >, would be dropped due to grouping for

model �tting. The procedure in Figure 1 describes

lump grouping.

Windowing Instead of grouping a few data points

into one, in this method all the data points are kept,

but the failure intensity is approximated di�erently at

each point. �i is estimated as
�i+w��i
ti+w�ti

where w is

an adjustable factor called window width. Clearly the

failure intensity calculated in this way will be smoother

than the earlier approaches.

2.3 Weighted least square estimation

Normal least square parameter estimation approach

gives equal weight to each data point when a model is

�tted. This results in a �tted model that best �ts the

data. When reliability projection or reliability estima-

tion is our major concern, we expect that if we get a

better �t to the later data point, we will get better

predictions for the future points in time. If during the

process of �tting a model, we give more weights to the

recent data points, we would expect a better predictive

accuracy. It can be done as described below.

Suppose (x1; y1); (x2; y2); :::; (xn; yn) are the data

points and Y = a + bX is a model to be �tted to

this data set. Then the actual value of yi at each data

point can be written as

yi = a+ b� xi + �i

where �i is the error related to the model at point xi.

With weighted least square, the weighted sum of

squares of errors as given by:Pn

i=1 �
2

i � �i

where �i is the weight associated with data point xi.

For normal least square approach, �i = 1 for all i 2

[1::n].

The weight �i can be chosen in numerous ways. We

experimented with weights as a linear function of time

ti, as a linear function of cumulative number of failures

�i, and as a linear function of data points i. The last

one was found to be better than the other two schemes,

which is described by:

�i = c+ e � i

Let the total weights be the same as unweighted

scheme, i.e.:Pn

i=1 c+ e � i =
Pn

i=1 1 = n

then e is determined once c is chosen. The parameter

c controls the weighting scheme. Setting c = 1 results

in normal least square; setting c = 0 results in biggest

di�erences in weights. In our experiments we adjusted

the value of c from 1 to 0 in step of �0:1 for each data

set.
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Figure 2: Representative plots for �xed-size grouping

2.4 Adaptive Approach

It was noticed [4, 6, 11, 23] that some models have a

tendency to overestimate or underestimate the reliabil-

ity, which make them good candidates for the adaptive

approach (also called recalibration [4]). Once a model

is �tted, it can be used to predict the reliability of soft-

ware at some future time. However there is no way to

tell exactly how close a prediction will be to the actual

value. We can, however, measure the bias of the es-

timation of the software reliability at each past point
of time. These biases can then be used to adjust the

projection made using the model. We tried to adjust

the prediction by using linear regression to project the

trend of bias with respect to time ti or the cumulative

number of failures �i. We also tried to simply take

the average of bias values during the past and deduct-

ing this average bias from the model projection. This

later approach was found to be superior to the other

two more complicated methods.

To observe the e�ects of the adaptive approach, we

repeat each experiment with and without the adjust-

ment. This also allows us to see the e�ect of combining

this approach with the earlier noise smoothing tech-

niques. For each data set in Table 1, we experimented

with all the methods mentioned in this section. The

result are discussed in next section.

3 Results and Observations

The results of the experiments are shown in var-

ious plots. Since there are many sets of data, four

SRGMs, and a few di�erent methods for preprocess-

ing and bias adjustment, there are too many plots to

be included here. We show only some representative

plots and present the summary information along with

the observations and discussions.

While some SRGMs ussally works better than oth-

ers, there is no single SRGM that will work best for

every possible software failure data all the time. It is

also true that there is no single scheme introduced in

section 2 will work best for every case all the time.

If a scheme works best in a few situations but does

poorly in others, we cannot claim that scheme as a

good scheme. The �rst thing we tried to observe is to

�nd a guideline to be followed for each scheme to get

an overall good result for that scheme. Only then can

we compare the performance of di�erent schemes using

their speci�c guidelines. Our objective is to to develop

approaches that are independent of individual data set

and, will generally give good predictive quality.

Fixed size grouping Three possible scenarios ap-

pear in this case as represented by Figure 2. The X-

axis represents the number of data points (in most

cases the number of defects) grouped together. The

Y-axis represents the average relative error in percent

for all the plots in this paper. Figure 2(a,d) are plots
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Figure 3: Representative plots for lump grouping

for data set T1. These also represents the observations

for data sets T18, SS1A and some other data sets. In

this class, the projection error decreases initially as the

group size increases. As group size further increases,

the projection error starts to increase. This increases

can be very signi�cant for some SRGMs for some data

sets. Figure 2(b,e) are plots for data set TSW and they

also represent the result for data sets SS4 and some

other data sets. For this class the projection error de-

creases initially as the group size increases, and then

remains relatively 
at, and hence there is a wide range

of preferred group sizes. Figure 2(c,f) are plots for

T2 and representive of data sets HP2 and some other

data sets. There the initial projection error is good and

there is little signi�cant improvement through group-

ing. Considering all the three class of data sets, the

optimal grouping which consistently results in smaller

prediction error is to have about 50 groups after group-

ing if no recalibration is involved, or to have about 20

groups if recalibration is used. The e�ect of recalibra-

tion on the range of optimal group size is obvious from

the plots.

The logrithmic model gives the best predictions if

no grouping is made. It is also least sensitive to group-

ing, i.e., the predictive quality changes little when the

grouping size varies. The Delayed S-shape model is

the most sensitive to group size. A little grouping can

help a lot but grouping too many points together can

severely reduce the predictive accuracy.

Without grouping, the performance of four models

di�er quite signi�cantly for some data sets, and there

is no model which works best in all the cases, though

\on the average" the logarithmic model is apparently

superior to the others and the exponential model is sec-

ond to the logarithmic model. If the above mentioned

optimal grouping is followed, and then the di�erences

between the models become less signi�cant.

Grouping lumps of failure intensity Figure 3

shows the e�ect of lump grouing on AE for data sets

T18, TSW and T2. The number of lumping steps pos-

sible is data dependent. In general, larger data sets al-

low more lumping steps. Without recalibration, lump

grouping twice gives overall best predictions. With re-

calibration, more lump grouping can enhance the pre-

diction accuracy further for most of the data sets. In

our experiments, we did as many lump groupings as al-

lowed, which provides only a few data points in most

cases for these plots.

WindowingFigure 4 shows representative plots for

the e�ect of windowing. Here the X-axis represents the

window width in the number of data points. The im-

provement in predictive accuracy is obvious when the

window width increases initially, but then the average

prediction error stays relatively 
at with little 
uctu-

ation. The best window width can be determined by

the total number of defects found (data points) divided

by 20, or about the same as the best group size with

recalibration.
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Figure 4: Representative plots for windowing

Like �xed size grouping and lump grouping, the

windowing approach gives signi�cant improvements

over the raw data and is more stable than the other

two approaches in that a wider range of window width

can be regarded as optimal.

Recalibration enhances the power model signi�-

cantly for some data sets, but weakens it for some

other data sets. Overall there seems to be no need to

combine recalibration with the windowing approach.

The performance achieved with windowing is similar

to that with �xed-size grouping and is not as good as

with lump grouping.

Weighted least square Figure 5 shows represen-

tive plots on the e�ect of the weighted least square

approach. The origin on the X axis corresponds to

equal weighs for every data point; moving towards the

1 point on X axis corresponds to the recent past data

points being given increasing weights. It is clear from

the plots that the weighted least square approach helps

little in predictive accuracy. It is not recommended

based on the experiments we have done.

Adaptive approach The e�ect of adaptive ap-

proach (recalibration) can be observed in Figures 2

through Figure 5. This scheme reduces the average

predictive error as seen by comparing the plots with

and without recalibration. This is true especially for

situations with large prediction errors, which are prob-

ably caused by bias in prediction and are hence more

suitable for the adaptive approach.

The improvement by the adaptive approach alone is

less than that achieved by the grouping and windowing

approaches alone. Based on our observations, recali-

bration is specially recommended for use with �xed size

grouping. In addition to reducing AE, it makes over-

grouping less likely. It is not e�ective in conjunction

with the windowing approach.

Best Model and Best Approach Earlier work

[11] showed that the logarithmic model is superior to

the other models, and the exponential model is close to

the logarithmic model. It also showed that the power

model is very inconsistent across di�erent data set, and

that the delayed S-shape model performed the worst.

This is again observed in our experiments when no en-

hancing techniques are used (plots with horizontal axis

at 0). However this study shows that, di�erent models

have di�erent degrees of enhancement possible when

the above techniques are used. We should take this

into consideration when comparing di�erent models.

Table 3 shows the e�ect of preprocessing and bias

adjustment on the prediction accuracy for di�erent

data sets. In Table 3, all the values are relative AEs in

percent; columnRaw represents the AE obtained with-
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Figure 5: Representative plots for weighted least square

out using any enhancing techniques; FSG corresponds

to �xed-size grouping using 50 grouped data points;

LG corresponds to lump grouping twice; Win. corre-

sponds to windowing with the window width given by

the initial number of data points divided by 20; Wei
corresponds to the weighted scheme with half of the

total weights evenly distributed; Rec. stands for Re-

calibration; for �xed-size grouping with recalibration

(F&R), 20 data points were used with recalibration;

for lump grouping with recalibration (L&R), we did

lumping as many times as possible followed by recali-

bration.

Table 4 gives the average AEs over all the data

sets. Windowing, �xed-size grouping and lump group-

ing with recalibration can dramatically improve the

prediction accuracy for \weak" SRGMs. When the en-

hancing techniques are properly applied, the di�erent

models perform close to each other. For instance, with-

out enhancing, the Power model is much worse than

the Logarithmic model; but with lumping and recal-

ibration, the overall prediction error with the Power

model is even lower than that with the Logarithmic

model. Thus the proper application of the enhancing

techniques can be more important than the selection

of a SRGM.

Figure 6 depicts the e�ect of preprocessing (�xed-

size grouping and lump grouping) followed by recali-

bration on AE. For comparision the e�ect of recalibra-

tion alone without grouping is also shown. It is easy to

see that lump grouping with recalibration is the best

way to achieve low prediction error for all four models.

Since lump grouping is superior to the other pre-

processing methods considered, the intuitive motiva-

tion behind lump grouping is provided here. The very

purpose of software failure data preprocessing is to �l-

ter out the noise and yet to retain the general trend in

the data. By grouping, the noise manifested as 
uctua-

tions in failure intensities are averaged out by grouping

a few data points together. With �xed size grouping,

this is done somehow blindly in the sense that it does

not take into consideration any characteristics of indi-

vidual data. If we are grouping a data set by hand to

smooth the noise, it is natural to group the most noisy

data points, which are seen as either sharp peaks or

deep valleys in the failure intensity plots. We did try

to group a few data points manually in this way and

found that it worked well. Then we came up with the

idea of grouping data points with rising or decreasing

failure intensities and lump grouping. Since the other

two methods were not as e�ective, only lump grouping

was reported here.



Table 3: Summary of the Relative AEs

Preprocessing Bias Adjustment

Data Model Raw FG LG Win. Wei. Rec. F&R L&R

EXP 153 28 13 19 163 88 25 3

POW 233 24 49 69 212 194 19 4

SS1A DelS 126 28 23 15 183 91 40 1

LOG 11 19 7 8 15 11 20 4

EXP 150 35 31 27 152 100 36 29

POW 172 17 19 13 163 119 12 18

SS1B DelS 170 52 38 40 170 89 31 32

LOG 28 27 26 26 26 28 25 23

EXP 161 41 29 32 29 115 34 10

POW 203 28 12 32 12 158 11 12

SS1C DelS 154 44 43 39 43 93 32 19

LOG 23 20 21 23 21 23 19 8

EXP 106 35 59 66 148 86 35 58

POW 251 36 12 28 264 167 23 17

SS2 DelS 215 35 24 30 243 120 34 12

LOG 60 42 58 60 59 61 32 57

EXP 121 34 30 37 82 85 26 9

POW 243 24 26 24 197 175 18 18

SS3 DelS 160 39 27 35 162 77 34 10

LOG 25 24 21 23 26 25 21 7

EXP 176 22 13 20 172 128 13 7

POW 279 32 23 29 223 219 14 6

SS4 DelS 500 36 30 32 150 500 37 28

LOG 16 11 11 11 18 17 7 7

EXP 79 30 28 36 79 49 38 13

POW 184 45 35 36 167 153 21 9

T1 DelS 112 64 73 44 99 60 52 16

LOG 16 16 24 17 18 16 16 8

EXP 42 23 9 20 43 33 17 8

POW 82 49 33 44 62 73 48 16

T2 DelS 40 37 17 39 40 37 38 14

LOG 16 15 15 14 19 16 11 9

EXP 57 23 18 21 62 31 17 16

POW 126 57 21 28 105 95 40 24

T3 DelS 60 36 35 40 49 37 39 16

LOG 17 14 17 23 19 17 13 17

EXP 165 19 27 25 154 107 13 13

POW 219 65 46 17 180 157 66 8

T5 DelS 125 40 38 38 125 67 37 19

LOG 16 12 16 16 17 16 9 9

EXP 186 62 19 68 183 121 47 20

POW 246 91 12 85 237 184 51 11

T6 DelS 177 97 32 58 190 89 51 33

LOG 25 23 11 22 28 25 21 14

EXP 114 41 33 32 120 83 37 48

POW 263 113 106 143 259 235 75 70

T18 DelS 104 51 44 41 101 63 43 87

LOG 46 43 40 47 54 44 37 60

EXP 136 50 44 55 138 94 54 8

POW 219 182 212 170 257 154 97 2

T40 DelS 78 109 97 57 150 51 70 9

LOG 97 81 56 59 106 89 64 2

EXP 79 54 12 37 79 62 26 8

POW 64 42 26 41 62 44 15 30

Proj1 DelS 74 57 12 41 66 54 35 13

LOG 92 86 71 56 92 72 28 66

EXP 92 86 80 84 91 92 84 79

POW 73 52 39 29 75 65 49 15

Proj3 DelS 80 59 50 41 78 72 57 21

LOG 90 93 79 81 90 87 78 77

EXP 91 82 68 73 90 86 68 64

POW 65 40 58 60 70 52 23 2

Proj4 DelS 73 55 38 48 73 61 44 2

LOG 94 87 76 77 94 87 90 66

EXP 24 18 8 14 19 17 16 11

POW 55 75 67 78 60 54 71 79

YT1 DelS 37 25 20 22 43 25 16 12

LOG 42 12 31 19 46 26 27 12

EXP 22 8 14 18 12 16 10 22

POW 76 63 74 59 81 75 64 39

YT3 DelS 28 22 16 22 27 23 21 13

LOG 67 21 44 35 76 35 7 38

EXP 56 32 13 35 56 40 19 18

POW 42 28 43 14 45 32 22 0

HP2 DelS 60 36 26 44 60 43 28 10

LOG 66 38 10 33 65 40 14 5

EXP 197 56 25 48 188 107 48 13

POW 375 142 177 218 344 198 64 17

TSW DelS 172 53 35 32 157 108 24 20

LOG 46 34 29 67 84 37 5 13

EXP 134 35 47 35 123 85 29 22

POW 281 130 157 190 272 193 181 33

Usbar DelS 101 46 34 38 97 70 49 35

LOG 78 72 68 84 75 69 49 33

Notes on Table 3 and 4:

1. Raw: AE obtained without using any enhancing techniques;

2. FG: Fixed-size grouping using 50 grouped points;

3. LG: Lump grouping twice;

4. Win.: Windowing;

5. Wei.: Weighted least square;

6. Rec.: Recalibration only;

7. F&R: Fixed-size grouping with recalibration;

8. L&R: Lump grouping with recalibration.

Table 4: Average AEs Over All the Data Sets

Preprocessing Bias Adjustment

Model Raw FG LG Win. Wei. Rec. F&R L&R

EXP 111 38 29 38 103 77 32 22

POW 178 63 59 67 159 133 46 20

DelS 126 48 35 37 109 87 38 20

LOG 46 37 34 38 49 40 28 25
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Figure 6: The e�ect of preprocessing and recalibration

4 Concluding Remarks

As we can see from the experimental results, di�er-

ent SRGMs have di�erent characteristics with respect

to the enhancing techniques. Logarithmic model gives

best or close to the best predictions in most of the cases

with raw data. Its performance is improved only mod-

estly using the techniques considered here. For other

models, windowing, lump grouping or �xed size group-

ing with recalibration can signi�cantly reduce the av-

erage prediction error. Lump grouping combined with

recalibration leads to the best prediction.

One may argue that a comparision is fair only if dif-

ferent SRGMs are compared using their optimal achie-

veable performance. The logarithmic model is indeed

superior if raw software failure data and the model are

used directly to make projections. However proper ap-

plication of the enhancing techniques can render the

di�erence among the models to such a small degree

that it can be more important to select proper com-

bination of the enhancing techniques than to choose a

SRGM.
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