
Department of

Computer Science

The Purdue Parallel

Benchmarks in FP

Randolph Bentson

Technical Report CS-93-126

October 19, 1993

Colorado State University

The Purdue Parallel Benchmarks
in FP

Randolph Bentson

Technical Report CS-93-126

October 16, 1993

Abstract

In [Ric80], John Rice proposed a list of sixteen problems to be used to test the expressive

power and performance of languages in parallel computational environments. Since then, there

have been several followup reports. One from Purdue, [MR87], examines the Fortran extensions

on various architectures. Two CSU reports, [HHRO88] and [AHO90], have looked at the language

SISAL. A recent report from Purdue, [RJ90], adds a seventeenth problem to the set.

This report takes up the challenge by looking at how well an implementation of Backus' FP,

TFP [Ben92], can express a solution and how quickly that solution can be computed. Because of

the �ne-grain parallelism available in the graph reduction method used by TFP, dramatic paral-

lelism is available for complex programs. Modest sized problems, such as computing polynomial

interpolant values over 32 points (problem 7) saw an average parallelism of over 500 and a peak

of ten times that. Simple programs did not fare as well, due mostly to the nearly linear nature

of some of the functions and PFOs. Certain functions and PFOs, such as trans, append, and

\/, carry signi�cant serialization in their implementation, and therefore can slow down programs

that use them.

This suggests that the linked-list implementation of sequences can be a handicap for simple

programs, but this is masked whenever the program complexity becomes su�ciently large.

1 Language Description

The computational model expressed in Fortran is often referred to as von Neuman style. This

language style makes explicit references to memory. The state of the computation, as it proceeds,

is described in the language as changes in values of variables. It is incumbent upon the pro-

grammer and the compiler to access variables in the appropriate sequence. The language forces

one to specify the order of operations to a degree far beyond the minimum needed to arrive at

a solution. This over-speci�cation actually interferes with attempts by the compiler to discover

parallelism. Most will acknowledge that this style of programming makes it di�cult to identify

the maximum parallelism allowed by the problem.

Languages of this style have been extended to make it easier for the programmer to code a

solution and for the compiler to discover parallelism. One common extension is the provision of

objects such as vectors and arrays that can be operated on via simple operators. The compiler

can then determine the best way to implement such an operator. Another extension is to allow

the programmer to specify many distinct tasks which work co-operatively.

Another style of language, called functional or applicative, extended this idea that parallel

tasks should be easily derived from the program. In these languages, the tasks are not speci�ed

directly by the programmer, but rather are derived directly from the property of the languages

that state the order of the evaluation of expressions does not yield di�erent results. The compiler

and run-time can then create tasks out of the evaluation of expressions and functions whenever

there is bene�t in doing so.

SISAL is the result of one of the e�orts to expose more parallelism to the compiler without

burdening the programmer. It does so, in part, by removing the issue of changing variable values.

Value holding identi�ers in SISAL have a single value assigned to them. Until that assignment,

the value can be thought of as a special value \not yet known". Programs are expressed in terms

of expressions built up from functions and identi�ers. Additional language constructs support

aggregrate operations on arrays, etc. It appears that SISAL is reasonably concise in expression

and e�cient in execution.

FP is an even more dramatic departure from the von Neuman language style. It is purely

functional, with no names other than function names. All functions take a single object as an

argument and return a single object as a result. This is not a hardship because an object is an

atom or a sequence of atoms and/or sequences, and can describe arbitrarily complex data. In

fact, one often speaks of \input values" when one should say \values in the input sequence".

Because this mis-statement is understood, it normally goes unremarked. Any expression of state

must be explicit, i.e., the state of computation is passed as an argument to a function and the

function returns the value of the new state.

FP has several functional forms or program forming operations (PFOs) that are used to com-

bine functions into more complex functions. Unlike functions which operate only on objects, these

PFOs operate on functions as well as objects. The standard PFOs are condition, composition,

3

construction, while-iteration, insertion (a reduction operation), application-to-all, and binding.

These are not a minimal orthogonal set, but rather a large, strong set of operations likely to

be su�cient to conveniently program any function desired. This is in contrast to many other

functional languages which allow the programmer to de�ne new program forming operations. By

limiting the program forming operations, it is possible and reasonable to develop an algebra of

programs. This enhances the ability to analyze an FP program.

FP was de�ned as a strict language, where all inputs to functions are evaluated before the

function started. In addition, functions (and all PFOs except condition) return a special value,

called \bottom", shown as ? on displays or as ? when typeset, if their input contains bottom or

if their results are unde�ned. The implementation considered in this report is not strict. As a

consequence all programs that return a non-bottom result in a strict implementation will return

the same non-bottom value in this version, but because a function need not return bottom as its

value whenever bottom appears in its input sequence, additional non-bottom results can appear

in a program's range.

The di�erence becomes apparent when one considers the function 1 o [f1,f2]:x. In a strict

system, if f2:x returns bottom, then [f1,f2]:x always returns bottom, and then 1:? returns

bottom.

If the construction PFO is non-strict, 1 o [f1,f2]:x can have di�erent values under di�erent

evaluation schemes. If f2:x is evaluated early, [f1,f2]:x is evaluated as bottom, and 1:? is then

evaluated as bottom. But if composition is applied before f2:x has been evaluated, the value

f1:x would be selected from the partially evaluated sequence.

The TFP implementation allows function results to be represented by \continuations", or

incompletely evaluated function applications. By this method, the composition PFO could re-

turn a sequence of continuations and the selection function could be evaluated before it f2:x is

evaluated (and its results would therefore be discarded). But if we are to have results that are

invariant under execution timing, we must always discard the results of f2:x, regardless of its

status as a continuation or bottom. By this we see that non-strictness is a practical consequence

of allowing continuations, and that continuations are a convenient way to develop non-strict

implementations.

Lazy evaluation follows the principle that no function is evaluated until its results are needed.

In a single processor system this reduces execution time by avoiding unneeded computation

(provided the management overhead is small enough). The lazy evaluation of a strict language

would save no time because all the parameters would be evaluated; therefore as a practical matter,

all languages implemented with lazy evaluation are non-strict. But this does not mean that all

non-strict languages use lazy evaluation.

TFP's use of non-strictness o�ers improved parallelism because operations such as composition

and selection can proceed before all of the elements of their input sequence have been evaluated. In

addition one can proceed with the parallel evaluation of as-yet-unneeded continuations, even while

necessary continuations are being evaluated. This non-strict, not-fully-lazy evaluation scheme is

4

herein called lenient evaluation.

2 Language Idioms

The body of FP code is small. Other functional languages with more conventional syntax are

more commonly used. The comments here are based on experiences implementing solutions to

the Purdue problem set.

Sometimes a solution was trivially derived from the problem statement. This usually occurred

because a PFO captured the essence of the problem. In other cases more e�ort, such as writing

non-trivial functions, was required. It is possible to in-line all non-recursive functions into a

single large program. Because of restrictions on the application of higher-order functions on user

de�ned functions, this was a common style in writing APL programs. Fortunately FP has no

such restrictions, and because there is no performance cost in using functions, the �nal program

is developed from many smaller functions. As a bonus, this provides for enhanced readability.

In general, one builds an initial value object and then pushes that object through successive

functions (using the composition PFO) until a �nal value object is determined. Sometimes the

same function is applied several times, in which case the use of the while-iteration PFO or

recursion is appropriate.

Functions can be applied to all elements of the sequence using the aa PFO. This provides

signi�cant parallelism, especially when the functions are complex in nature. This leads to the

style of moving the data about until one has a sequence of independent datasets that can be

operated upon. In Problem 9 the input matrix is moved about until each element is replaced by

a sequence containing that element and its neighbors. The averaging function is then applied to

each of these sequences.

Often the last function sums the elements of the sequence. The PFOs \, /, and \/ insert a

binary operator such as + or * between terms of the series. Their use acts as a classic reduction

operator.

The FP implementation being tested applies functions to objects as soon as the source object

is su�ciently de�ned. In many cases the result object becomes de�ned in stages. For instance,

f1 o [f2,f3]:y has an intermediate object that is known to be a sequence <f2:y,f3:y>, but

the values of the elements may not be known. It is possible to apply f1 to this sequence before

the values are known and f1 is delayed only as necessary.

Unfortunately this implementation isn't as lenient as it could be. Even if the values of the

elements in a sequence may be represented by continuations, the number of elements in a sequence

must be known before that sequence is made available as an output. PFOs such as apndl and

apndr cannot be used in recursions to provide in�nitely long sequences. This implementation

restriction prevents one from using streams of unbounded data in programming.

5

Another shortcoming with this implementation is its failure to recognize common sub-expressions.

As a consequence, the programmer is obliged to \hoist" those sub-expressions to outer levels if

the extra computation is to be avoided.

3 Basis for Timing

This FP implementation is a multi-threaded graph reduction interpreter. The interpreter has

been designed with respect to a possible implementation on a shared memory multiprocessor with

multiple operations per instruction and low-overhead scheduling primitives, where each processor

supports a number of execution threads. Although it is currently executed on a uniprocessor,

it simulates parallel performance by way of timing simulated parallel execution. Command line

arguments control the number of parallel processors being simulated, as well as the maximum

number of threads on each processor.

Each reduction step computes the number of machine ticks that would be required if the

reduction had been done on a multiprocessor. This timing information is used to keep track of

when the function's results are to be made available for further processing, i.e., when the next

function can be applied. Until this delay is satis�ed, that function application counts as one of

the active threads. When the number of active threads reaches the per-processor limit, additional

continuations are placed in a ready queue. When an active thread completes, i.e., when enough

time has elapsed so that the results are made available, another continuation thread is removed

from the ready queue and is made active. The simulator moves from one simulated processor to

the next, extracting threads from ready queues, computing function results, moving the thread

to an active queue, advancing the simulated clock, etc. In this way, the system can determine

how long the FP program would take to execute on a multiprocessor.

Although the architecture being modeled supports 256 processors � 128 threads/processor,

tests can simulate more or fewer processors or threads/processor. In addition to varying the data

set size, problems are examined with respect to the maximum number of available processors and

threads per processor. In this way we can examine how e�ectively parallelism can be exploited.

One subtle limit to performance is that although one can have many threads on a processor,

performance does not increase linearly as threads are added. The �rst thread on a processor

achieves about 1=12 of the processor's capability. This is because no thread may have more

than one instruction in the pipeline at any moment. In a very busy system this utilization

may be smaller because of memory access delays, but with a good compiler, the e�ect should

be insigni�cant. As more active threads are added to a processor, utilization and aggregate

performance increases until the pipeline is full. Adding more threads beyond this point actually

reduces the per-thread performance, but because the thread scheduling is performed by hardware,

there is no additional overhead to hurt aggregate performance. This is simulated by applying a

slow down factor to all timing. The factor is computed as slow_down = active_tasks <

PipeLineSize ? 1.0 : active_tasks / PipeLineSize; where PipeLineSize is normally

12.

6

Fourteen of the seventeen problems have been programmed in FP. The performance of each

program is examined with respect to various data set sizes. The main dependent variable is

the number of machine ticks required for solution. Additional dependent variables include the

average and maximum number of active tasks, etc. Tests of of increasingly larger data sets shows

that for any given data set size, adding processors and threads reduces execution time to a limit.

As predicted by Amdahl's Law [Amd67], there is always a threshold below which execution time

cannot be reduced, regardless of the available parallel hardware. In \good" parallel programs, the

degree of parallelism grows with the problem set size, and the e�ect of the sequential component

is lessened. In \bad" parallel programs, the sequential component grows with the problem set

size, or the degree of parallelism does not grow, and thus the sequential component stays visible,

or even dominates the computation.

One signi�cant assumption in computing time in the TFP simulator is that the allocation and

deallocation of cells (which contain objects and code de�nitions) takes some small, �xed amount

of time. If all threads accessed a common pool of cells, this assumption would not be realistic due

to blocking. If a (mostly) non-blocking allocation scheme is used, (such as a pool per processor)

this assumption is reasonable.

4 Test Methods

Each program is run under the control of a test framework. The outer loop in the framework

generally starts at one and doubles the problem set size until limits to parallelism are found,

excessive paging occurs on a 16Mbyte system, or the simulation time becomes unbearable. An

inner loop controls the number of processors being simulated and the threads on each. It generally

starts at one and doubles until it equals the dataset size or shows the limits to parallelism.

In some cases the program uses the dataset size directly and in other cases the framework

generates the test dataset via a test generation program. (And in the case of problem 16, the

number of rows and columns is set to lgN .) This dataset is then read as data to the program

under test. If the test dataset generation were done within the program under test, the cost of

that generation would be charged against the program, confusing performance issues.

The dataset generation is rather naive { the data are not randomly created and only slight

e�ort is put into domain limiting.

The study has been largely restricted to nearly asymptotic performance, i.e., how much par-

allelism is available given unlimited processors (or at least all the processors in the system). As

noted in the Performance sections of many of the problems, the underlying time complexity of

any TFP program is O(N), or at best O(lgN), because of limitations in accessing sequence el-

ements. Since this time is masked if the processing of the elements takes long enough, or if the

sequences are short enough, the \actual" performance reported is based on inspection of these

limited results. This is what is meant by the \nearly asymptotic performance" mentioned earlier.

7

Another issue is how e�ectively fewer processors can speed-up the solution. When all goes

well, one sees that speed-up grows as P � T while the number of threads/processor is less than

or equal to the size of the pipeline, and beyond that point speed-up grows with the number of

processors (because the processor is fully loaded).

4.1 Problem 1

4.1.1 Problem Description and Algorithm

The problem is to estimate the value of the integral of f(x) in the interval [a, b]. The formula is

TN = h � (
f(a) + f(b)

2
+

N�1X
i=1

f(a+ i � h))

where N is the number of intervals in for the estimate and, h = (b�a)=N . Increasing N improves

the accuracy of the estimate.1

4.1.2 Inherent Parallelism

The serial solution grows as O(N). The summation of all the terms can be done in parallel in

O(lgN) time using O(N=2) processors.

4.1.3 Characteristics of Translation

First a sequence (in this case the xi values) is built, one then applies the function, and reduces

the results (in this case by summation). The parallel algorithm contains extra multiplications to

avoid some serial bottlenecks.

4.1.4 Performance

Although the single processor, single thread/processor execution time is O(N) as predicted, the

parallel execution time grows nearly as fast, with speed-up of less than O(lgN). Detailed analysis

shows that the distl and appndr functions, and the aa PFO are a major bottleneck. Over one

third of the execution time was spent distributing <h,initial_value> over the iota o size

sequence. Since the current implementation does not make the resultant sequence available

until the entire distribution is done, the computation of the segments is delayed until distl

has completed. The aa and \/ PFOs are similarly handicapped. In addition, the sequences are

1Thanks to the authors of [AHO90] for permission to copy the text of the \Problem Description and Algorithm"

sub-sections from their report.

8

operated on via a linear scan instead of a data-parallel or tree structured manner that would

yield constant time or logarithmic time performance.

These conjectures are tested by using the \OneTick" debugging option. This special feature

of TFP allows certain suspect functions to be timed as if they took only one tick to execute. This

was added because these functions take O(N) time due to the implementation of sequences as

linked lists. Had sequences been implemented as trees, these operations could be performed in

O(lgN) time.

When this option is applied to this problem we see execution time drop dramatically, as much

as twenty to one for N = 256.

4.2 Problem 2

4.2.1 Problem Description and Algorithm

This problem computes e� by:

e� =
nX
i=1

mY
j=1

(1 + e(�ji�jj))

Two nested loops with reduction operators solve this problem easily. The algorithm follows

the formula above.

4.2.2 Inherent Parallelism

The serial complexity of this is simply O(N �M). By using N �M processors, each of the terms

can be computed in constant time. Each of the N sets of M terms can then be multiplied in

O(lgM) time using O(N) processors. The N results can then be added in O(lgN) time using

O(N) processors. As tested, M and N are given the same value, so the parallel time complexity

simpli�es to O(lgN) time using O(N2) processors.

4.2.3 Characteristics of Translation

Both the � and � operations are easy to express in FP. The only shortcoming in the language

is that one has to know that one has to pass the values of n and m to the inner function. As a

consequence, one builds a sequence of pairs to which the function is applied. This requires some

care, but it is not especially tricky.

4.2.4 Performance

Empirical results showing the time taken by a single processor matches nicely with theory.

9

However, when maximal parallelism is allowed, the time grows faster than O(lg2N), but

slower than O(N), while using fewer than N2 processors. This performance was so disappointing

that further analysis was done to �nd the reason. When the tests were re-run with distl and

distr running in \OneTick", the times grew slower longer. This suggests that the data structure

for sequences has again contributed to the low performance. (And it's worth noting that the iota

function appears several times in this program, and it is also linear in its implementation.)

4.3 Problem 3

4.3.1 Problem Description and Algorithm

Compute the value of

S =
nX
i=1

mY
j=1

aij

This is a straightforward problem that multiplies elements of each row and adds each of the

products to a �nal sum. The algorithm strips o� each row for product formation in an inner loop

and then sums them in an outer loop.

4.3.2 Inherent Parallelism

The serial complexity is O(N �M), but with N �M=2 processors one can compute all the terms

to the summation in O(lgM) time, and with N=2 processors one can sum in O(lgN) time.

4.3.3 Characteristics of Translation

This is close to Problem 2 in expression, but the programming is trivial. This is because the issue

of passing parameters to an inner function is missing. In addition, because the input matrix is

completely speci�ed, one needn't generate a sequence of values for the internal function.

4.3.4 Performance

Empirical results showing the time taken by a single processor are slightly greater than theory

predicted, but less than O(N2 lgN).

When maximal parallelism is allowed, the time grows faster O(lg2N). In this case, the PFO

\/ is suspect. When the function being inserted is simple, as is the case here, the behavior of

the \/ PFO becomes visible. When more complex functions are being inserted, or when the

evaluation of the terms is complex, this delay is masked.

10

4.4 Problem 4

4.4.1 Problem Description and Algorithm

Compute the value of

R =
nX

i=1

xi 6=0

1

xi

This problem sums operands whose denominators are nonzero.

4.4.2 Inherent Parallelism

The serial complexity is O(N), but when using N processors, the N terms can be computed in

parallel, and then N=2 processors can be used to sum the terms in O(lgN) time.

4.4.3 Characteristics of Translation

An input sequence of the xi is generated. The function is then applied to all terms in parallel

and the sum taken.

4.4.4 Performance

While the single processor/single thread execution times grow only slightly faster than N , the

maximally parallel performance is very poor. For reasons given with previous problems, the

rather serial implementation of the \/ PFO comes to dominate the program. With the simple

function being applied, parallelism grows at an abysmal O(lgN) rate.

4.5 Problem 5

4.5.1 Problem Description and Algorithm

Given a table of the ith student's scores on the uth test, perform the following computations:

(a) list the top score for each student

(b) give the number of scores above the average

(c) increase all the above average scores by 10%

(d) give the lowest score that is above average

(e) note whether any student has all scores above average

11

The algorithm for this problem takes a two-dimensional array of grades and computes a new

matrix of grades whose above average scores have been increased by 10% (c). I assumed that

the intent of the computation of the lowest score above the average (d) was to be done prior to

increasing the scores by 10%.

4.5.2 Inherent Parallelism

There are a number of reduction operations on arrays, compute average, �nd top, test against

average, etc., suggesting the problem's parallel complexity is O(lgN). While the operations on

the array elements are highly parallel, there are a number of sequential restrictions throughout

the computations. For example, the average score for all tests and students must be computed

prior to computing the number of scores above the average (b) or increasing all scores above the

average by 10% (c). Thus this problem is a good example of several highly parallel operations

separated by barrier points at which the execution must be sequential. Fortunately these barriers

are �xed in number, so the complexity measure is unchanged.2

4.5.3 Characteristics of Translation

The problem statement was ambiguous in many ways, some of which could a�ect the program

structure, e.g. is the top score from the original dataset, or after step (c) has been applied. Once

these were resolved, the programming was straightforward.

I often found myself drawing pictures of the current sequence just to keep track of the where

the data were. This small handicap in the language is largely compensated by the fact that once

it's right, changing input data sizes doesn't a�ect the solution.

4.5.4 Performance

The single processor/single thread execution time grows as N2 { this is not surprising as the test

dataset had the number of scores grow at the same rate as the number of students. The maximally

parallel execution times grow faster than expected { far beyond O(lgN) or even O(lg2N). Again,

the processing of sequences in PFOs and functions, especially trans, are suspect.

4.6 Problem 6

4.6.1 Problem Description and Algorithm

The description of the algorithm was unavailable beyond its implementation in FORTRAN.

2Again, thanks to the authors of [AHO90] for permission to copy much of this analysis from their report.

12

4.6.2 Inherent Parallelism

While it is possible to solve a tridiagonal system, the \vector oriented algorithm of Jordan"

contains trickery that involves violation of array bounds and some assumptions about storage

that are wholely inappropriate in a language such as FP.

While it is suspected that the available parallelism falls somewhere between elimination meth-

ods and iterative methods, no formal analysis has been done.

4.6.3 Characteristics of Translation

This problem has not been implemented in FP.

4.7 Problem 7

4.7.1 Problem Description and Algorithm

The problem is to compute polynomial interpolent values of f(x) using Lagrange interpolation

formulae, given by:

p(x) =
NX
i=1

f(xi)li(x) with li(x) =
NY
j=1

i6=j

(x� xj)=
NY
j=1

i6=j

(xi � xj)

4.7.2 Inherent Parallelism

This has O(N2) serial complexity, but with O(N2) processors the li(x) terms can be computed

in O(lgN) time and then summed in O(lgN) time.

4.7.3 Characteristics of Translation

The recurring idiom of building a vector or a matrix of indices and then computing the function

at those points, is used in this program.

An initial program version was derived directly from the formula. It did not, however, retain

the value of the f(xi)=(xi � xj) term. The code in the �nal program does, but it doesn't yet

exploit this in computing the results for the multiple input values.

It's interesting to note that the two program versions return slightly di�erent values because

of the sum{then{div in one and the div{then{sum in the other.

13

4.7.4 Performance

Serial performance agrees with theory. The execution times for parallel execution grew as O(N)

(as parallelism grew only sightly better than N). Using the OneTick option for a number of the

functions and PFOs kept the parallel execution times in the O(lgN) realm longer, but the system

eventually succumbs to the access time for linear sequences.

4.8 Problem 8

4.8.1 Problem Description and Algorithm

These formulae de�ne the divided di�erence table for a set of data xi, yi = f(xi):

f [xi] = yi

f [xi; xi+1; : : : ; xi+k] =
f [xi+1; : : : ; xi+k]� f [xi; : : : ; xi+k�1]

xi+k � xi+k�1

The problem is to compute the �rst M columns of the divided di�erence table

Dik = f [xi; xi+1; : : : ; xi+k�1]

4.8.2 Inherent Parallelism

Each new column of the divided di�erence table is derived from the previous column of the

di�erence table. It can be computed in constant time using N processors. Even if each element

of that column were to be computed directly from the �rst column (the yi values), the computation

performance would be limited by the number of stages needed in the computation. No speed-up

would be found in this approach, so we compute each column after the previous one is done.

The maximum parallelism is found in computing the �rst divided di�erence column. Remain-

ing columns have less available parallelism.

4.8.3 Characteristics of Translation

Unlike FORTRAN or SISAL, it's rather di�cult in FP to index into a sequence representing a

column or row. The FP solution is to extract the previous column twice, shift one of the two

columns, transpose, and subtract. The rest of the code is \glue" to hold the program together.

4.8.4 Performance

Empirical results show the single processor /single thread execution time grows much faster than

theory suggests, O(N2) rather than O(N).

14

The parallel performance is similarly sluggish. Average parallelism and execution times grow

by O(N). The continued manipulation of the intermediate results by the append function costs

dearly. Although this program produces the correct result, it is a good candidate for optimization

such as computing all the columns simultaneously. Such a version would avoid almost all the

copying that is being performed by the append function.

4.9 Problem 9

4.9.1 Problem Description and Algorithm

This problem is to smooth a matrix of real values. The computation is useful in image processing,

solving di�erential equations, and geometric modeling and therefore is typical of much scienti�c

computing. The matrix is smoothed by taking the average of each cell in the matrix with all its

neighbors. That is,

uij = (
X

Neighbors

uij)=(Number of neighbors)

4.9.2 Inherent Parallelism

For an N �N matrix, serial computation is O(N2) and parallel computation takes constant time

with N2 processors.

4.9.3 Characteristics of Translation

As mentioned in Section 2, Language Idioms, this matrix is replicated nine times and each copy

is shifted appropriately so that an average across the Z axis yields the appropriate result.

The boundaries caused a few problems in that the problem statement only implied what was to

be done. The programming would have been a little easier if the trans function allowed irregular

shapes to be transposed. As it was, signi�cant e�ort is expended to \�ll in" the irregularities.

4.9.4 Performance

Because of the boundary problems mentioned above, functions such as tl and length were needed

to adjust sequences. These functions prevented the program from achieving its full potential.

In spite of this, parallelism still grew much faster than O(N lgN). N.B. This is a deceptive

improvement because of the tremendous overhead in the shifting. The modi�ed trans function

mentioned above would be a much cleaner implementation.

15

4.10 Problem 10

4.10.1 Problem Description and Algorithm

The problem is LU factorization of an N � N matrix A = aij using Gaussian elimination with

partial pivoting.

4.10.2 Inherent Parallelism

Although �nding the pivot element (maximum element in a column) can be done in parallel, and

adjusting the remaining rows can be done in parallel, This problem has a fundamentally serial

nature. One cannot �nd a pivot row K until the processing of row K � 1 has been completed.

In spite of these recurring barriers, there still would be su�cient parallelism, but for the costs

of copying matrices as the rows are shifted. A shu�e function that pays careful attention to

reference counts, so it could \copy in place", would prove very useful.

4.10.3 Characteristics of Translation

This problem has not been implemented in FP.

4.11 Problem 11

4.11.1 Problem Description and Algorithm

The problem is to read a set of N real numbers ni, trim the numbers to fall within the range

[0,1000], and apply a logarithmic transformation di = log(1+ni), and then compute the �rst four

Fourier moments according to the formula:

fourier �moment(k) = (
NX
i=1

di cos (�i=(k+ 1)))=N

where k is 1,2,3 or 4.

4.11.2 Inherent Parallelism

This problem contains signi�cant inherent parallelism. With O(N) processors, each term of the

sum in each Fourier moment can be computed in parallel in constant time. The summation then

takes O(lgN) time.

16

4.11.3 Characteristics of Translation

The problem was easily divided into three phases: one to limit ranges, the next to distribute

vector length and index across vector values, and �nally one to compute moments. The only

problem is in the large degree of indentation that shows up in the program listing.

4.11.4 Performance

Although it was possible to construct the test data with the index and array size bound to each

value, it wouldn't have been a proper use of the expressive power of the language. Instead the

vector is �rst built and is then processed.

Serial execution times grew slightly faster than the O(N) predicted by theory. Parallel ex-

ecution times grew slightly slower than O(N). The average parallelism grew a bit faster than

O(lgN). A brief check showed that the shu�e function (shown in the program listing) uses up

over half the time (due to the linear nature of trans).

4.12 Problem 12

4.12.1 Problem Description and Algorithm

This problem is similar to Problem 9 in that a matrix is built from a previously existing matrix.

But here the new matrix results from a smaller matrix, two vectors, and a scalar. Rice states

this problem as:

Given the m�m matrix A, the 1�m vector R, the m� 1 vector C, and a number a, build

the array

ABIG =

"
AC

Ra

#

4.12.2 Inherent Parallelism

In serial execution, O(N2) time is needed to copy the N2 elements. In a data parallel system,

this could be done in constant time. This implementation's parallelism is limited only by the

ability to build a sequence and then populate its elements. The apndr and append functions are

linear in this version, but could be O(lgN) if the sequences were tree structured.

4.12.3 Characteristics of Translation

The code so easily captures the solution that the program is shorter than the description. It

seems almost too easy, but it works!

17

4.12.4 Performance

Serial execution runs in O(N2) time as predicted. Parallel execution times show only a modest

10 to 1 improvement over serial execution. The serialization in append, trans, and apndr is the

culprit. The OneTick option only pulls the times down to O(N) because the trans function

really isn't speeded up that much due to its internal use of selection functions.

4.13 Problem 13

4.13.1 Problem Description and Algorithm

For vectors a, b, c, and d, recompute a with the procedure:

ai = a
sin(bi)

i

If (ai < cos(bi)) then ai = ai + ci
else ai = ai � di

and compute

e =
Pndim

j=1 a2j

The algorithm reads the ai array, creating a new value for each instantiation of ai and �nally

returns a new vector and a sum. N.B. See the comments about documented versus actual formulae

in the section \Characteristics of Translation."

4.13.2 Inherent Parallelism

Each of the new ai elements can be computed in constant time using O(N) processors. The

summation then takes O(lgN) time.

4.13.3 Characteristics of Translation

As with many of these problems, the dataset is \turned sideways" and the operations are then

applied to all of the tuples in parallel.

The original Rice paper said ai = ai*sin(bi), but the Fortran code says ai = ai**sin(bi).

Later the papers test ai<cos(ci), but the code tests sin(ai)<cos(ci). This program matches

the operations of the actual code.

A \DOMAIN ERROR" forced the insertion of abs o in the computation of ai**sin(bi) to

ensure that the power function works properly.

18

4.13.4 Performance

Serial execution times grew a little faster than O(N) Unfortunately parallel execution times grew

nearly as fast as O(N). Average parallelism grew as O(lgN). As with Problem 11, a brief check

of trans showed it to cause much of the delay.

I tried pulling the [id,id] into the conditional as [+,+] and [-,-] to little e�ect. This

suggests that the predicate is known soon enough to let the [id,id] pick up a conditional. Or

possibly the single tick improvement was lost in the noise.

4.14 Problem 14

4.14.1 Problem Description and Algorithm

This problem carries out a test of three methods to integrate three separate functions with 50

di�erent levels of accuracies. The original problem used four methods; trapezoidal integration,

Simpson's rule, 3-point Gaussian integration, and the DCADRE specialized algorithm. I decided

that the �rst two were enough for testing parallelism in this type of environment.

4.14.2 Inherent Parallelism

In this problem, the problem set size is the number of intervals over which the functions are to

be integrated.

Full parallelism is found at the outer level because each test is independent. Within each test,

each term of the numerical integration can be computed in constant time using N parallel tasks.

The terms can then be added in O(lgN) time.

4.14.3 Characteristics of Translation

This shows one major limitation of FP as a language. The decision to prohibit user de�ned PFOs

prevents one from de�ning an integration PFO that is applied to a function and object. Instead,

one must re-write the integration function for each of the test functions.

Another approach would be to \pass the function" via the name binding mechanism, invoking

the program once for each of the user functions.

4.14.4 Performance

Serial execution times grew as O(N). Parallel execution times grew nearly as fast, but the average

parallelism grew as O(lgN).

19

4.15 Problem 15

4.15.1 Problem Description and Algorithm

The problem is to compare two types of interpolation points (equispaced and Chebyshev spaced)

for Hermite interpolation using piece-wise polynomials. The interpolant's value v at y is

v(y) =
NX
j=1

f(xj)h1j(y) + f
0

(xj)h2j(y)

where h1j(x) and h2j(x) are suitable basis functions that depend on the N interpolation points

xj .

4.15.2 Inherent Parallelism

At the outermost levels there is modest parallelism across the types of interpolation points.

Within that, there is the evaluation to be performed at each of the interpolation points: O(k) time

using O(N) processors. These points are then summed in O(lgN) time using O(N) processors.

4.15.3 Characteristics of Translation

This problem has not been implemented in FP, due only to lack of time.

4.16 Problem 16

4.16.1 Problem Description and Algorithm

This problem is to solve the matrix equation Ax = B where A is an N � N Hilbert matrix

and B is an N � 4 matrix. The matrix order N takes on the values 4, 9, 16, 25, 36, : : : and

the B column-vectors are, respectively, the �rst column of the identity matrix, all 1's, a random

perturbation of 1:0� 0:01 in all elements, and alternating +1;�1.

4.16.2 Inherent Parallelism

The problem statement leaves open the method to be used to solve the problem. I chose an

iterative method to compute the matrix inverse, C, which can then be multiplied by B to yield

the answer. This method has tremendous parallelism and serial time complexity comparable to

direct methods for most matrices.

The serialization is limited only to the test at each iteration, and it is possible to proceed in

parallel with the next iteration using the while PFO.

20

4.16.3 Characteristics of Translation

The problem can be restated again as \Compute C, an N �N inverse of an N �N matrix, such

that the product (C �A) is a N �N matrix \close" to the Identity matrix. Then multiply this

inverse times the B column-vectors."

Houseman's method [Hou64] is similar in form to Newton's method of �nding a root (but

operates on matrices).

Each iteration step computes Cn+1 is 2Cn�Cn�A�Cn (derived from B � (2� I �A�Cn)

or from (2I � Cn � A) � Cn) Matrix multiplication is easily expressed in FP: one just shu�es

rows and columns about until an aa PFO can be used to compute output terms in parallel.

An adequate initial inverse, C1, is the transpose divided by the product of the row and column

maximums.

4.16.4 Performance

Although this technique appears to be robust in terms of many near-singular matrices, it converges

painfully slowly with the Hilbert matrix. For this reason, tests have been limited to other, less

di�cult matrixes.

The matrix size is lg(N)� lg(N), where N is given in these tables. The serial execution times

grew as O(N3) as would be expected for a naive matrix inversion. Parallelism grew as O(N),

so that parallel execution times grew approximately O(N). A new implementation of trans and

tree-structured sequences should o�er signi�cant improvement.

4.17 Problem 17

4.17.1 Problem Description and Algorithm

The last Purdue technical report [RJ90] added a 17th problem { adaptive quadrature. The report

did not formally specify what was to be done, rather it referred to textbooks that discussed various

implementations of AQ [Ric75],[Ric76].

4.17.2 Inherent Parallelism

Given truly independent parallelism { not that of many SIMD systems { AQ o�ers large, but

irregular parallelism.

One does not know a priori the degree of parallelism. The degree of parallelism is instead

derived from the function being evaluated. Parallelism grows exponentially and the interval is

21

divided into �ner and �ner pieces; it then decays exponentially as the sub-interval integrals are

summed.

There are two controlling factors: the function being evaluated and the error term demanded

of the solution.

4.17.3 Characteristics of Translation

A simple trapezoidal rule is used to evaluate the integral for an interval and for two half intervals.

If the di�erence is small enough, the sum of the half intervals is used, if not, the sum of the results

of a recursive evaluation is used.

Programming this was puzzling until a data-
ow graph was laid out. It was then possible to

recognize the several phases in each level. These phases were described in individual functions

that passed some parameters through unchanged while changing or creating new parameters for

the function in the next phase. Because of the recursive doubling that can occur, it may not

qualify as a systolic algorithm, but it has that feel to it.

4.17.4 Performance

Up until this problem, the idea of \problem set size" has been a simple concept. One just counts

the elements to be summed, sorted, averaged, etc. Adaptive quadrature speci�cally avoids an

external speci�cation of how many intervals are to be used. As a consequence one has to shift

the problem in subtle ways to evoke greater parallelism.

In this test, parallelism was adjusted by controlling the error term. Reasonable results were

found by setting the error term to the reciprocal of what we have heretofore called the \problem

set size", N .

One sees the parallelism initially grows with N , but even while the maximum parallelism

keeps growing, the average seems to be approaching an asymptote of about 100. I suspect that

the exponential growth (due to the recursive doubling) keeps the maximum parallelism high,

while the average parallelism is dominated by the function itself.

5 Conclusion

Table 1 summarizes the theoretical and actual parallel performance found in the problems.

This implementation of FP has some fundamental limitations in exploiting the full parallelism

available in the language. These limitations generally center on the linked list used to represent

sequences and the functions and PFOs that operate upon them. In spite of this, many of these

programs still show surprising, and gratifying to the author, parallel performance. In �ve cases

22

Table 1: Complexity and performance of problems
Theoretical Actual

Prob Serial Parallel Serial Parallel

1 O(N) O(lgN) O(N) O(N)

2 O(N2) O(lgN) O(N2) O(lg2N) < O(N)

3 O(N2) O(lgN) O(N2 lgN) O(lg2N)

4 O(N) O(lgN) O(N)

5 O(N2) O(lgN) O(N2) � O(lg2N)

6 not calculated not implemented in FP

7 O(N2) O(lgN) O(N2) O(N)

8 O(N) O(1) O(N2) O(N)

9 O(N2) O(1) O(N2) O(N)

10 not calculated not implemented in FP

11 O(N) O(lgN) > O(N) < O(N)

12 O(N2) O(1) O(N2) O(N2)

13 O(N) O(lgN) > O(N) < O(N)

14 O(N) O(lgN) O(N) < O(N)

15 not calculated not implemented in FP

16 O(N3) O(N2)

17 Inappropriate measure Not known a priori not reported

(problems 2, 7, 9, 16, and 17) the speedups were greater than 50 for problem set sizes of only 32.

In at least one case (problem 7) the speedup grew faster than O(N)!

It is not surprising to note that while a PFO such as / is the most e�cient in a single

processor /single thread environment, the \/ variation is better designed to identify and exploit

greater parallelism. This suggests that an advanced implementation would dynamically choose

the appropriate evaluation strategy for a generalized insert PFO based on system load.

23

References

[AHO90] K. Aziz, M. Haines, and R. R. Oldehoeft. Purdue Parallel Benchmarks in SISAL

(Revised). Technical Report CS-90-101, Department of Computer Science, Colorado

State University, 1990.

[Amd67] Gene Amdahl. The validity of the single processor approach to achieving large-scale

computing capabilities. In Proceedings of the 1967 AFIPS National Computer Con-

ference, pages 483{485. AFIPS, 1967.

[Ben92] Randolph Bentson. The implementation of an FP system with parallel execution.

Technical Report CS-92-108, Department of Computer Science, Colorado State Uni-

versity, 1992.

[HHRO88] T. Hanson, S. Harikrishnan, T. Richert, and R. Oldehoeft. The Purdue Parallel

Benchmarks in SISAL. Technical Report CS-88-114, Department of Computer Sci-

ence, Colorado State University, 1988.

[Hou64] A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell Publish-

ing Company, New York, 1964.

[MR87] H. S. McFaddin and J. R. Rice. Parallel and Vector Problems on the FLEX/32.

Technical Report CSD-TR-661, Department of Computer Science, Purdue University,

1987.

[Ric75] J. R. Rice. A metalgorithm for adaptive quadrature. Journal of the Association for

Computing Machinery, 22, 1975.

[Ric76] J. R. Rice. Parallel algorithms for adaptive quadrature III { program correctness.

ACM Transactions on Mathematical Software, 2, 1976.

[Ric80] John R. Rice. Problems to Test Parallel and Vector Languages. Technical Report

CSD-TR 516, Department of Computer Science, Purdue University, 1980.

[RJ90] John R. Rice and Jin Jing. Problems to Test Parallel and Vector Languages-II. Tech-

nical Report CSD-TR-1016, Department of Computer Science, Purdue University,

1990.

24

Appendix A Program Per-
formance

In these tables, \N" is the problem set size,

\P" is the number of processors, \T" is the

number of threads per processor, \max" is the

maximum number of concurrently executing tasks,

\avg" is the average number of concurrently ex-

ecuting tasks, and \t-o-d" is the number of sim-

ulated clock ticks to execute the program.

For the sake of brevity, the number of threads

per processor were increased at the same rate as

the number of processors (P = T) up to a max-

imum number of threads per processor of 128.

.1 Execution timing of Problem 1

N P T max avg t-o-d

1 1 1 1 0.99 1221

1 2 2 4 2.73 523

2 1 1 1 0.99 1696

2 2 2 4 2.38 777

2 4 4 10 3.59 500

4 1 1 1 1.00 2615

4 2 2 4 2.45 1171

4 4 4 10 3.68 765

4 8 8 10 3.66 765

8 1 1 1 1.00 4525

8 2 2 4 2.48 1967

8 4 4 14 3.82 1238

8 8 8 18 3.88 1224

8 16 16 18 3.88 1224

16 1 1 1 1.00 8465

16 2 2 4 2.46 3692

16 4 4 16 4.21 2062

16 8 8 26 4.25 2062

16 16 16 26 4.25 2062

16 32 32 26 4.25 2062

32 1 1 1 1.00 16561

32 2 2 4 2.49 7298

32 4 4 15 4.30 3946

32 8 8 26 4.47 3829

32 16 16 26 4.47 3829

32 32 32 26 4.47 3829

32 64 64 26 4.47 3829

64 1 1 1 1.00 33161

64 2 2 4 2.55 14194

64 4 4 15 4.48 7610

64 8 8 26 4.62 7427

64 16 16 26 4.70 7276

64 32 32 26 4.70 7276

64 64 64 26 4.70 7276

64 128 128 26 4.70 7276

128 1 1 1 1.00 67153

128 2 2 4 2.59 27957

128 4 4 16 4.61 14960

128 8 8 30 4.83 14322

128 16 16 46 4.93 14121

128 32 32 48 4.95 14125

128 64 64 48 4.95 14125

128 128 128 48 4.95 14125

128 256 128 48 4.95 14125

256 1 1 1 1.00 136697

256 2 2 4 2.58 58344

256 4 4 16 4.78 29348

256 8 8 44 4.98 28305

256 16 16 70 5.12 27801

256 32 32 85 5.30 27863

256 64 64 85 5.30 27863

256 128 128 85 5.30 27863

256 256 128 85 5.30 27863

256 512 128 85 5.30 27863

In the following, the \OneTick" option was

used to give the distribution, appending, inser-

tion, and application functions and PFOs a sim-

ulated duration of only one tick each. This al-

lows us to examine the e�ects of more e�cient

implementations of these functions and PFOs.

N P T max avg t-o-d

1 1 1 1 0.99 1214

2 1 1 1 0.99 1579

25

4 1 1 1 1.00 2274

8 1 1 1 1.00 3736

16 1 1 1 1.00 6780

32 1 1 1 1.00 13084

64 1 1 1 1.00 26100

128 1 1 1 1.00 52924

256 1 1 1 1.00 108132

512 1 1 1 1.00 221644

1 2 2 4 2.75 516

2 4 4 10 4.18 406

4 8 8 13 4.38 561

8 16 16 18 4.93 800

16 32 32 22 5.75 1232

32 64 64 22 6.43 2119

64 128 128 23 7.13 3806

128 256 256 48 7.81 7135

256 512 512 85 8.62 13833

512 10241024128 9.39 27062

.2 Execution timing of Problem 2

N P T max avg t-o-d

1 1 1 1 0.99 906

1 2 2 4 2.02 536

2 1 1 1 1.00 2294

2 2 2 4 2.54 1054

2 4 4 11 3.25 701

4 1 1 1 1.00 8101

4 2 2 4 3.02 2875

4 4 4 16 6.10 1337

4 8 8 37 6.24 1251

8 1 1 1 1.00 30983

8 2 2 4 3.17 10616

8 4 4 16 9.77 3206

8 8 8 63 13.86 2231

8 16 16 109 13.82 2168

16 1 1 1 1.00 122875

16 2 2 4 3.26 40426

16 4 4 16 12.25 10194

16 8 8 64 26.46 4639

16 16 16 253 33.15 3936

16 32 32 350 33.25 3831

32 1 1 1 1.00 495587

32 2 2 4 3.35 161063

32 4 4 16 13.28 37783

32 8 8 64 40.28 12325

32 16 16 256 70.32 7982

32 32 32 919 91.56 7633

32 64 64 854 73.17 8463

64 1 1 1 1.00 2014771

64 2 2 4 3.36 648523

64 4 4 16 13.97 146534

64 8 8 64 51.52 39191

64 16 16 256 123.31 19020

64 32 32 1024 231.50 16379

64 64 64 3048 258.90 14993

64 128 128 2032 175.97 17240

128 1 1 1 1.00 8221139

128 2 2 4 3.40 2601872

128 4 4 16 14.15 590054

128 8 8 64 55.75 147833

128 32 32 1024 440.36 38075

128 64 64 4094 651.67 34773

128 128 128 10002659.64 31875

128 256 128 5641 402.62 33987

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

N P T max avg t-o-d

1 1 1 1 0.99 786

1 1 1 1 0.99 786

2 1 1 1 0.99 1949

2 2 2 4 2.70 796

4 1 1 1 1.00 6976

4 4 4 16 7.65 931

8 1 1 1 1.00 26978

8 8 8 63 20.07 1341

16 1 1 1 1.00 107830

26

16 16 16 253 53.29 2166

32 1 1 1 1.00 437342

32 32 32 919 156.13 4103

64 1 1 1 1.00 1785646

64 64 64 3048 459.85 7943

128 1 1 1 1.00 7312334

128 128 128 100021131.1417785

.3 Execution timing of Problem 3

N P T max avg t-o-d

2 1 1 1 0.92 130

2 2 2 3 1.89 71

2 4 4 3 1.89 71

4 1 1 1 0.99 1137

4 2 2 3 2.24 705

4 4 4 7 3.50 396

4 8 8 8 3.84 345

8 1 1 1 1.00 5827

8 2 2 4 2.64 2475

8 4 4 12 6.37 978

8 8 8 18 8.02 764

8 16 16 24 8.69 710

16 1 1 1 1.00 26967

16 2 2 4 3.04 9634

16 4 4 16 10.29 2707

16 8 8 41 16.29 1680

16 16 16 62 18.00 1632

16 32 32 61 23.47 1559

32 1 1 1 1.00 120703

32 2 2 4 3.12 41590

32 4 4 16 12.50 9850

32 8 8 63 31.23 3880

32 16 16 128 43.49 3015

32 32 32 140 56.13 2962

32 64 64 141 56.86 2962

64 1 1 1 1.00 532047

64 2 2 4 3.24 173386

64 4 4 16 13.73 39347

64 8 8 64 42.63 12524

64 16 16 195 75.46 7751

64 32 32 221 97.79 6959

64 64 64 217 109.07 6759

64 128 128 216 109.40 6759

128 1 1 1 1.00 2323183

128 4 4 16 14.23 165321

128 8 8 64 52.19 44713

128 16 16 228 109.57 23450

128 32 32 338 142.44 21474

128 64 64 356 155.77 20846

128 128 128 362 168.46 21009

128 256 128 362 168.46 21009

.4 Execution timing of Problem 4

N P T max avg t-o-d

2 1 1 1 1.00 596

2 2 2 4 2.18 273

2 4 4 7 4.08 146

4 1 1 1 1.00 1295

4 2 2 4 2.34 554

4 4 4 10 4.01 323

4 8 8 13 4.68 277

8 1 1 1 1.00 2767

8 2 2 4 2.71 1023

8 4 4 12 5.41 511

8 8 8 22 5.95 465

8 16 16 23 5.95 465

16 1 1 1 1.00 5807

16 2 2 4 2.87 2021

16 4 4 16 6.74 863

16 8 8 26 7.02 827

16 16 16 24 7.02 827

16 32 32 24 7.02 827

32 1 1 1 1.00 12079

32 2 2 4 2.85 4237

32 4 4 16 7.29 1657

32 8 8 26 8.11 1490

32 16 16 24 8.11 1490

32 32 32 24 8.11 1490

32 64 64 24 8.11 1490

64 1 1 1 1.00 25007

27

64 2 2 4 2.97 8420

64 4 4 16 8.10 3087

64 8 8 26 8.81 2837

64 16 16 28 9.09 2760

64 32 32 27 9.09 2760

64 64 64 27 9.09 2760

64 128 128 27 9.09 2760

128 1 1 1 1.00 51631

128 2 2 4 2.87 18007

128 4 4 16 8.78 5880

128 8 8 30 9.68 5336

128 16 16 35 10.00 5236

128 32 32 48 10.06 5306

128 64 64 48 10.06 5306

128 128 128 48 10.06 5306

128 256 128 48 10.06 5306

256 1 1 1 1.00 106415

256 2 2 4 3.11 34170

256 4 4 16 9.43 11280

256 8 8 38 10.25 10387

256 16 16 53 10.72 10147

256 32 32 60 11.33 10482

256 64 64 71 11.78 10383

256 128 128 71 11.78 10383

256 256 128 71 11.78 10383

256 512 128 71 11.78 10383

512 1 1 1 1.00 219055

512 2 2 4 3.00 73016

512 4 4 16 9.75 22479

512 8 8 53 10.90 20089

512 16 16 63 11.31 19908

512 32 32 109 12.43 19989

512 64 64 96 12.90 19918

512 128 128 96 12.90 19918

512 256 128 96 12.90 19918

512 512 128 96 12.90 19918

512 1024128 96 12.90 19918

.5 Execution timing of Problem 5

N P T max avg t-o-d

1 1 1 1 1.00 2330

1 2 2 4 2.85 889

2 1 1 1 1.00 5782

2 2 2 4 3.13 2095

2 4 4 16 7.72 765

4 1 1 1 1.00 22407

4 2 2 4 3.19 7719

4 4 4 16 11.09 2031

4 8 8 63 17.83 1252

8 1 1 1 1.00 89047

8 2 2 4 3.28 29945

8 4 4 16 13.54 6716

8 8 8 64 34.26 2549

8 16 16 226 41.07 2258

16 1 1 1 1.00 369589

16 2 2 4 3.31 124323

16 4 4 16 14.00 26934

16 8 8 64 49.93 7279

16 16 16 256 93.87 4286

16 32 32 771 110.38 4508

32 1 1 1 1.00 1562859

32 2 2 4 3.34 525594

32 4 4 16 14.05 113569

32 8 8 64 56.52 27747

32 16 16 256 158.22 11180

32 32 32 927 195.71 10747

32 64 64 1256 226.14 9451

64 1 1 1 1.00 6826755

64 2 2 4 3.31 2359995

64 4 4 16 14.24 490094

64 8 8 64 58.48 117172

64 16 16 256 210.19 38036

64 32 32 1007 321.53 30341

64 64 64 1018 298.89 30647

64 128 128 1688 353.48 28096

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

28

N P T max avg t-o-d

2 1 1 1 1.00 5782

2 4 4 16 7.72 765

4 1 1 1 1.00 22407

4 8 8 63 17.83 1252

8 1 1 1 1.00 89047

8 16 16 226 41.07 2258

16 1 1 1 1.00 369589

16 32 32 771 110.38 4508

32 1 1 1 1.00 1562859

32 64 64 1256 226.14 9451

64 1 1 1 1.00 6826755

64 128 128 1688 353.48 28096

.6 Execution timing of Problem 6

No tests were performed on this problem.

.7 Execution timing of Problem 7

N P T max avg t-o-d

1 1 1 1 1.00 10326

1 2 2 4 3.11 3474

1 4 4 16 8.65 1184

1 8 8 41 10.50 947

2 1 1 1 1.00 27431

2 2 2 4 3.35 8894

2 4 4 16 11.57 2385

2 8 8 64 21.05 1272

2 16 16 143 21.82 1177

2 32 32 143 21.80 1177

4 1 1 1 1.00 97956

4 2 2 4 3.33 32078

4 4 4 16 13.27 7495

4 8 8 64 36.03 2716

4 16 16 256 51.88 1958

4 32 32 419 48.86 1947

4 64 64 443 49.42 1857

8 1 1 1 1.00 378686

8 2 2 4 3.37 123574

8 4 4 16 14.02 27618

8 8 8 64 48.46 7883

8 16 16 256 115.39 3851

8 32 32 710 143.44 3398

8 64 64 830 157.01 3274

8 128 128 964 165.67 3268

16 1 1 1 1.00 1509906

16 2 2 4 3.38 493593

16 4 4 16 14.27 108422

16 8 8 64 54.96 27785

16 16 16 256 160.25 11344

16 32 32 1015 391.99 7822

16 64 64 2959 275.51 8909

16 128 128 2976 340.95 6670

16 256 128 2995 345.36 6670

16 512 128 2995 345.36 6670

32 1 1 1 1.00 6096506

32 2 2 4 3.37 1993742

32 4 4 16 14.37 435623

32 8 8 64 57.99 106428

32 16 16 256 210.02 35520

32 32 32 1019 688.15 21025

32 64 64 3797 662.77 17792

32 128 128 4399 492.19 17791

32 256 256 4220 722.37 12334

32 512 256 4220 722.37 12334

.8 Execution timing of Problem 8

N P T max avg t-o-d

8 1 1 1 1.00 15430

8 2 2 4 2.75 6507

8 4 4 11 3.55 4542

8 8 8 11 3.55 4542

8 16 16 11 3.55 4542

16 1 1 1 1.00 32486

16 2 2 4 3.00 12348

16 4 4 14 4.64 7326

16 8 8 20 4.61 7326

16 16 16 21 4.60 7326

16 32 32 21 4.60 7326

29

32 1 1 1 1.00 79270

32 2 2 4 3.16 29081

32 4 4 15 6.39 12894

32 8 8 23 6.40 12894

32 16 16 38 6.35 12894

32 32 32 42 6.34 12894

32 64 64 42 6.34 12894

64 1 1 1 1.00 223526

64 2 2 4 3.19 86797

64 4 4 16 8.94 25748

64 8 8 30 9.57 24030

64 16 16 44 9.60 24030

64 32 32 74 9.81 24030

64 64 64 80 9.81 24030

64 128 128 80 9.81 24030

128 1 1 1 1.00 714790

128 2 2 4 3.07 309451

128 4 4 16 11.85 62747

128 8 8 44 15.73 46302

128 16 16 56 15.75 46302

128 32 32 88 17.03 46302

128 64 64 147 17.87 46302

128 128 128 159 17.89 46302

128 256 128 159 17.89 46302

256 1 1 1 1.00 2508326

256 2 2 4 3.03 1135282

256 4 4 16 12.53 211175

256 8 8 64 26.64 95373

256 16 16 125 27.95 90846

256 32 32 113 31.71 90846

256 64 64 176 36.71 90846

256 128 128 297 39.86 90846

256 256 128 297 39.86 90846

256 512 128 297 39.86 90846

512 1 1 1 1.00 9339430

512 2 2 4 2.84 4841957

512 4 4 16 12.52 794663

512 8 8 64 44.57 211583

512 16 16 152 52.25 179934

512 32 32 185 61.13 179934

512 64 64 245 75.88 179934

512 128 128 363 95.11 179934

512 256 128 363 95.11 179934

512 512 128 363 95.11 179934

512 1024128 363 95.11 179934

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

N P T max avg t-o-d

8 1 1 1 1.00 12906

8 16 16 27 4.16 3170

16 1 1 1 1.00 25914

16 32 32 51 6.96 3829

32 1 1 1 1.00 64602

32 64 64 100 10.61 8235

64 1 1 1 1.00 192666

64 128 128 232 16.30 28981

128 1 1 1 1.00 651546

128 256 256 375 25.45 114731

256 1 1 1 1.00 2380314

256 512 512 760 46.93 461877

512 1 1 1 1.00 9081882

512 102410241527 89.99 1861675

.9 Execution timing of Problem 9

N P T max avg t-o-d

4 1 1 1 1.00 55076

4 2 2 4 3.35 18125

4 4 4 16 13.42 4179

4 8 8 59 22.90 2394

8 1 1 1 1.00 213070

8 2 2 4 3.43 66157

8 4 4 16 14.44 14988

8 8 8 64 50.07 4260

8 16 16 197 69.90 3050

16 1 1 1 1.00 864098

30

16 2 2 4 3.38 277720

16 4 4 16 14.56 60159

16 8 8 64 59.09 14667

16 16 16 255 165.89 6020

16 32 32 654 217.06 4691

32 1 1 1 1.00 3651466

32 2 2 4 3.37 1187869

32 4 4 16 14.50 256043

32 8 8 64 60.51 60552

32 16 16 256 217.43 19808

32 32 32 1019 647.24 12387

32 64 64 1652 614.31 9303

64 1 1 1 1.00 16328666

64 2 2 4 3.34 5486594

64 4 4 16 14.40 1156684

64 8 8 64 60.18 272811

64 16 16 256 237.34 80497

64 32 32 1022 864.25 44822

64 64 64 4077 2401.6227081

64 128 128 3022 961.63 24074

.10 Execution timing of Problem 10

No tests were performed on this problem.

.11 Execution timing of Problem 11

N P T max avg t-o-d

1 1 1 1 1.00 3242

1 2 2 4 2.80 1157

2 1 1 1 1.00 5485

2 2 2 4 3.09 1777

2 4 4 15 8.63 636

4 1 1 1 1.00 10313

4 2 2 4 3.12 3368

4 4 4 16 10.06 1022

4 8 8 41 12.12 858

8 1 1 1 1.00 20553

8 2 2 4 3.15 6613

8 4 4 16 10.44 1986

8 8 8 52 16.72 1240

8 16 16 79 16.74 1240

16 1 1 1 1.00 41921

16 2 2 4 3.16 13429

16 4 4 16 11.50 3683

16 8 8 62 19.81 2130

16 16 16 112 21.44 1981

16 32 32 117 21.39 1981

32 1 1 1 1.00 86145

32 2 2 4 3.12 27890

32 4 4 16 11.91 7324

32 8 8 64 23.54 3688

32 16 16 141 23.98 3688

32 32 32 145 23.82 3771

32 64 64 145 23.69 3794

64 1 1 1 1.00 180953

64 2 2 4 3.03 60171

64 4 4 16 12.77 14305

64 8 8 64 25.11 7248

64 16 16 151 26.74 6958

64 32 32 144 27.55 7129

64 64 64 142 27.76 7188

64 128 128 142 27.76 7188

128 1 1 1 1.00 391857

128 2 2 4 2.96 133204

128 4 4 16 13.47 29428

128 8 8 64 28.15 14005

128 16 16 150 30.06 13416

128 32 32 139 31.64 13489

128 64 64 141 32.17 13511

128 128 128 141 32.17 13511

128 256 128 141 32.17 13511

256 1 1 1 1.00 893645

256 2 2 4 2.86 315049

256 4 4 16 13.45 67049

256 8 8 64 32.91 27315

256 16 16 160 35.34 26045

256 32 32 160 37.66 26063

256 64 64 155 38.96 26063

256 128 128 155 39.33 26085

256 256 128 155 39.33 26085

256 512 128 155 39.33 26085

31

512 1 1 1 1.00 2204421

512 2 2 4 2.71 819935

512 4 4 16 13.29 167162

512 8 8 64 40.63 54525

512 16 16 197 44.32 51079

512 32 32 216 44.05 61701

512 64 64 221 54.46 63137

512 128 128 285 73.77 60370

512 256 128 285 73.77 60370

512 512 128 285 73.77 60370

512 1024128 285 73.77 60370

1024 1 1 1 1.00 6030089

1024 2 2 4 2.26 2680529

1024 4 4 16 13.24 458021

1024 8 8 64 46.36 130575

1024 16 16 252 60.97 101178

1024 32 32 259 47.22 165083

1024 64 64 262 51.95 237600

1024 128 128 262 82.67 236282

1024 256 128 262 82.67 236282

1024 512 128 262 82.67 236282

1024 1024128

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

N P T max avg t-o-d

1 1 1 1 1.00 3047

1 2 2 4 3.06 997

2 1 1 1 1.00 5135

2 4 4 15 9.25 555

4 1 1 1 1.00 9117

4 8 8 40 18.67 493

8 1 1 1 1.00 17377

8 16 16 75 33.88 530

16 1 1 1 1.00 34401

16 32 32 188 66.01 619

32 1 1 1 1.00 69169

32 64 64 306 61.72 1758

64 1 1 1 1.00 143529

64 128 128 537 42.63 6465

128 1 1 1 1.00 310465

128 256 256 996 36.74 24205

256 1 1 1 1.00 718173

256 512 512 1875 45.44 94325

512 1 1 1 1.00 1828501

512 102410243239 72.02 373974

1024 1 1 1 1.00 5228697

.12 Execution timing of Problem 12

N P T max avg t-o-d

1 1 1 1 0.88 786

1 2 2 4 1.92 461

2 1 1 1 0.89 1117

2 2 2 4 1.93 704

2 4 4 6 2.05 425

4 1 1 1 0.91 1959

4 2 2 4 1.94 1352

4 4 4 6 2.43 770

4 8 8 6 2.12 623

8 1 1 1 0.93 4363

8 2 2 4 1.99 3296

8 4 4 6 2.79 1529

8 8 8 8 3.34 1226

8 16 16 10 2.42 1019

16 1 1 1 0.96 12051

16 2 2 4 2.03 9370

16 4 4 6 3.33 4166

16 8 8 8 4.46 2657

16 16 16 16 4.86 2248

16 32 32 18 2.87 1994

32 1 1 1 0.98 38947

32 2 2 4 2.03 33657

32 4 4 7 3.71 12425

32 8 8 8 5.69 6815

32 16 16 16 7.73 5326

32 32 32 32 6.27 5380

32 64 64 34 3.11 5017

32

64 1 1 1 0.99 138819

64 2 2 4 2.05 125333

64 4 4 11 3.98 43706

64 8 8 12 6.91 22034

64 16 16 16 10.71 14650

64 32 32 32 14.85 14891

64 64 64 64 7.63 15215

64 128 128 66 3.41 14414

128 1 1 1 0.99 522883

128 2 2 4 2.05 481742

128 4 4 16 4.21 156140

128 8 8 20 7.69 74945

128 16 16 24 13.24 45970

128 32 32 32 21.98 46969

128 64 64 64 30.14 48257

128 128 128 128 8.83 48508

128 256 128 128 8.83 48508

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

N P T max avg t-o-d

1 1 1 1 1.00 328

1 2 2 4 2.06 159

2 1 1 1 1.00 366

2 4 4 8 3.85 95

4 1 1 1 1.00 460

4 8 8 10 4.55 101

8 1 1 1 1.00 720

8 16 16 17 6.37 113

16 1 1 1 1.00 1528

16 32 32 33 11.00 142

32 1 1 1 1.00 4296

32 64 64 65 17.37 350

64 1 1 1 1.00 14440

64 128 128 129 32.79 1150

128 1 1 1 1.00 53160

128 256 256 257 64.62 4286

.13 Execution timing of Problem 13

N P T max avg t-o-d

1 1 1 1 1.00 1152

1 2 2 4 2.39 472

2 1 1 1 1.00 2249

2 2 2 4 2.79 799

2 4 4 15 5.45 408

4 1 1 1 1.00 4614

4 2 2 4 2.94 1569

4 4 4 16 6.41 714

4 8 8 30 7.74 590

8 1 1 1 1.00 9562

8 2 2 4 2.95 3246

8 4 4 16 7.70 1242

8 8 8 55 9.66 977

8 16 16 61 9.82 962

16 1 1 1 1.00 20130

16 2 2 4 2.89 6962

16 4 4 16 8.82 2282

16 8 8 63 12.28 1626

16 16 16 77 12.39 1609

16 32 32 77 12.39 1609

32 1 1 1 1.00 43762

32 2 2 4 2.86 15321

32 4 4 16 10.11 4329

32 8 8 63 14.54 2974

32 16 16 80 14.60 2974

32 32 32 80 14.60 2974

32 64 64 80 14.60 2974

64 1 1 1 1.00 100626

64 2 2 4 2.80 35961

64 4 4 16 11.34 8874

64 8 8 64 17.24 5808

64 16 16 84 17.58 5685

64 32 32 80 17.57 5685

64 64 64 80 17.57 5685

64 128 128 80 17.57 5685

128 1 1 1 1.00 251986

128 2 2 4 2.56 98440

33

128 4 4 16 11.47 21971

128 8 8 64 22.19 11345

128 16 16 97 22.55 11136

128 32 32 93 22.57 11154

128 64 64 93 22.57 11154

128 128 128 93 22.57 11154

128 256 128 93 22.57 11154

256 1 1 1 1.00 703698

256 2 2 4 2.44 288779

256 4 4 16 12.03 58485

256 8 8 64 31.24 22523

256 16 16 133 32.05 21935

256 32 32 127 32.20 22076

256 64 64 125 32.32 22086

256 128 128 125 32.32 22086

256 256 128 125 32.32 22086

256 512 128 125 32.32 22086

512 1 1 1 1.00 2200018

512 2 2 4 2.29 962686

512 4 4 16 12.13 181432

512 8 8 64 39.63 55515

512 16 16 192 50.68 43433

512 32 32 191 51.26 43303

512 64 64 187 51.31 43444

512 128 128 187 51.31 43444

512 256 128 187 51.31 43444

512 512 128 187 51.31 43444

512 1024128 187 51.31 43444

In the following, the \OneTick" option was

used to give distl and distr a simulated du-

ration of only one tick each. This allows us to

examine the e�ects of more e�cient implemen-

tations of these functions.

N P T max avg t-o-d

1 2 2 3 2.56 61

4 8 8 5 3.17 208

16 32 32 8 4.72 796

64 128 128 20 10.62 3148

256 512 512 67 34.13 12556

.14 Execution timing of Problem 14

N P T max avg t-o-d

8 1 1 1 1.00 45381

8 2 2 4 3.32 14614

8 4 4 16 12.69 3613

8 8 8 59 22.52 2009

16 1 1 1 1.00 91077

16 2 2 4 3.40 28450

16 4 4 16 13.04 7060

16 8 8 64 26.36 3450

16 16 16 164 27.24 3363

32 1 1 1 1.00 183837

32 2 2 4 3.42 57226

32 4 4 16 12.77 14518

32 8 8 64 28.76 6400

32 16 16 216 30.75 6026

32 32 32 248 30.81 6032

64 1 1 1 1.00 371877

64 2 2 4 3.39 116824

64 4 4 16 12.58 29853

64 8 8 64 29.79 12511

64 16 16 252 31.71 12300

64 32 32 260 32.64 11799

64 64 64 269 32.75 11799

128 1 1 1 1.00 752781

128 2 2 4 3.42 233702

128 4 4 16 12.74 59551

128 8 8 64 31.15 24221

128 16 16 255 33.20 24616

128 32 32 264 34.25 23034

128 64 64 268 34.28 23025

128 128 128 267 34.27 23025

256 1 1 1 1.00 1524021

256 2 2 4 3.38 482517

256 4 4 16 12.91 118989

256 8 8 64 31.90 47861

256 16 16 255 34.36 48808

256 32 32 269 35.08 45510

256 64 64 275 35.06 45495

34

256 128 128 266 34.98 45495

256 256 128 266 34.98 45495

512 1 1 1 1.00 3085149

512 2 2 4 3.37 977309

512 4 4 16 12.96 240086

512 8 8 64 32.60 94842

512 16 16 255 35.19 97505

512 32 32 275 35.90 90274

512 64 64 275 35.74 90391

512 128 128 278 35.68 90391

512 256 128 278 35.68 90391

512 512 128 278 35.68 90391

.15 Execution timing of Problem 15

No tests were performed on this problem.

.16 Execution timing of Problem 16

N P T max avg t-o-d

4 1 1 1 1.00 96046

4 2 2 4 3.34 32422

4 4 4 16 13.39 7348

4 8 8 61 26.22 3640

8 1 1 1 1.00 396273

8 2 2 4 3.38 124511

8 4 4 16 14.08 27888

8 8 8 64 42.40 9313

8 16 16 133 46.05 8410

16 1 1 1 1.00 840389

16 2 2 4 3.37 274478

16 4 4 16 14.30 59480

16 8 8 64 50.68 17146

16 16 16 199 68.43 12008

16 32 32 214 70.32 11966

32 1 1 1 1.00 2069506

32 2 2 4 3.37 675396

32 4 4 16 14.38 144493

32 8 8 64 56.35 36219

32 16 16 240 103.97 20908

32 32 32 361 103.25 21199

32 64 64 389 105.40 20970

64 1 1 1 1.00 3240819

64 2 2 4 3.37 1068158

64 4 4 16 14.38 225387

64 8 8 64 58.25 55836

64 16 16 256 139.01 25154

64 32 32 496 149.21 24150

64 64 64 514 146.17 24692

64 128 128 554 145.39 24273

128 1 1 1 1.00 5454477

128 2 2 4 3.37 1837396

128 4 4 16 14.38 380407

128 8 8 64 59.10 94568

128 16 16 255 166.73 38635

128 32 32 643 190.74 33668

128 64 64 640 181.23 35236

128 128 128 639 181.14 34980

128 256 128 647 187.10 32900

256 1 1 1 1.00 8728229

256 2 2 4 3.36 2961945

256 4 4 16 14.39 619983

256 8 8 64 59.66 150517

256 16 16 256 190.32 54740

256 32 32 876 232.13 48402

256 64 64 985 212.64 47646

256 128 128 971 234.64 47567

256 256 128 997 242.42 45383

256 512 128 997 242.42 45383

512 1 1 1 1.00 13338322

512 2 2 4 3.36 4461349

512 4 4 16 14.40 957216

512 8 8 64 59.96 221050

512 16 16 256 199.22 77913

512 32 32 984 299.65 58792

512 64 64 1202 256.37 67228

512 128 128 1298 232.64 67940

512 256 128 1369 278.34 60950

512 512 128 1369 278.34 60950

512 1024128 1369 278.34 60950

35

.17 Execution timing of Problem 17

N P T max avg t-o-d

1 1 1 1 1.00 26123

1 2 2 4 3.36 8647

2 1 1 1 1.00 26123

2 2 2 4 3.36 8647

2 4 4 16 11.38 1229

4 1 1 1 1.00 53929

4 2 2 4 3.34 17085

4 4 4 16 12.98 4572

4 8 8 59 21.53 1127

8 1 1 1 1.00 53929

8 2 2 4 3.34 17085

8 4 4 16 12.98 4572

8 8 8 59 21.53 1127

8 16 16 85 21.87 1066

16 1 1 1 1.00 81735

16 2 2 4 3.35 27588

16 4 4 16 13.74 5717

16 8 8 60 25.10 1461

16 16 16 85 27.13 1330

16 32 32 94 27.53 1313

32 1 1 1 1.00 109541

32 2 2 4 3.35 38730

32 4 4 16 13.95 8086

32 8 8 64 37.47 1891

32 16 16 143 36.70 1381

32 32 32 147 37.22 1387

32 64 64 162 38.13 1364

64 1 1 1 1.00 192959

64 2 2 4 3.34 69739

64 4 4 16 14.15 14663

64 8 8 64 46.30 3217

64 16 16 195 54.28 1689

64 32 32 225 53.26 1710

64 64 64 232 53.07 1774

64 128 128 232 53.07 1774

128 1 1 1 1.00 192959

128 2 2 4 3.34 69739

128 4 4 16 14.15 14663

128 8 8 64 46.30 3217

128 16 16 195 54.28 1689

128 32 32 225 53.26 1710

128 64 64 232 53.07 1774

128 128 128 232 53.07 1774

128 256 128 232 53.07 1774

256 1 1 1 1.00 359795

256 2 2 4 3.35 131063

256 4 4 16 14.27 27067

256 8 8 64 53.72 6526

256 16 16 250 88.18 2095

256 32 32 340 89.25 2026

256 64 64 314 84.34 2056

256 128 128 324 84.58 2056

256 256 128 324 84.58 2056

256 512 128 324 84.58 2056

512 1 1 1 1.00 415407

512 2 2 4 3.32 153577

512 4 4 16 14.35 31251

512 8 8 64 54.72 7594

512 16 16 254 113.39 2392

512 32 32 507 107.53 2019

512 64 64 476 100.99 2056

512 128 128 484 97.73 2094

512 256 128 484 97.73 2094

512 512 128 484 97.73 2094

512 1024128 484 97.73 2094

36

B FP Program Listings

.1 Source Listing of Problem 1

Problem 1

Given three arguments X1, Xn, and N, compute integral

of function from X1 to Xn by trapezoidal rule using

N-1 segments and the two end points.

It appears that 'h' is computed twice. I don't think

it's worth the effort to avoid this.

Def h

div

o [-

o [2,1]

, *

o [3,_1.0]

]

Def Tn

*

o [h

, +

o [bur div 2

o +

o aa TestFunc

o [1 , 2]

, \/+

o aa (TestFunc

Instead of summing 'h' to get each term (and

doing less arithmetic over longer time), we

choose to use the quicker form.

o + o [* o [1 , 3] , 2]

o apndr

The "apndr" has the effect

of changing the sequence to

<<h,iv,x1>,<h,iv,x2>,...<h,iv,xn>>

)

At this point the object is the sequence

<<<h,iv>,x1>,<<h,iv>,x2>,...<<h,iv>,xn>>

o distl

o [[h

37

, 1

]

, iota

o -

o [3,_1]

]

]

]

Def TestFunc exp

.2 Source Listing of Problem 2

Problem 2

Compute * n m (-|i-j|)

e = Sum Pi (1+e)

i=1 j=1

Def estar

(\/+

o (aa prod)

o distr

o [iota o 1, 2]

)

Def prod

(\/*

o (aa fun)

o distl

o [1, iota o 2]

)

Def fun

((bu + 1)

o exp

o neg

o abs

o -

o [1,2]

)

38

.3 Source Listing of Problem 3

Problem 3

Compute * n m

e = Sum Pi (a)

i=1 j=1 i,j

Def s

\/+ o (aa \/*)

.4 Source Listing of Problem 4

Problem 4

Compute n 1

R = Sum --

i=1 xi (xi!=0)

Def r

\/+

o (aa inv)

Def inv

(bu = 0)

-> _0

; (bu div 1.0)

.5 Source Listing of Problem 5

Problem 5

The data structure is a sequence of test results,

each containing a sequence of student scores.

Student 1 Student 2 ... Student m

Test 1 << a, b, c>,

Test 2 ,< d, e, f>,

...

Test n ,< g, h, i>>

#

The top score for each student.

Def top

(aa \/max) o trans

39

The total number of scores above average.

Def nabove

\/+ o

(aa (\/+ o (aa (2->_1;_0))))

Boosts above average scores by 10%.

Def addten

(aa aa (2->(* o [1,_1.1]);1))

Finds the lowest score above average.

Def lowestabove

((null->_<>;\/min)

o (aa ((null->_<>;\/min)

o append

o (aa (2->[1];_<>))))

)

Determine if any student is completely

above average.

Def genius

(\/or

o (aa (\/or o aa 2))

o trans

)

Def above

(aa aa ([1,>->_T;_F]))

Def avg

div o

(aa \/+) o

trans o

(aa [\/+,length])

Def test

apndl

o

[top

, [nabove,addten,lowestabove,genius]

o above

o (aa distr)

40

o distr

o [id,avg]

]

.6 Source Listing of Problem 6

No program was written for this problem.

.7 Source Listing of Problem 7

Problem 7

Compute polynomial interpolant values of f(x) at

five points using Lagrange interpolation formulas....

#

The formulation immediately below is derived

directly from the formula. It doesn't, however,

retain the value of the "f(xi)/(xi-xj)" term.

The formulation in the real code does, but it

doesn't yet exploit this in computing for the

multiple input values.

#

It's interesting to note that the two formulations

return slightly different values because of the

sum-then-div in one and the div-then-sum in the

other.

#

Def terms

(aa(\/*

o aa((= o [1,2]

->(func o 1)

; (div

o [- o [3,2]

, - o [1,2]]

)

)

o apndr

)

o distr

)

o distr

)

41

#

Def p_of_x_by_N

(\/+

o terms

o [(matrix

o xsub

o N

)

, id

]

)

Def numerator

(aa((\/*

o aa((= o [1,2]

-> _1.0

; - o [3,2]

)

o apndr

)

o distr

)

)

o distr

)

Def denominator

(aa((\/*

o aa(= o [1,2]

->(div

o [_1.0 , func o 1]

)

; - o [1,2]

)

)

)

o 1

)

Def matrix

((aa distl)

o distr

42

o [id,id]

)

Def xsub

((aa (bu * 0.2))

o iota

)

Def p_of_x_by_N

(\/+

o (aa div)

o trans

o [numerator

, denominator]

o [(matrix

o xsub

o 2

)

, 1

]

)

Def func exp

Def test

aa (

p_of_x_by_N

)

o

distr

o

[_<1.1, 1.2, 2.1, -1.1, 2.2>,id]

.8 Source Listing of Problem 8

Problem 8

Compute the first M columns of the divided difference table.

#

We start with the structure

<index

,<xi vector>

43

,<yi vector>

>

which we change to the structure

<index

,<xi vector>

,<yi vector>

,<delta xi>

>

Each iteration reduces the index by one,

'slips' a new difference column before

the delta xi, and computes a new, shorter,

delta xi.

When the iterations are complete, the

(now zero) index and the delta xi column

are removed.

#

Def test

tl o

tlr o

iterate o

append o

[id , [diff o 2]]

Def iterate

(while

((bu < 0.0) o 1)

(append

o [(bur - 1) o 1 # reduce index

, tlr o tl # body (less index and delta xi)

, [diff o 2r]

, [sum o 1r] # new, shortened, delta xi

]

)

)

Def sum

(aa +) o trans o [tl,tlr]

Def diff

(aa -) o trans o [tl,tlr]

44

.9 Source Listing of Problem 9

Problem 9

Compute a new value Ai,j that is the average of

its neighbors.

Def test

(aa(aa(process))) o

build_matrix

Here's where memory use grows nine-fold. Nine new

matricies are build--eight of which are trimmed by

top, bottom, left, right, or diagonals. The two

transpositions shuffle this to a single matrix such

that each element of the original matrix is "replaced"

by a 3x3 matrix containing the values of the cell and

its neighbors. The append operation is used to

strip out the null entries. Surprisingly, there is

no performance improvement to move it into the nested

apply operation above.

#

Def build_matrix

(aa(aa(\/append))) o

(aa trans) o

trans o

[(aa tlrfill) o tlrfill

, tlrfill

, (aa tlfill) o tlrfill

, (aa tlrfill)

, id

, (aa tlfill)

, (aa tlrfill) o tlfill

, tlfill

, (aa tlfill) o tlfill

]

Def process

div o [\/+,length]

Def tlfill

apndr o [tl, nullify o 1]

Def tlrfill

45

apndl o [nullify o 1, tlr]

Def nullify

atom->_<>;(aa nullify)

.10 Source Listing of Problem 10

No program was written for this problem.

.11 Source Listing of Problem 11

Problem 11

Limit 0<data<1000, then log(1+d), then Fourier moments K=1,4

#

N

Sum d * cos(pi*i*K/) /

i=1 i (/(N+1))/ N

#

Although it was possible to construct the test data with the

index and array size bound to each value, it wouldn't have

been a proper measure of the expressive power of the language.

Instead the vector is first built and is then processed.

Def fourier_moments

[(div

o [(\/+ o (aa 1))

, 3 o 1

]

)

, (div

o [(\/+

o (aa (*

o [1

, (cos

o div

o [(bu * 3.1415926535) o 2

, (bu + 1.0) o 3

]

)

]

)

46

)

)

, 3 o 1

]

)

, (div

o [(\/+

o (aa (*

o [1

, (cos

o div

o [(bu * 3.1415926535) o (bu * 2.0) o 2

, (bu + 1.0) o 3

]

)

]

)

)

)

, 3 o 1

]

)

, (div

o [(\/+

o (aa (*

o [1

, (cos

o div

o [(bu * 3.1415926535) o (bu * 3.0) o 2

, (bu + 1.0) o 3

]

)

]

)

)

)

, 3 o 1

]

)

]

Def shuffle

47

(trans

o [1 , iota o 2 , 2]

o [id , length]

)

Def range_limit

(aa (log

o (bu + 1.0)

o ((bu < 0.0) ->((bur < 1000.0) ->id ; _1000.0) ; _0.0)

)

)

Def test

fourier_moments o shuffle o range_limit

.12 Source Listing of Problem 12

Problem 12

Build a new matrix ABIG = | A C |

where A is a nxm matrix, | R a |

R is a nx1 vector,

C is a 1xm vector,

and a is a scalar.

Def test

((aa append)

o trans

o [apndr o [1,2]

, apndr o [3,4]

]

)

.13 Source Listing of Problem 13

Problem 13

Given vectors a,b,c,d, compute a new vector such

that ai = ti + ci if sin(ti)<cos(ci), else

ti - di, where ti = ai**sin(bi)

Def e

(\/+

48

o (aa

(*

o [id,id]

o ((< o [sin o 1,2])

->(+ o [1,3])

; (- o [1,4])

)

o [pow o [abs o 1,sin o 2]

, cos o 2

, 3

, 4

]

)

)

o trans

)

.14 Source Listing of Problem 14

Problem 14

Test four integration methods

(trapezoidal, Simpson's, Runga-Kutta(?))

on three functions

(exp, sqrt(abs(x-.2345)), 2.+101.*x*x)

at ten levels of accuracy.

(10, 25, 50, 75, 100, 150, 200, 300, 500, 1000 parts)

This problem is the first that shows the shortcoming

of FP vis a vis other functional languages. Since

only the "standard" PFOs may operate on functions,

one cannot define new PFOs to perform integration of

functions over intervals. As a consequence, one must

program each function into each integration method.

The first function, range to be integrated, and the "correct" answer

Def f1

exp

Def r1

_<0.0,1.0>

Def a1

_1.71828182845

49

The second function, range to be integrated, and the "correct" answer

Def f2

sqrt

o abs

o bur - 0.2345

Def r2

_<0.0,1.0>

Def a2

_0.5222099422093

The third function, range to be integrated, and the "correct" answer

Def f3

+

o [id # OR SHOULD THIS BE (bu + 1.)?

, (bu div 1.) o (bu + 1.) o (bu * 100.)

]

o *

o [id,id]

Def r3

_<-1.0,2.0>

Def a3

_2.33830

The two methods--each invoking the three functions

Def simpson

[* o

[div o [1 o 1, _3.0]

, \/ +

o [f1 o 2 o 1

, f1 o 3 o 1

, \/+

o aa (*

o [((bu = 0) o (bur mod 2) o 2)->_2;_4

, f1 o + o [2 o 1,* o [1 o 1,2]]

]

)

o distl

]

]

o # build a 2-tuple: <h,L,U,(N-1),1/(N-1)> and an (N-1)-tuple

[[div o [- o [2,1] o r1,id]

50

, 1 o r1

, 2 o r1

, id

, bu div 1.0

]

, iota o bur - 1

]

, * o

[div o [1 o 1, _3.0]

, \/ +

o [f2 o 2 o 1

, f2 o 3 o 1

, \/+

o aa (*

o [((bu = 0) o (bur mod 2) o 2)->_2;_4

, f2 o + o [2 o 1,* o [1 o 1,2]]

]

)

o distl

]

]

o # build a 2-tuple: <h,L,U,(N-1),1/(N-1)> and an (N-1)-tuple

[[div o [- o [2,1] o r2,id]

, 1 o r2

, 2 o r2

, id

, bu div 1.0

]

, iota o bur - 1

]

, * o

[div o [1 o 1, _3.0]

, \/ +

o [f3 o 2 o 1

, f3 o 3 o 1

, \/+

o aa (*

o [((bu = 0) o (bur mod 2) o 2)->_2;_4

, f3 o + o [2 o 1,* o [1 o 1,2]]

]

)

o distl

51

]

]

o # build a 2-tuple: <h,L,U,(N-1),1/(N-1)> and an (N-1)-tuple

[[div o [- o [2,1] o r3,id]

, 1 o r3

, 2 o r3

, id

, bu div 1.0

]

, iota o bur - 1

]

]

o ((bu = 0 o bur div 2) -> id ; bur - 1) # odd number of points

Def trapezoid

[* o # First function's integration

[+ o

[

\/+ o

aa (f1 o + o [1,* o [- o [2,1],4]] o apndr) o

distl o [apndr o [r1,1] , 2]

,

bur div 2.0 o

+ o

aa f1 o r1

]

,

div o [- o [2,1] o r1,1] # compute h

]

, * o # Second function's integration

[+ o

[

\/+ o

aa (f2 o + o [1,* o [- o [2,1],4]] o apndr) o

distl o [apndr o [r2,1] , 2]

,

bur div 2.0 o

+ o

aa f2 o r2

]

,

div o [- o [2,1] o r2,1] # compute h

52

]

, * o # Third function's integration

[+ o

[

\/+ o

aa (f3 o + o [1,* o [- o [2,1],4]] o apndr) o

distl o [apndr o [r3,1] , 2]

,

bur div 2.0 o

+ o

aa f3 o r3

]

, div o [- o [2,1] o r3,1] # compute h

]

]

build a 2-tuple: N and an (N-1)-tuple of points

at which the function is to be evaluated

Def build_data_set

[id

, aa *

o distr

o [iota o bur - 1, bu div 1.0]

]

Def test

[[a1,a2,a3] # the "correct" answers

, simpson

, trapezoid

]

o build_data_set

.15 Source Listing of Problem 15

No program was written for this problem.

.16 Source Listing of Problem 16

Problem 16

Solve Ax=B where A is NxN matrix and

B is a Nx4 matrix with column 1 is <1,0...0>,

column 2 is <1,1...1>, column 3 is 0.01 random,

53

and column r is

#

Uses a interative matrix inversion routine below:

Compute an MxN inverse of an NxM matrix, N<M, such

that the product (matrix X inverse) is a NxN matrix

"close" to the Identity matrix.

Group the matrix with an approximate inverse,

an appropriately sized identity matrix and the

iteration control parameters;

interate until done and extract the inverse

#

Def invert [1,2,4]

o iter

o [1 , initial o 1 , Imax o trans o 1 , 2]

Compute Newton's approximation to the inverse

#

Def iter while notyet once

Approximation is 2*B - BxAxB

(derived from B x (2*I-AxB)

or from (2*I-BxA) x B)

The first term is the original matrix,

the second term is the possible inverse,

the third term is an appropriately sized identity matrix,

the forth term contains the interation termination parms.

#

Def once [1

, (termdiff

o [(aa aa (bu * 2)) o 2 ,cross o [2, cross]]

)

, 3

, [(bur - 1) o 1 , 2] o 4

]

Compare the identity matrix with the product

of the matrix and a possible inverse. Quit

when the error is small enough or there have

been "enough" iterations.

#

54

Def notyet # while (0<count)and(epsilon<errorterm)

(and

o [(< o [_0 , 1 o 4])

, (<= o [2 o 4 , errmag o [3, cross]])

]

)

Def cross (aa aa dot) o (aa distl)

o distr o [1,trans o 2]

Def dot (\/+) o (aa *) o trans

Sum the termwise absolute error

Def errmag (\/+) o (aa abs)

o append o termdiff

Def termdiff (aa aa -)

o (aa trans) o trans

Def Imax (aa aa (eq -> _1 ; _0))

o buildmax o sizemax

Def buildmax (aa distl) o distr

o [id,id] o iota

Def sizemax (\/+) o (aa _1) o 1

An adequate initial inverse is the transpose

divided by the product of the row and column maximums

Def initial (aa aa *) o (aa distl)

o distl o [tau,trans]

Def tau (bu div 1.0)

o * o [rowmax,colmax]

Def colmax rowmax o trans

Def rowmax (\/max) o (aa \/+)

Test frame to return the "answer".

Def test

(cross o [2 o 1,2]

55

o [invert o 1 , 2]

)

.17 Source Listing of Problem 17

Problem 17

Adaptive quadrature

the inputs are: epsilon, lower bound, interval,

Def Prog

Aq

o Prep

Def Prep [1 # 1 epsilon

,2 # 2 low

,div o [3,_2.0] # 3 h/2

,+ o [2,div o [3,_2.0]] # 4 mid

,div o [3,_4.0] # 5 h/4

,Trap o [2,3,div o [3,_2.0]]] # 6 approx

Def Aq

((< o [abs o - o [6,+ o [7,8]],1]) -> + o [7,8] ; A2)

o A1

Def A2 + o [Aq o [div o [1,_2.0],2,5,+o[2,5],div o[5,_2.0],7]

,Aq o [div o [1,_2.0],4,5,+o[4,5],div o[5,_2.0],8]]

Def A1 [1,2,3,4,5,6,Trap o [2,3,5],Trap o [4,3,5]]

Def Trap

+

o [* o [Fun o 1,3]

,* o [Fun o + o [1,2],3]]

This is the "probability function" that

produces the bell-shaped curve

Def Fun (bur * 0.3989422804) o exp o (bur div -2.0) o * o [id,id]

Def Fun sin

56

.18 Source Listing of utilities

Def tdiff

([_5,id,(aa (exp))] #(bu pow 2.0)

o (aa(bur div 10.0)) #(bur - 1.0)

o iota

)

This function generates an N x M matrix with values +-1.0

Def tmax

aa aa (* o [sin o 1, cos o 2]) o

aa distl o distr o [iota o 1,iota o 2]

This function generates an N x M matrix with values +1.0 - 0.0

Def tscore

aa aa (bur div 2.0 o bu + 1.0 o * o [sin o 1, cos o 2])

o aa distl

o distr

o [iota o 1,iota o 2]

This function generates an N element vector with values +-1.0

Def tvec

aa sin o iota

57

