
Department of

Computer Science

Empirical Estimation of Fault

Exposure Ratio

Naixin Li and Yashwant K. Malaiya

Technical Report CS-93-113

August 20, 1993

Colorado State University



Empirical Estimation of Fault Exposure Ratio�

Naixin Li Yashwant K. Malaiyay

Computer Science Department

Colorado State University

Fort Collins, CO 80523

U.S.A.

Fax: (303) 491-6639

O�ce Phone: (303) 491-7031

Email: malaiya@cs.colostate.edu

Abstract

The fault exposure ratio K represents the average detectability of faults in a soft-

ware. Knowing the value of K for a software system allows the use of the exponential

model, and probably also the logarithmic model, even before software testing phase

begins. It can also be used to enhance the software reliability growth models (SRGM)

at the early stage of testing when the software failure data can only provides limited

accuracy. This paper presents a model which relates the fault exposure ratio K to the

initial defect density D0. Empirical analysis indicates that this model can describe K

fairly well.

�This research was partly supported by a SDIO/IST funded project monitored by ONR
yContact person and presenting author

1



1 Introduction

The software reliability models are needed for measuring and projecting reliability. While

many of the models are purely empirical, some of the models are based on some speci�c

assumptions about the fault detection/removal process. The parameters of these models thus

have some interpretations and thus possibly may be estimated using empirical relationships

using static attributes. The two parameters of the exponential model are the easiest to

explain. Using this model the expected number of faults �(t) detected in a duration t may

be expressed as

�(t) = �E
0
(1� e��

E
1
t) (1)

Here �E
0
represents the total number of faults that would be eventually detected and �E

1

is the per fault hazard rate which is assumed to be constant for exponential model. The

data collected by Musa [1] shows that the number of additional faults introduced during

the debugging process is only about 5%. Thus �E
0
may be estimated as the initial number

of faults. It has been observed [8] that in an organization, the defect density (measured

in defects/thousand lines of code) at the beginning of the system test phase does not vary

signi�cantly and thus may be estimated with acceptable accuracy. Emperical methods to

estimate defect density using programmer skill etc. have also been proposed [9, 10].

The estimation of the other parameter �E
1
is more complex. Musa et al have de�ned

a parameter K, called fault exposure ratio which can be obtained by normalizing the

per-fault hazard rate with respect to the linear execution frequency, which is the ratio of

the instruction execution rate and the software size. For 13 software systems they found

that K varies from 1:41 � 10�7 to 10:6 � 10�7, with the average value equal to 4:2 � 10�7

failure/fault. Once we know the value of K, �E
1
can be estimated using,

�E
1
=

K

TL
(2)

where TL is the linear execution time [1], given by TL = IsQr
1

r
; Is is the number of source

lines of code; Qr is the average object instructions per source statement; r is the testing

CPU instruction rate.

Musa et al [1] have speculated that K may depend on program structure in some way.

However, they suspected that for large programs, the \structuredness" (as measured by

2



decision density) may average out and thus may not vary much with program size [1]. Musa

has also argued that K should be independent of program size [2]. von Mayrhauser and

Teresinki [11] have suggested that K may depend on static metrics like \loopiness" and

\branchiness" of the program. However, because of lack of su�cient data, the results are

not yet conclusive [12].

The logarithmic model, which is characterized by Equation 3 and Equation 4, has been

empirically shown to be superior in general than other software reliability models by several

researchers [14, 1, 6]. Malaiya et al [6] have shown using a number of diverse data sets that

the superiority of the logarithmic model is statistically signi�cant.

�(t) = �L
0
ln(1 + �L

1
t) (3)

�(t) =
�L
0
�L
1

1 + �L
1
t

(4)

where �(t) is the failure intensity at time t. In paper [3] the parameter �L
0
was related to

initial fault exposure ratio K0 and �L
1
. In fact, if we can estimate K0, the initial failure

intensity �0 can be evaluated through,

�0 =
K0N0

TL
(5)

Let t = 0 in Equation 4,

�0 = �L
0
�L
1

(6)

Thus Equation 3 can be rewritten as,

�(t) =
�0

�L
1

ln(1 + �L
1
t) (7)

So if we can estimate K0, the logarithmic model will have only one unknown parameter �1.

Therefore it will be easier and probably more accurate to use at the early phase of testing.

The detectability of a fault is de�ned as the probability that the fault is detected by a

randomly selected test input [3]. For truly random testing, faults with high detectability

tends to be detected earlier in time, so K should in general decline with time [3]. However

experiments with real reliability data indicates a reversal of this trend at low defect density

areas. An explanation provided for this phenomenon was that at the late stage of testing

phase testing becomes more and more directed. A model relating K with time, taking both

3



of these factors into account, as described by Equation 8 was proposed which satisfactorily

characterized the variation of K with time t.

K(t) =
g

N(t)(1 + at)
(8)

where N(t) is the number of faults present at time t; g = K0N(0); a is a parameter depending

on the \detectability pro�le" of the software [3].

From this model we can derive the well-known logarithmic software reliability growth

model with the following interpretation for the parameters:

�L
0
=

K0N0

aTL
(9)

�L
1
= a (10)

A study of the factors a�ecting K is of considerable signi�cance. If we can accurately

model the behavior of K, there are two ways in which the debugging process can be better

planned.

� When both parameters can be known a priori, the testing time needed to achieve

target reliability can be calculated and hence, optimal resource allocation can be done

even before testing begins.

� In early phases of testing, the failure intensity values observed contain considerable

noise [7]. the use of reliability growth models in the early phases can sometimes

result in grossly incorrect projection. The accuracy can be enhanced by using apriori

parameter values in such cases.

In this work we are primary concerned with the relation between K and initial fault

density we �rst derive the relation between K and defect density D, which will normalize

the e�ects of factors like CPU instruction execution rate. Then we will apply this relation

to a set of real data and see how well it �ts the real behavior of software systems.

4



2 Variation of K with Fault Density

[3] derives an expression for K in term of testing time. Here we will obtain an expression

for K in term of the fault density D. Taking logarithm on both sides of Equation 4, we get

ln(�(t)) = ln(�L
0
�L
1
)� ln(1 + �L

1
t) (11)

Using Equation 3

ln(�(t)) = ln(�L
0
�L
1
)�

1

�L
0

�(t) (12)

On the other hand, by de�nition,

D(t) =
N(t)

Is
(13)

and from [3],
dN(t)

dt
= �

K

TL
N(t) (14)

Applying the following equation,

�(t) = �

dN(t)

dt
(15)

to Equation 14, we can obtain,

K(t) = TL
�(t)

N(t)
(16)

Thus we have the following,

ln(K(t)D(t)) = ln(TL
�(t)

N(t)

N(t)

Is
) = ln(TL

�(t)

Is
) = ln(

IsQr
1

r

Is
�(t)) (17)

Reorganizing,

ln(�(t)) = ln(K(t)D(t))� ln(
Qr

r
) (18)

Since �(t) can also be expressed as,

�(t) = N0 �N(t) = N0 � IsD(t) (19)

Substituting Equation 18 and Equation 19 into Equation 12, we obtain,

ln(K(t)D(t))� ln(
Qr

r
) = ln(�L

0
�L
1
)�

1

�L
0

(N0 � IsD(t)) (20)

Rearanging, we get,

ln(K(t)D(t)) = ln(�L
0
�L
1
) + ln(

Qr

r
)�

N0

�L
0

+
Is

�L
0

D(t) (21)

5



Both defect density D and fault exposure ratio K should vary as testing proceeds. The

exact process of defect detection and removal depends on the testing strategy, testing per-

sonnel, CPU speed, etc. To simplify this, we may assume that, K is a function of D only.

Other factors will be manifested through variation in D. Hence the above equation can be

abbreviated as:

ln(KD) = ln(�0) + �1D (22)

where the parameters �0 and �1 are given by,

�0 =
�L
0
�L
1
Qr

r
e
�
N0

�L
0 (23)

�1 = �

Is

�L
0

(24)

This allow us to write K as,

K =
�0

D
e�1D (25)

Equation 25 can also be derived from Equation 8 proposed in [3].

To validate the above assumption about K and D, the example from [3] is used here.

We assume that a debugging process for a system with N0 = 200 is exactly described by a

logarithmic model with �L
0
= 60 and �L

1
= 1, we can calculate the values of K at di�erent

densities. The values are plotted in Figure 1 along with the �tted model of Equation 25.

Figure 2 is a plot of ln(KD) against D. A perfect �t was shown on both cases as shown in

the �gures.

3 Estimation of K

Adams [13] noticed that software's failure rates in operational phase had similar distribution,

which observes Zipf's law,\ the failure rate of a fault i is inversely proportional to a power

of i, when faults are ranked by decreasing failure rate" [15]. Trachtenberg [15] proposed a

software reliability model based on Zipf's law which �tted Adam's reliability data with an

very high correlation coe�cient.

If we regard the testing phase as a compressed form of operational use [1], then the

failure rates during testing phase may also have similar distribution across software projects.

Further we suspect that at the beginning of system testing phase, the detectability pro�les

[3] of software projects may have similar shapes in accordance with the Zipf's law.

6



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

K

Density

Ideal sample
Model

Figure 1: K against D for an ideal case

If the testing activity is conducted in the same way,K would be primarily determined by

the detectability pro�le. In case of truely random testing, K would be an weighted average

of the detectability of each individual fault [3]. We can assume that for a software system,

the initial fault exposure ratio K0 is determined mainly by the initial defect density D0. If

the above assumption about similar detectability pro�le shape for di�erent software systems

is valid, Equation 25 can be rewritten as,

K0 =
�0

D0

e�1D0 (26)

Presently su�cient data is not available which will allow us to relate K0 to D0. Hence

we cannot apply this model to any real data to evaluate the parameters �0 and �1. However,

for the exponential model assumes that K does not change over time. Therefore, the overall

value of K can be used for the exponential model as a constant. Table 1, obtained using [1],

relates initial defect density and overall fault exposure ratio. Here 10% of the total initial

defects are assumed to be present by the end of testing phase.

In Musa et al [1], the values of K were computed assuming the exponential model.

According to the exponential model, from Equation 1,

N0 � �(t) = �E
0
e��

E
1
t (27)

7



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

l
n
(
K
D
)

Density

Ideal sample
Model

Figure 2: ln(KD) against D for an ideal case

or,

N(t) = �E
0
e��

E
1
t (28)

Since N(t)=Is = D(t), N0=Is = D0, we have

D(t) = D0e
��E

1
t (29)

Let us assume that t varies from 0 to T such that D(T ) = D0=10, then

T = �

1

�E
1

ln(0:1) =
2:303

�E
1

(30)

Now the average value of D(t) from 0 to T is given by

D̂ =
1

T
D0

Z T

0

e��
E
1
tdt =

D0

�E
1
T
(1 � e��

E
1
T ) (31)

Substituting Equation 30, we get

D̂ =
D0

2:303
(1 � 0:1) = 0:39D0 (32)

Since Equation 32 is a simple linear expression, D0 may be used instead of D̂ in an

empirical analysis. The value of D0 has been used in our regression.

8



Table 1: K vs. D0 [1]

(K in units of 10�7)

Data D0 D̂ K

T20 21.17 8.2563 6.5
T6 14.23 5.55 3.97
T1 6.96 2.71 1.87
T2 2.17 0.85 2.15
T3 1.8 0.7 4.11
T4 1.76 0.69 10.6
T19 0.68 0.27 4.54
T5 0.38 0.15 4.20
T16 0.36 0.14 3.03

Applying linear regression analysis to Equation 22 with the data shown in Table 1, we

got the following estimation of parameters �0 and �1:

�0 = 3:089 (33)

and,

�1 = 0:192 (34)

The correlation coe�cient value was 0.89 which was quite signi�cant in indicating that the

Equation 26 can satisfactorily describes the relation between K and D0. If D̂ was used in

place of D0, we would get �
0

0
= 1:205 and �

0

1
= 0:492 using Equations 26 and 32.

Figure 3 depicts the relation between K and D0 for both the real data and the model

with parameters evaluated from the real data. Figure 4 depicts ln(KD0) against D0.

It was observed that the initial defect density for a software typically falls in the range of

3 to 20 defects per thousand lines of code. Using the above value of �0 and �1, we estimate

the average value K to be in the range of [1.89..7.24], which is close to the range envisioned

by Musa [1]. If more failure data are available, the value of �0 and �1 can be determined

more exactly.

It should be noted that the defect density shown in Table 1 was calculated using the

object instruction count. It might be possible to get even better correlation between K and

D0 if we consider only the projects using high-level languages, or only the projects which

used assembly languages were used in a study.

9



1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25

K

Density

Real Data
Model

Figure 3: K against D from the real data

Although the parameters �0 and �1 evaluated here have been used for estimation of the

average value of K, there is no reason that the model cannot be applied for estimation K0 if

there are real software reliability data available for evaluating the parameters of Equation 26.

4 An Example

In this section, we present an example to show how the results introduced in this paper

may be used in practice. Assume there is a software system whose initial defect density is

estimated to beD0 = 16 defects per thousand lines of code. It has 50,000 lines of source code.

The machine to be used for testing has MIPS rate of 16. The source to object instruction

ratio is 4. Here we will calculate the total expected testing CPU time needed to achieve a

failure intensity objective of 2� 10�4.

The total expect number of faults is

�E
0
= 50 � 16 = 800 (35)

The average fault exposure ratio is

�0

16
e�1�16 =

3:089

16
e0:192�16 = 4:167 � 10�7 (36)

10



0

1

2

3

4

5

6

0 5 10 15 20 25

l
n
(
K
D
)

Density

Real Data
Model

Figure 4: ln(KD) against D from real data

The linear execution time can be estimated as,

TL =
IsQr

r
=

50000 � 4

16000000
= 0:0125 (37)

The per fault hazard rate can be obtained as,

�E
1
=

K

TL
=

4:167 � 10�7

0:0125
= 3:334 � 10�5 (38)

Thus we have the following exponential model describing the failure process during system

testing,

�(t) = 800(1 � e�0:0000334t) (39)

and,

�(t) = 0:0267e�0:00003334t (40)

where t is measured in CPU seconds. Solving this for the failure intensity objective, we get

t = 40:8 CPU hours. By the time testing is terminated, there will be about 794 failures are

expected.

Notice that this is obtained before real system testing starts. When enough actual

failure data from system testing phase is available, one might consider to use real data and

the logarithmic model to get a more accurate projection.

11



5 Concluding Remarks

We have presented an empirical model which allows us to estimate the fault exposure ratio

and hence the parameter �E
1
of the exponential model. Since estimation of �E

0
can already

be done satisfactorily, we can now use the exponential model before testing begins.

The fault exposure ratio K describes the e�ectiveness of the testing process. Besides

the defect density, K may also depends on the testing strategy and perhaps the individual

software structure. These may vary from project to project. However, within the same

organization, these might have about the same e�ect for all the projects and thus K may be

estimated directly from D. The estimation of K may be more accurate if the parameters �0

and �1 are obtained by �tting Equation 26 to the data from similar projects. When there

is no previous data available within an organization, K0 can be estimated using parameter

values for �0 and �1 from a variety of projects from other organizations.

Just as size can be used to estimate the number of total fairly accurately, expected

defects, the model here provides an estimate of K or K0 using D0. Further research is needed

to identify and quantify the e�ect of other factors so that K or K0 may be approximated

more accurately, just as the frequency of speci�cation changes, etc. can enhance the accuracy

of estimating the total number of defects [9].

The model can be re�ned further when additional data is available. If there is data

available to relate K0 to D0, then we can estimate K0 and hence the parameter �0 of the

logarithmic model (ref. Equation 7) at the beginning of system testing phase. Estimation of

the other parameter �L
1
for the logarithmic model is yet an unsolved problem which is being

investigated.

References

[1] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability - Measurement, Prediction,

Applications, McGraw-Hill, 1987.

[2] J. D. Musa, Rationale for Fault Exposure Ratio K, ACM SIGSOFT Software Engineer-

ing News, July 1991, pp. 79.

12



[3] Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, The Nature of Fault Exposure

Ratio, Proc. International Symposium on Software Reliability Engineering, October

1992, pp. 23-32.

[4] Y. K. Malaiya, Early Characterization of the Defect Removal Process, Proc. 9th Annual

Software Reliability Symposium, May 1991, pp. 6.1-6.4.

[5] Y. K. Malaiya, A. von Mayrhauser and P.K.Srimani, The Constant Per Fault Hazard

Rate Assumption, Proc. 2nd Bellcore/Purdue Workshop on Issues in Software Reliabil-

ity Estimation, October, 1992, pp. 1-9.

[6] Y. K. Malaiya, N. Karunanithi and P. Verma, Predictability of Software Reliability

Models, IEEE Trans. Reliability, December 1992, pp. 539-546.

[7] Y. K. Malaiya and P. Verma, Testability Pro�le Approach to Software Reliability, Ad-

vances in Reliability and Quality Control (Ed. M.H.Hamza), Acta Press, December

1988, pp. 67-71.

[8] G. A. Kruger, Validation and Further Application of Software Reliability Growth Mod-

els, Hewlett-Packard Journal, April 1989, pp. 75-79.

[9] M. Takahashi and Y. Kamayachi, An Emperical Study of a Model for Program Error

Prediction, in Software Reliability Models, IEEE Computer Society, 1991. pp. 71-77.

[10] T. M. Khoshgoftar and J. C. Munson, The Live of Code Metric as a Predictor of Program

Faults: a Critical Analysis", Proc. COMPSAC'90, pp. 408-413.

[11] A. von Mayrhauser and J. A. Teresinki, The E�ects of Static Code Metrics on Dynamic

Software Reliability Models, Proc. of Symposium on Software Reliability Engineering,

April, 1990, pp. 19.1-19.13.

[12] J. M. Keables, Program Structure and Dynamic Models in Software Reliability: In-

vestigation in a Simulated Environment, Ph.D Dissertation, Computer Science Dept.,

Illinois Institute of Technology, 1991.

[13] E. N. Adams, Optimizing Preventive Service of Software Products, IBM Journal of

Research and Development, vol. 28, no. 1, January 1984, pp.2-14.

13



[14] W. H. Farr, A survey of Software Reliability Modeling and Estimation, Naval Surface

Weapons Center, TR 82-171, Sept. 1983.

[15] M. Trachtenberg, Why Failure Rates Observe Zipf's Law in Operational Software, IEEE

Trans. Reliability, vol. 41, no. 3, September 1992, pp. 386-389.

14


