
Department of

Computer Science

Uniqueness Analysis of Array

Comprehensions Using the

Omega Test

David Garza and Wim Bohm

Technical Report CS-93-127

October 21, 1993

Colorado State University

Uniqueness Analysis of Array Comprehensions Using
the Omega Test 1

David Garza and Wim B�ohm

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

tel: (303) 491-7595

fax: (303) 491-6639
email: bohm@cs.colostate.edu

Abstract

In this paper we introduce the uniqueness problem of array comprehensions. An array

comprehension has the uniqueness property if it de�nes each array element at most

once. Uniqueness is a necessary condition for the correctness of single assignment

languages such as Haskell, Id, and Sisal. The uniqueness problem can be stated as

a data dependence problem, which in itself can be reformulated as an integer linear

programming problem. We derive algorithms to solve this problem using the Omega

test, an Integer Linear Programming tool.

1 Introduction

One of the major applications of supercomputers is scienti�c numerical computing where
much time is spent in performing array computations. This suggests that a language in-

tended for scienti�c numerical computation must have a very e�cient implementation of
array operations as one of its key features. Functional languages provide an implicitly paral-

lel, machine independent programming paradigm, avoiding many of the problems of explicit,
machine dependent, and non-deterministic programming associated with explicitly parallel

imperative languages. Some functional languages, such as Haskell, Id, and Sisal [4, 10, 13],
have been designed to be used for scienti�c computing. Even though there have been sig-

ni�cant improvements in the implementation of arrays for these languages [6, 2, 7, 1], there

are still several problems that have not been addressed.

An array comprehension is a functional monolithic array constructor, de�ning an array as a

whole entity. Id and Haskell have incorporated recursive array comprehensions, where array

1This work is supported in part by NSF Grant MIP-9113268

1

A = { 1D_array((1,n),(1,n)) of

| [1,j] = 1 || j <- 1 to n

| [i,1] = 1 || i <- 2 to n

| [i,j] = A[i-1,j] + A[i,j-1] || i <- 2 to n ; j <- 2 to n

}

Figure 1: Array Comprehension for the Pascal Triangle in Id

elements can be de�ned in terms of other array elements of the same array. Moreover, Id
and Haskell arrays are non-strict, i.e., not all elements of the array need to be de�ned. Sisal

2 [4] has incorporated the simpler form of non-recursive array generator. Sisal arrays are
strict, i.e., they can be completely de�ned before any of the array elements needs to be used.

An example of a non-strict Id style array comprehension for the pascal triangle is given in

�gure 1. In the �rst line of �gure 1 the dimensionality and bounds of the array are de�ned.
A region of the form: [target] = expression k generator is equivalent to the loop construct
for generator do array[target] = expression.

The semantics of array comprehensions obeys the single-assignment rule of functional lan-

guages, which prescribes that an array-element may not be de�ned more than once. In the
current implementation of Id a rede�nition of an array element will give rise to a run-time
error [10]. Checking for this error introduces run-time ine�ciency in most implementa-
tions of Id. We say that an array is uniquely de�ned if non of its elements is de�ned more
than once. Compile time uniqueness analysis avoids the ine�ciency of run-time checks.

Uniqueness analysis is a form of array dependence analysis, and therefore employs subscript
analysis techniques, similar to those used in optimizing and parallelizing conventional lan-
guage compilers[15]. We have chosen the Omega test [11], which is based on integer linear
programming, for this work. We will derive algorithms that turn an array comprehension

into an integer linear programming problem that then will serve as input for the Omega test.

The rest of this paper is organized as follows. Section two gives a brief description of
array comprehensions. Section three introduces the Omega test. Section four presents an
algorithm for checking bounds. Section �ve presents algorithms for uniqueness analysis with

some examples. Section six discusses related and future research. Section seven provides

concluding remarks.

2

2 Array comprehensions

As mentioned in the introduction, array comprehensions are a form of monolithic array

de�nitions, as opposed to constructs where an empty array is declared and its element

values are de�ned throughout the program. Besides being an elegant way of de�ning an

array, array comprehensions can have some e�ciency advantages over other functional array

constructors. Consider an array with the diagonal elements equal to 1, and the rest of the

elements equal to the sum of row and column index. A possible way for de�ning this array

is:

{ def fill (i,j) = if (i == j) then 1 else i+j

In make-matrix((1,100), (1,100) fill}

This de�nition involves the run time evaluation of the conditional for every element of the
matrix being created. The same matrix can be de�ned with the next array comprehension
without incurring this run-time overhead.

{2D_array((1,100), (1,100)) of

| [i,j] = i + j || i <- 1 to 99 ; j <- (i+1) to 100

| [i,j] = i + j || i <- 2 to 100 ; j <- 1 to (i-1)

| [i,i] = 1 || i <- 1 to 100 }

Using array comprehensions we can create recursive data structures very naturally. An
example of this is the pascal triangle computation shown in �gure 1. The abstract syntax
for an array comprehension creating an n-dimensional array consisting of m regions is:

nD array((l1; u1); : : : ; (ln; un)) of

j [f1
1
(I1); : : : ; f

n
1
(I1)] = expr1 h jj gen1

1
; : : : ; gend1

1
i

j [f1
2
(I2); : : : ; f

n
2
(I2)] = expr2 h jj gen1

2
; : : : ; gend2

2
i

...

j [f1m(Im); : : : ; f
n
m(Im)] = exprm h jj gen1m ; : : : ; gendmm i

where h::i indicates option, and each generator expression gen
k
j , is of the form: ikj l

k
j to u

k
j .

Zero or more generator expressions de�ne a region using a cross product of nested loops.

Ij is the vector of loop variables for region j. The loop variables of region j are called
i
k
j (1 � k � dj). The bounds of a loop variable may use previously de�ned loop variables.

The expression f
p
j ; (1 � p � n) de�nes the subscript expression in the p-th dimension of

region j. In the formulation above we have assumed that the step of the generator expressions

is always 1. Techniques for obtaining a step 1 for each loop variable can be found in e.g.

[15].

3

3 The Omega Test

A signi�cant number of data dependence tests [3, 15, 5] assume a prede�ned \standard"

order of computation [5]. In array comprehensions we do not have such prede�ned order.

The Omega test [11, 12] is an exact data dependence test, free of assumptions on order of

evaluation, and based on integer linear programming techniques. Although it has a worst-

case exponential time complexity, this rarely occurs when using it for data dependence

analysis. In fact, the time needed by the Omega test to analyze a problem is rarely more

than twice the time required to scan the array subscripts and loop bounds. The Omega

test can work with symbolic values, and it can also be used to simplify integer programming

problems instead of just deciding them.

An integer linear programming problem consists of a number of equalities and inequalities

of the form:
Pn

i=1 aixi = c and
Pn

i=1 aixi � c, where ai (1 � i � n) and c are constants and
xi (1 � i � n) are variables. Given an integer linear programming problem P, the Omega
test decides whether there is an integer solution to P, and if so, the values of the variables
that satisfy the constraints are produced. A brief description of the omega test follows.

First each constraint is normalized, such that the gcd (greatest common divisor) of all the
ai (1 � i � n) coe�cients of the constraint is equal to 1. At this stage the traditional gcd test
[3] can be used to check whether no solution exists. Normalized constraints are eliminated
in an iterative process by forcing a coe�cient of 1 on some variable which can then be

eliminated. After eliminating the equality constraints, we can check for contradictions in the
remaining constraints.

We eliminate variables from our set of inequalities one at a time until we are able to prove
or disprove a solution to the problem. The Omega test uses Fourier-Motzkin variable elim-

ination, which �nds the n-1 dimensional shadow cast by an n-dimensional object. If there
are no integer points in this so called real shadow, then no integer solution exists. However,
if there are solutions in the real shadow we cannot guarantee that the original problem has

solutions.

If the solution was not disproved in the previous steps, an adaptation to Fourier-Motzkin
computes the dark shadow which guarantees that for every integer point in the dark shadow

there is an integer point in the object above it. However, if there is no solution in the dark

shadow, there is still the possibility that the original problem has a solution. In this case

the solution is closely nestled between an upper and lower bound, and a set of planes is

generated such that a solution will lie on one of them. If after exhausting all possible lower
bounds no solution is found, the problem has no solution.

4

4 Bounds Test

Before the uniqueness analysis we apply algorithm 1 which checks if a speci�c region of the

array comprehension is de�ning elements out of the bounds of the whole array. This will

simplify the uniqueness analysis and other forms of analysis which rely on the assumption

that all the elements are de�ned within the bounds of the array.

Algorithm 1: Bounds Test

1. Set d to the number of loop variables in vector I of the region being tested, and n to

the dimensionality of the array.

2. Generate vector X = (x1; x2; x3; : : : ; xd). This vector represents the set of unknown
loop variables for which we will try to �nd an integer solution.

3. For each element ek (1 � k � d) of X generate constraints expressing that ek falls in
the appropriate loop bounds. These constraints are of the form l

k
� e

k
� u

k where lk

and u
k are the upper and lower bounds of the loop variable ik.

We will call P the integer programming problem resulting from the constraints de�ned
in this step.

4. For p from 1 to n, create a problem Lp obtained by adding the following constraint to
P:

f
p(X) < lp

lp is the lower bound of the p-th dimension of the array.

5. For p from 1 to n, create a problem Up obtained by adding the the following constraint
to P:

f
p(X) > up

up is the upper bound of the p-th dimension of the array.

The omega test is used to check if a solution exists to any of the Lp or Up problems. If

no solution is found then we say that the current region de�nes array elements within its

bounds.

An example of use of this algorithm is given in the following section.

5

5 Uniqueness Analysis

The algorithms in this section describe how to transform an array comprehension into a linear

integer programming problem representing a uniqueness problem. When checking for unique-

ness, we search for output dependence between any two de�nitions in the array comprehen-

sion. We know that for any two n-dimensional array references sx : a(f
1

x(Ix); : : : ; f
n
x (Ix)) and

sy : a(f1y (Iy); : : : ; f
n
y (Iy)), there is an output dependence between sx and sy if and only if

f
1

x(Ix) = f
1

y (Iy)&; : : : ;&f
n
x (Ix) = f

n
y (Iy).

There can be two forms of output dependence. Elements in one region can be de�ned more

than once. This occurs when sx and sy are the same expression. The second source of

dependence is when we have a dependence between any two de�nitions from di�erent region
de�nitions. This occurs when sx and sy are two di�erent expressions. Therefore we can split

uniqueness analysis into two subproblems:

� Intra-regional uniqueness: identi�es whether there is a rede�nition of an array
element in the same region.

� Inter-regional uniqueness: identi�es whether there is a rede�nition of an array
element between any two di�erent regions.

We say that an array comprehension has the uniqueness property if and only if all its regions
are intra-regional unique and the array is also inter-regional unique.

5.1 Intra-regional Uniqueness

Algorithm 2: Intra Regional Uniqueness Test

1. Set d to the number of loop variables in vector I of the region being tested, and n to

the dimensionality of the array.

2. Generate two vectors X = (x1; x2; x3; : : : ; xd) and Y = (y1; y2; y3; : : : ; yd). These vec-

tors represent the set of unknown loop variables for which we will try to �nd an integer
solution.

3. For each element ek (1 � k � d) of X and Y generate constraints expressing that ek

falls in the appropriate loop bounds. These constraints are of the form l
k
� e

k
� u

k

where lk and u
k are the upper and lower bounds of the loop variable ik.

4. For each subscript expression f
p (1 � p � n) generate the equality that represents the

test for dependence:

6

f
p(X) = f

p(Y)

f
p(X) and f

p(Y) are obtained from f
p(I) by variable replacement of each instance of

i
k of the I vector by x

k or yk. The integer programming problem resulting from the

constraints de�ned in the previous steps is called P.

5. For k from 1 to d, create a problem Pk obtained by adding the constraint xk < y
k to

P .

The Omega test is used to check if a solution exists to any of the Pk integer programming

problems. If no solution is found, we declare the region intra-regional unique.

5.1.1 Example

Consider the following array comprehension

A = {2D_array ((1,75),(1,75) of

| [2i+1,j] || i <- 0 to 25 ; j = i+1 to 50 %region 1

| [2*k,2*k+j] || i <- 1 to 4 ; k <- i+1 to 2i ; j <- 2*k+1 to i+2*k} %region 2

For region 1, the vector of loop variables is I1 = (i; j) with 0 � i � 25 and i+ 1 � j � 50
and index expressions f1

1
(I1) = 2i+ 1 and f

1

2
(I1) = j.

We �rst check bounds using algorithm 1. Step 2 of the algorithm will create the vector
X = (x1; x2). Step 3 creates the following constraints:

0 � x1 � 25; x1 + 1 � x2 � 50.

Step 4 will add the constraint 2x1 + 1 < 1 to P yielding problem L1. It will also add the

constraint x2 < 1 to P yielding problem L2. Step 5 adds the constraint 2x1 + 1 > 75 to P

yielding problem U1 and it also adds constraint x2 > 75 yielding problem U2. The omega
test determines that there is no solution to any of the problems L1, L2, U1, and U2 therefore

all the elements de�ned in region 1 are within the bounds of the array.

For region 2 the vector of loop variables is I2 = (i; k; j) with 1 � i � 4, i + 1 � k � 2i
and 2k + 1 � j � i + 2k and the index expressions are f

2

1
(I2) = 2k and f

2

2
(I2) = 2k + j.

Step 2 of the algorithm will create the vector X = (x1; x2; x3). Step 3 creates the following

constraints:

1 � x1 � 4; x1 + 1 � x2 � 2x1; 2x2 + 1 � x3 � x1 + 2x2

7

Step 4 will add the constraint 2x2 < 1 to P yielding problem L1, It also adds the contraint

2x2 + x3 < 1 to P yielding problem L2. Step 5 adds the constraint 2x2 > 75 to P yielding

problem U1 and it also adds constraint 2x2 + x3 > 75 yielding problem U2. The omega test

determines that there is no solution to any of the problems L1, L2, U1, and U2 therefore all

the elements de�ned in region 2 are within the bounds of the array.

Now we proceed to check for uniqueness using algorithm 2. Step 2 of the algorithm will

create the vectors X = (x1; x2) and Y = (y1; y2). Step 3 creates the following constraints:

0 � x1 � 25; x1 + 1 � x2 � 50; 0 � y1 � 25; y1 + 1 � y2 � 50.

Step 4 adds 2x1 + 1 = 2y1 + 1 and x2 = y2. All the above constraints de�ne problem P .

Step 5 adds the constraint x1 < y1 to P yielding problem P1. The Omega test, determines
that P1 has no solution. We generate problem P2 by adding the constraint x2 < y2 to P .
The Omega test determines that there is no solution to problem P2 either, and since we now

have exhausted all the possible problems for this region, we can conclude that region 1 is
intra-regional unique.

For region 2 step 2 creates vectors X = (x1; x2; x3) and Y = (y1; y2; y3). Step 3 creates the

constraints

1 � x1 � 4; x1 + 1 � x2 � 2x1; 2x2 + 1 � x3 � x1 + 2x2
1 � y1 � 4; y1 + 1 � y2 � 2y1; 2y2 + 1 � y3 � y1 + 2y2

Step 4 adds 2x2 = 2y2 and 2x2 + x3 = 2y2 + y3.

All the above constraints de�ne integer programming problem P .

Step 5 adds the constraint x1 < y1 to P resulting in problem P1. The Omega test determines
that there is a solution to this problem.

Region 2 de�nes array elements [8,17],[8,18],[10,21],[10,22],[10,23],[12,25], [12,26], and [12,27]
more than once, and is therefore not intra-regional unique.

5.2 Inter-regional Uniqueness

Using the Omega test, algorithm 3 obtains the summary of array references for each of the

region de�nitions of the array comprehension and then checks if there is an overlap between

any of these array references.

Algorithm 3: Inter-regional Uniqueness Test

1. Set n to the dimensionality of the array and m to the number of regions in the array

comprehension.

2. For each region r (1 � r � m) perform steps (a) through (d)

8

(a) Set d to the number of loop variables in vector Ir.

(b) Generate inequality constraints based on the bounds of each element ikr (1 � k �

dr) of vector Ir:

l
k
r � i

k
r � u

k
r

(c) Create n new variables xp (1 � p � n) , and de�ne the constraints on x
p
r in terms

of the bounds of each of the dimensions of the original array:

lp � x
p
r � up

(d) Create n equality constraints (1 � p � n) to represent the relation between the
index expression f

p
r (1 � p � n) and the new variable xpr de�ned in step (c):

f
p
r (Ir) = x

p
r

This equality represents a summary of the array elements being accessed in region
r.

3. For region r, steps (a), (b), (c), and (d) above de�ne a problem Pr. For each combina-
tion of 2 regions, s and t, generate n equality constraints in terms of the variables xps
and x

p
t (1 � p � n) created in step 2c.

x
p
s = x

p
t

Pst is the integer programming resulting from combining the constraints in Ps; Pt, and

the constraints de�ned in this step.

If the Omega test �nds that there is no solution to any of the Pst problems, we declare
the array comprehension inter-regional unique.

Step 2b of the algorithm creates constraints that de�ne the range of values that each loop

variable can take on each of the di�erent regions of the array comprehension. Step 2c de�nes

new variables for each array dimension and de�nes the bounds for these variables. Step 2d
�nds a summary of the array references that are done on each array dimension for a particular

region. Step 3 generates the constraints that check if there are any two overlapping regions.

9

5.2.1 Example

We apply algorithm 3 to the following array comprehension:

A={ 1D_array(1..2m) of | [1] = 1 %region 1

| [2*i] = i || i = 1 to m %region 2

| [2*j+1] = j || j = 1 to m-1} %region 3

Step 2 generates the following constraints: for region 1 step 2b generates no constraints,
step 2c creates the constraint 1 � x1 � 2m and step 2d produces the constraint 1 = x1.
Similarly, for region 2 the constraints are 1 � i � m, 1 � x2 � 2m, and 2i = x2. For region
3 the constraints are 1 � j � m� 1, 1 � x2 � 2m and 2j + 1 = x3. Step 3 de�nes problem
P12 by taking all the constraints generated for regions 1 and 2 and adding the constraint

x1 = x2. This problem is given to the Omega test, which determines that there is no solution.
We generate problem P13 in the same way. Again the Omega test �nds no solution to this
problem. The last problem generated is P23, once again the Omega test determines that
there is no solution. Since we have exhausted all possible combinations of two regions we
conclude that the array is inter-regional unique.

Now we make a slight change to the array comprehension and set the index expression of
the �rst region to 2. The Problem P12 willconsist of the following constraints:

1 � x1 � 2m; 2 = x1; 1 � i � m; 1 � x2 � 2m; 2i = x2; x1 = x2

The Omega test �nds a solution to this problem (x1 = x2 = 2), meaning that there is a

rede�nition of array elements.

5.3 Compiler Interface

Our algorithms require certain information that can be obtained from the program text. A
simple data structure can be used to make available all the information required. This data

structure should contain, among other information, the following �elds:

� Array Id: Array Identi�er that uniquely identi�es the array.

� Dimension: The dimensionality of the array.

� Num Regions: The number of regions of the array comprehension.

10

� Bounds: A pointer to a data structure which contains, for each dimension of the array,

the values of the upper and lower bounds.

� Region Info: A pointer to a data structure that contains the following information

speci�c to each region:

{ Num Vars: The number of loop variables used in the region.

{ Vars Info: A pointer to a data structure that contains Num Vars tuples and each

tuple consists of a variable identi�er for the loop variable, and the upper and

lower bounds of that variable.

{ Subscript Expr: A pointer to a matrix similar to the atom data structure described

in [9], where each row corresponds to one dimension of the array and each column

corresponds to one of the Num Vars loop variables of the region plus two extra
columns: one that indicates if the subscript expression is linear and the other for
the constant term. Each entry in row d column j, is the coe�cient of the loop
variable j for the subscript expression in dimension d.

Given this information our algorithm can extract the data needed and use the Omega test
which has an interface that consists of several data structures, procedures and functions.
The main data structure of the Omega test interface is one that de�nes the problem, some
of the information contained here is the number of variables, number of equalities, number of
inequalities, an array of equalities and greater than inequalities each represented by a data

structure similar to the Subscript Expr �eld above described.

6 Related and Future Research

When testing for inter-regional uniqueness we can think of each of the regions as a procedure

call in an imperative language that de�nes certain elements of a globally de�ned array.

Typical methods for testing data dependence in the presence of procedure calls base their

analysis on obtaining a summary of the array references of each procedure and then testing
for overlap between any of these array elements [14, 8, 5, 9]. One problem with these

approaches is that except for [5] and [9] the approaches produce an approximate summary
of the array references. For our problem we require precise information.

Burke and Cytron [5] propose to linearize the array space and to generate a list of array
access information for each procedure. In order to prove independence between the array

region accessed by procedure A and the array region accessed by procedure B, one needs to

generate all possible pairs obtained by combining each of the elements of the list of array

11

accesses from procedure A with each element from the list of procedure B, and check the

independence of all pairs.

Li and Yew [9] approach is very similar to Burke and Cytron's since they also form a set of

array references and then apply a standard dependence test to prove independence between

any two pairs of references. Two main di�erences are that they don't linearize the array space,

mainly because data dependence tests are less precise when linearization has been applied.

Secondly they introduce a data structure called atom which contains information about the

array references and it is used to propagate this information to the calling procedure.

Hudak and Anderson [1] propose the use of subscript analysis for functional monolithic

arrays. They recognize the uniqueness problem which they call Detecting Write Collisions,

and they propose the use of Banerjee Inequalities test to check for independence. However,
since this test is inexact they have to make pessimistic assumptions when the test is not able
to disprove dependence.

Besides uniqueness analysis there are other compile time checks that can be performed to
reduce run-time ine�ciencies of functional arrays. Currently we are studying the following
problems:

� Completeness Analysis: An e�ciency problem of strict arrays, previously identi�ed
by Hudak and Anderson [1], is that a check is needed to ensure that the whole array is
de�ned. Either run time checks, or static Completeness analysis are required in order
to verify this.

� Well-de�nedness: For non-strict arrays an error will occur if the array comprehension
tries to use array elements that never will be bound. This problem can be avoided by
performing a well- de�nedness analysis.

� Order of evaluation: Some implementations of functional arrays rely on dynamic ele-
ment level synchronization, like a per array element \presence-bit". Computations that
use array elements will be synchronized by checking the presence-bit. This approach

clearly causes run-time overhead, especially in machines without hardware support for

presence bits. Also, for this approach to work, all processes de�ning an array element
need to be started up at the same time, which causes high resource usage. If we are

able to perform static order of execution analysis, we can schedule the array computa-
tions in such a way that the element level synchronization can be eliminated, and only

the processes that can write an array element at some moment in the execution, will

be started.

12

7 Conclusions

We have presented algorithms that check bounds and test for intra and inter regional unique-

ness of array comprehensions for functional languages. Our algorithms use the Omega test

as a tool. The Omega test was chosen because it is an exact, fast, and e�cient and does

not assume a standard order of evaluation. We have applied our algorithms to two array

comprehension examples. The proposed algorithms should be applied to a more extensive

number of examples in order to �nd possible practical limitations of the algorithm or of the

Omega test itself. These limitations can lie in the exponential worst case complexity of the

Omega test, or in the fact that bounds and index expressions must be linear.

Subscript analysis and program optimizations based on the information obtained from this
type of analysis has been heavily used in imperative languages in order to improve paral-

lelism and locality. We believe that functional languages can similarly bene�t from subscript
analysis, and this work is a �rst attempt that shows some of the bene�ts that can be ob-
tained. We hope that more research in this direction can further help us to come up with
optimizations and implementations of functional languages that will exploit parallelism and
locality.

13

References

[1] Steven Anderson and Paul Hudak. Compilation of Haskell Array Comprehensions for Scienti�c

Computing. In Proceedings of the ACM SIGPLAN '90 Conference on Programming Language

Design and Implementation, pages 137-149, June 1990.

[2] Arvind and Rishiyur S. Nikhil. I-Structures: Data Structures for Parallel Computing. ACM

Transactions on Programming Languages and Systems, 11(4):598{632, October 1989.

[3] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishing, 1988.

[4] A.P.W. B�ohm, D. C. Cann, J. T. Feo and R. R. Oldehoeft. SISAL 2.0 Reference Manual.

Technical Report CS-91-118, Computer Science Department, Colorado State University, Fort

Collins, CO, November 1991.

[5] Michael Burke and Ron Cytron. Interprocedural Analysis and Parallelization. In ACM SIG-

PLAN '86 Symposium on Compiler Construction, pages 162-175, June 1986.

[6] D. C. Cann. Compilation Techniques for High Performance Applicative Computation. Ph.D.

thesis, Colorado State University, Computer Science Department, Fort Collins, CO, 1989.

[7] G. R. Gao and Robert Kim Yates. An E�cient Monolithic Array Constructor. ACAPS Tech-

nical Memo 19, School of Computer Science, McGill University, Montreal, Canada, June 1990.

[8] Paul Havlak, Ken Kennedy. Experience with Interprocedural Analysis of Array Side E�ects.

In Supercomputing '90, pages 952-962, 1990.

[9] Zhiyuan Li and Pen-Chung Yew. E�cient Interprocedural Analysis for Program Parallelization

and Restructuring. In ACM SIGPLAN PPEALS, pages 85-99, 1988.

[10] R.S. Nikhil, Id (version 90.0) Reference Manual. TR CSG Memo 284-1, MIT LCS 1990.

[11] William Pugh. The Omega Test: a fast and practical integer programming algorithm for

dependence analysis. In Supercomputing 1991, pages 4-13, November 1991.

[12] William Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Communications

of the ACM, 35(8):102{114, August 1992.

[13] Boleslaw K. Szymanski. Parallel Functional Languages and Compilers. ACM Press, 1991.

[14] Rimi Triolet, Francois Irigoin, and Paul Feautrier. Direct Parallelization of Call Statements. In

Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, pages 176-185, June

1986.

[15] Hans Zima with Barbara Chapman. Supercompilers for Parallel and Vector Computers. ACM

Press, NY, 1990.

14

