
Department of

Computer Science

E�cient Declarative Programs:

Experience in Implementing

NAS Benchmark FT

S. Sur and W. Bohm

Technical Report CS-93-128

October 21, 1993

Colorado State University

E�cient Declarative Programs: Experience

in Implementing NAS Benchmark FT

S. Sur and W. B�ohm

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

September 17, 1993

Abstract

We implement the NAS parallel benchmark FT, which numerically solves a three di-

mensional partial di�erential equation using forward and inverse FFTs, in the func-

tional language Id and run it on a one node monsoon machine. Id is a layered language

with a purely functional kernel, a deterministic layer with I-structures, and a non-

deterministic layer with M-structures. We compare the performance of versions of our

code written in these three layers of Id. The purely functional code provides the highest

average parallelism, but this parallelism turns out to be super
uous. The I-structure

code executes the minimal number of instructions and as it has a similar critical path

length as the functional code, runs the fastest. The M-structure code allows the largest

problem sizes to be run at the cost of about 20% increase in instruction count, and

75% to 100% increase in critical path length, compared to the I-structure code.

Address for Correspondence:

A. P. W. B�ohm

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

Tel: (303) 491-7595

Fax: (303) 491-6639

Email: bohm@CS.ColoState.Edu

1

1 Introduction

In this paper we study the design of e�cient declarative programs by implementing the

NAS three dimensional FFT PDE benchmark FT [5] in Id [6]. This study is part of a larger

project where we try to assess which declarative language features are of importance to write

e�cient scienti�c codes. A declarative programming language allows expressing what is to

be done, without specifying too much of how it is to be done. As an example, declarative

programming languages are implicitly parallel, i.e., allocation of tasks and data on processors

are not expressed in the program. This frees the programmer from this level of complexity

in the design of parallel programs.

The declarative programming language Id has a functional kernel. Arrays in this func-

tional kernel are created using monolithic array constructors called array comprehensions. In

[1], Arvind and others argue, that these array comprehensions lack expressiveness, and that

for certain problems a lower level of constructs manipulating the elements of I-structures is

necessary. An I-structure is a single assignment array with element-level synchronization for

reads and writes. Because of their single assignment nature, Id programs with I-structures

are deterministic, even though pure functional referential transparency has been lost. In [2]

it is shown that for certain problems I-structures are again not powerful enough and that the

more expressive M-structures are needed. M-structures are also arrays with element-level

synchronisation, but do not have the single assignment property anymore. M-structures al-

low \put" operations to write in an empty array slot, and \get" operations read and empty

an array slot. Therefore, with interleaved puts and gets, M-structures allow destructive

updates, to express potentially non-deterministic producer-consumer relationships.

The above papers argue convincingly that the Id language gets increasingly more expres-

sive when I-structures and M-structures are added. In this paper, we are interested in the

time and space e�ciency of realistic programs, when written in these various layers of the

language. We therefore analyse three Id implementations of the NAS FT benchmark: a func-

tional version, a version using I-structures, and a version using M-structures. We measure

the time complexity of our programs by running small problems on the Monsoon Interpreter

MINT, which reports on the number of instructions executed and the critical path length

and provides parallelism pro�les. We measure the space complexity of our programs by de-

termining the maximal problem size that �ts in our one node Monsoon machine [3], which

has a 4 Megaword data memory. The goal of this project is to run a 64 � 64 � 64 problem

on a one node monsoon machine, where one 3-D object contains half a Megaword of point

numbers.

It turns out that the purely functional code provides the highest parallelism, but at the

cost of high instruction counts and high space usage. The I-structure code executes the

minimal number of instructions and runs the fastest on the one node monsoon machine,

which provides 8-fold parallelism. The M-structure code allows the largest problem sizes to

be run and turns out to be the only code that allows us to run the 64 � 64� 64 problem.

The rest of this paper is organized as follows. Section 2 de�nes the FT NAS benchmark

2

solver. Section 3 �rst discusses the representation of 3-D objects, and then highlights the

di�erences in programming styles in the functional, I-structure, and M-structure codes. In

section 4 we analyses the time and space performance of our three codes. Section 5 concludes.

2 Problem speci�cation

In the NAS benchmark FT, the following three dimensional heat equation is solved numeri-

cally:
�u(x; t)

�t
= �r2u(x; t)

where x is a position in 3 dimensional space and � a constant describing conductivity. When

a Fourier transform is applied to each side, this equation becomes:

�v(z; t)

�t
= �4��2jzj2v(z; t)

where v(z; t) is the Fourier transform of u(x; t). This equation has the solution:

v(z; t) = e�4��
2
jzj

2
tv(z; 0)

The discrete version of the above problem can be solved using Discrete Fourier transforms

(DFT) instead of continuous ones. First, a 3-D DFT is performed on the original state array

u(x; 0), then the results are multiplied by certain exponentials and lastly an inverse 3-D DFT

is performed, see �gure 1. The forward and inverse DFTs of the n1 x n2 x n3 array u are

de�ned respectively as:

Fq;r;s(u) =
n3�1X

l=0

n2�1X

k=0

n1�1X

j=0

uj;k;le
�2�ijq=n1e�2�ikr=n2e�2�ils=n3

F�1
q;r;s

(u) =
1

n1n2n3

n3�1X

l=0

n2�1X

k=0

n1�1X

j=0

uj;k;le
2�ijq=n1e2�ikr=n2e2�ils=n3

In the FT benchmark, the complex array U is initialized using a pseudo-random number

generator. Setting V equal to the 3-D DFT of U, � = 10�6 and t = 1, the intermediate value

W is computed:

Wj;k;l = e�4��
2(�j2+�k2+�l2)tVj;k;l

where �j is de�ned as j for 0 � j < n1=2 and j � n1 for n1=2 � j < n1. The indices �k and
�l are similarly de�ned with n2 and n3. The 3-D inverse DFT of W , X, is then computed.

Finally, a checksum
P1023

j=0 Xq;r;s is computed where q = j (mod n1), r = 3j (mod n2) and

s = 5j (mod n3). The computation of W, X and the checksum, is repeated for values

t = 2to6. V needs only to be computed once. The array of exponential terms for t > 1 can

be obtained as the t-th power of the array for t = 1.

The benchmark allows any algorithm be used for the computation of the 3-D FFTs. The

algorithm we implement takes a complex array of size n1 � n2 � n3 and performs n2 � n3

3

Generate 3D complex
random vector

Perform forward 3D FFT Compute exponential terms

Calculate checksum

Adjust exponentials for time
 and multiply

loop for time=1 to 6

U

V
Exp

W

Compute inverse 3D FFT

X

Figure 1: Flow diagram of top level of NAS benchmark FT

n1-point 1-D FFTs in the n1 direction, then on the resulting array it performs n3 � n1

n2-point 1-D FFTs in the n2 direction, and on the resulting array it performs n1 � n2 n3

point 1-D FFTs in the n3 direction yielding the �nal result. The benchmark also allows

any algorithm to be used for the individual 1-D complex FFT. We use a straight-forward

iterative algorithm which reorders the array using bit-reversal of the index, and performs

butter
y group recombinations, where the smallest group is 4, and the group size doubles

in each iteration. Using a bottom case of 4 instead of 1 or 2 cuts out the bottom-most

branches of the FFT tree making it much more space and time e�cient. It also makes

resource management simpler as pointers and objects are not interchanged. We use iterative

FFTs instead of recursive ones, because in the iterative codes all the intermediate arrays can

be deallocated immediately after they are no longer required. Details about this can also be

found in [4].

3 Implementation

3.1 Data Representation

The �rst choice for the data representation that comes to mind is a 3-D array of complex

numbers represented by tuples of two real numbers. However, Id does not treat, for instance,

a 1-D sub-array of such an array (e.g. A[i,j,*]) as an independent data structure, that

4

can be passed to a 1-D FFT function. It is therefore just as simple and more e�cient to

have a linear data structure representing the 3-D object. Selecting a vector in a certain

direction now becomes stepping through the array with the appropriate stride. Having the

complex numbers represented by tuples introduces considerable ine�ciency because of the

extra indirection introduced by the tuples. Moreover, deallocating an array of tuples can

cause complications, if the array elements are sometimes copies (in which case only a new

pointer is created) and sometimes new values (in which case a new tuple and a new pointer

is created) [4]. We therefore opt for the simplest data representation possible: a linear

array of 2n1n2n3
oating point numbers. To get the input array, 2n1n2n3 pseudo-random

oating point values are generated as speci�ed in the FT benchmark, and then used to �ll

the complex array Uj;k;l, 0 � j < n1, 0 � k < n2, 0 � l < n3, where the �rst dimension

varies most rapidly as in the ordering of a 3-D Fortran array. A single complex entry of U

consists of two consecutive pseudorandomly generated results and is stored such that the

real and imaginary parts are a distance of n1n2n3 apart.

3.2 Purely functional implementation

In the functional version of the program, arrays are created using array comprehensions. An

array comprehension creating an n-dimensional array consisting of m regions is of the form:

nD array((l1; u1); : : : ; (ln; un)) of

j [f11 (I1); : : : ; f
n

1 (I1)] = expr1 jj gen11 ; : : : ; gen
d1
1

j [f12 (I2); : : : ; f
n

2 (I2)] = expr2 jj gen12 ; : : : ; gen
d2
2

...

j [f1m(Im); : : : ; f
n

m(Im)] = exprm jj gen1m ; : : : ; gendmm

where each generator genk

j
, is of the form: ik

j
 lk

j
to uk

j
. Zero or more generator

expressions de�ne a region using a cross product of nested loops. Ij is the vector of loop

variables for region j. The loop variables of region j are called ik
j
(1 � k � dj). The bounds

of a loop variable may use previously de�ned loop variables. The expression f
p

j ; (1 � p � n)

de�nes the target index in the p � th dimension of region j. As an example, the following

de�nes a matrix with 1 on the diagonal and the rest of the elements equal to the sum of row

and column index:

{2D_array((1,100), (1,100)) of

| [i,j] = i + j || i <- 1 to 99 ; j <- (i+1) to 100

| [i,j] = i + j || i <- 2 to 100 ; j <- 1 to (i-1)

| [i,i] = 1 || i <- 1 to 100 }

Array comprehensions allow for elegant concise de�nitions of arrays. There are, however,

a number of problems:

5

� No Sharing. When the computation of a number of array elements can share sub-

computations, this cannot be expressed in an array comprehension, as each array

element is de�ned independently. An example of this occurs in the �rst butter
y

recombination of a 1-D FFT, where groups of four contiguous array elements are de�ned

in terms of four contiguous elements of a previous array.

� No sub-array target. We cannot create a substructure (e.g. using a 1-D FFT) and

scatter it over a larger whole array as, again, array comprehensions work on element

level.

� More intermediate arrays. As an array comprehension does not allow the expres-

sion of loop carried dependencies, extra intermediate arrays often need to be created.

The consequence of this lack of expressiveness of purely functional code is a high in-

struction count as well as a high storage use as we shall see in the Results and Analysis

section.

3.3 I-structure Implementation

An I-structure can be created empty somewhere in the code, and partly or completely �lled

throughout the program. An I-structure allows array elements to be de�ned by array ele-

ment assignments, but still retains determinacy by allowing each element to be de�ned at

most once. The I-structure implementation of this benchmark is the closest to the problem

de�nition. Also almost nowhere were we forced to over-specify intermediate array details

introduced by the purely functional style. This makes the I-structure approach more declar-

ative than the purely functional approach [2]. Array elements are now de�ned in loop

constructs and nothing prevents us from de�ning more than one element in one loop body,

thus avoiding the sharing problem of array comprehensions. Also we can use loop carried

dependencies to avoid the creation of unnecessary intermediate structures. As we shall see,

this makes I-structure codes more e�cient in instruction counts as well as space usage.

3.4 M-structure Implementation

The problem with the I-structure implementation still is that, when performing a 1-D FFT

on a sub-array of the 3-D object, we need two versions of the object: the one that is read,

and the one that is written. When inspecting the FFT algorithm, it is clear that exactly the

same elements that are being read, need to be rewritten. An imperative algorithm would use

only one data structure. M-structures allow us to do the same thing in a declarative context.

It should be noted that M-structures are not needed here for expressiveness reasons: the

algorithm can be expressed very naturally using I-structures. The only reason to go to an

M-structure implementation of FT is space e�ciency.

As was mentioned in the introduction, M-structures allow elements to be \put" into an

empty location: A![i] = expression. A put cannot overwrite a value, i.e. a put to a full

6

location will result in a run-time error. Elements can be extracted, i.e. read and emptied,

by a \get" operation: x = A![i]. A third operation x = A!![i] reads (or extracts and puts

back) an M-structure element. A fourth operation A!![i] = x replaces (extracts and puts

a new value) an element of an M-structure. Notice that the operations with one ! change

the full/empty state of the elements, whereas the operations with the double !! take a full

element and leave it full.

M-structures in a parallel model of computation, such as the Id model of computation,

give rise to non-determinism: if a number of threads try to get an M-structure element, only

one can have it, and which one that will be depends on the arrival time of the particular get

operation.

We found that there are two styles of M-structure programming. The imperative style

uses reads and replaces to ensure that M-structure elements are always full, and provides

explicit synchronisation using barriers (notation |). This style is necessary when the num-

ber of reads and updates need not to be equal, but can also be used to mimic imperative

programming closely in Id. Of the M-structure implementations of the FT benchmark, this is

the easiest to write, simply because use of replace operations on M-arrays can closely imitate

imperative programming style. Use of barriers for explicit synchronization can also emulate

close to sequential programming style, extending the ease of programming (to people who

are more familiar with sequential thought process). This style gives us the maximum space

e�ciency we are after. However, the use of barriers combined with the reads and replaces,

which are more expensive than gets and puts, makes this style almost as ine�cient as the

purely functional style!

The second style of M-structure programming, the data driven style, uses puts and gets

for both communication and synchronization and avoids barriers as much as possible. Now

the puts and gets need to be perfectly balanced, which makes this style much harder and

more error prone. However, inspecting the behavior of FFT algorithms, it is clear that

the butter
y data dependences in the recombination phases allow extracting two elements,

performing some shared computation on these and putting two elements back in exactly the

same place. Therefore, puts and gets without extra barriers work for FFTs.

3.5 Code Examples

We consider two example code segments to contrast the di�erent programming styles dis-

cussed above: (1) I-structure (2) imperative M-structure (3) data-driven M-structure (4)

purely functional constructs.

3.5.1 Size 4 bottom case of 1-D FFT

The �rst example is the size 4 bottom case of our 1-D FFT. The array A0 in the following

examples contains the bit-reversed version of the input array. Array A will contain the result

of group size 4 butter
y recombinations. The I-structure implementation follows the problem

7

speci�cation almost identically.

typeof A = 1d_I_array(F); A = 1d_I_array(1,ar_size);

{for i <- 1 to n by 4 do

l1_r = A0[i] + A0[i+1]; l1_i = A0[n+i] + A0[n+i+1];

l2_r = A0[i] - A0[i+1]; l2_i = A0[n+i] - A0[n+i+1];

r1_r = A0[i+2] + A0[i+3]; r1_i = A0[n+i+2] + A0[n+i+3];

r2_r = (float IS)*(-1.0)*(A0[i+2] - A0[i+3]);

r2_i = (float IS)*(-1.0)*(A0[n+i+2] - A0[n+i+3]);

A[i] = l1_r + r1_r; A[i+n] = l1_i + r1_i;

A[i+1] = l2_r + r2_i; A[n+i+1] = l2_i - r2_r;

A[i+2] = l1_r - r1_r; A[n+i+2] = l1_i - r1_i;

A[i+3] = l2_r - r2_i; A[n+i+3] = l2_i + r2_r;

};

% Bottom four: I-Structure Code

The following code segment is an implementation of the same problem using imperative

M-structure style. This implementation is quite close to the implementation described above,

except that the reads and replaces are performed. Since these operations are more expensive

than I-structure reads and writes, this style of programming is less time-e�cient than the

I-structure version. Also, notice the barrier at the end of the code segment. Without this

barrier the code that uses A will use array elements before they are updated, producing

wrong results.

typeof A = M_vector(F);

{for i <- 1 to n by 4 do

l1_r = A0!![i] + A0!![i+1]; l1_i = A0!![n+i] + A0!![n+i+1];

l2_r = A0!![i] - A0!![i+1]; l2_i = A0!![n+i] - A0!![n+i+1];

r1_r = A0!![i+2] + A0!![i+3]; r1_i = A0!![n+i+2] + A0!![n+i+3];

r2_r = (float IS)*(-1.0)*(A0!![i+2] - A0!![i+3]);

r2_i = (float IS)*(-1.0)*(A0!![n+i+2] - A0!![n+i+3]);

A!![i] = l1_r + r1_r; A!![i+n] = l1_i + r1_i;

A!![i+1] = l2_r + r2_i; A!![n+i+1] = l2_i - r2_r;

A!![i+2] = l1_r - r1_r; A!![n+i+2] = l1_i - r1_i;

A!![i+3] = l2_r - r2_i; A!![n+i+3] = l2_i + r2_r;

};

% Bottom four: Imperative M-Structure Code

We now consider the implementation of the same problem using M-structures written in

data-driven style. The array A is initially empty, and M-structure put operations are used

to �ll it. The use of gets and puts instead of reads and replaces makes this implementation

considerably more e�cient than the previous one. Also, notice we do not have the explicit

barrier at the end anymore. The code that needs to use values in array A will wait for the

to be de�ned, using implicit element level producer-consumer synchronization.

8

typeof A = M_vector(F);

{for i <- 1 to n by 4 do

ai = A0![i]; ani = A0![n+i];

ai1 = A0![i+1]; ani1 = A0![n+i+1];

ai2 = A0![i+2]; ani2 = A0![n+i+2];

ai3 = A0![i+3]; ani3 = A0![n+i+3];

l1_r = ai + ai1; l1_i = ani + ani1;

l2_r = ai - ai1; l2_i = ani - ani1;

r1_r = ai2 + ai3; r1_i = ani2 + ani3;

r2_r = (float IS)*(-1.0)*(ai2 - ai3);

r2_i = (float IS)*(-1.0)*(ani2 - ani3);

A![i] = l1_r + r1_r; A![i+n] = l1_i + r1_i;

A![i+1] = l2_r + r2_i; A![n+i+1] = l2_i - r2_r;

A![i+2] = l1_r - r1_r; A![n+i+2] = l1_i - r1_i;

A![i+3] = l2_r - r2_i; A![n+i+3] = l2_i + r2_r;

};

% Bottom four: Data-driven M-Structure Code

The following code segment exempli�es the di�culties and ine�ciencies in the purely

functional approach. For each target element, all four results are computed and one element

is selected.

A = { vector(1,ar_size) of

| [(i-1)*4+k] = group4_real i k || i <- 1 to n4; k <- 1 to 4

| [(i-1)*4+k+n] = group4_imag i k || i <- 1 to n4; k <- 1 to 4};

def group4_real j index = {

i = (j-1)*4 + 1;

l1_r = A0[i] + A0[i+1]; l1_i = A0[n+i] + A0[n+i+1];

l2_r = A0[i] - A0[i+1]; l2_i = A0[n+i] - A0[n+i+1];

r1_r = A0[i+2] + A0[i+3]; r1_i = A0[n+i+2] + A0[n+i+3];

r2_r = (float IS)*(-1.0)*(A0[i+2] - A0[i+3]);

r2_i = (float IS)*(-1.0)*(A0[n+i+2] - A0[n+i+3]);

out = if (index == 1) then l1_r + r1_r

else if (index == 2) then l2_r + r2_i

else if (index == 3) then l1_r - r1_r

else l2_r - r2_i;

in out

};

def group4_imag j index = {

i = (j-1)*4 + 1;

l1_r = A0[i] + A0[i+1]; l1_i = A0[n+i] + A0[n+i+1];

l2_r = A0[i] - A0[i+1]; l2_i = A0[n+i] - A0[n+i+1];

r1_r = A0[i+2] + A0[i+3]; r1_i = A0[n+i+2] + A0[n+i+3];

r2_r = (float IS)*(-1.0)*(A0[i+2] - A0[i+3]);

r2_i = (float IS)*(-1.0)*(A0[n+i+2] - A0[n+i+3]);

9

out = if (index == 1) then l1_i + r1_i

else if (index == 2) then l2_i - r2_r

else if (index == 3) then l1_i - r1_i

else l2_i + r2_r;

in out

};

% Bottom four: Purely Functional Code

3.5.2 1-D FFT on slices of a big array

Consider a function that performs n2 one dimensional FFTs each of size n1 from an array

which is n1 � n2 long. This essentially requires partitioning the input vector in slices,

performing a 1-D FFT on each such slice and gluing the resulting together to obtain the

resulting array. An I-structure implementation of the function is as follows:

def cffts IS n1 n2 x ro = {

stride = n1*n2; size = n1*2;

typeof v = I_vector(F); v= I_vector(1, 2*n1*n2);

{for j<-1 to n2 do

y = slice j n1 stride x;

z = fft y ro IS;

{for i<-1 to n1 do

v[(j-1)*n1 +i] = z[i];

v[(j-1)*n1 +i +stride] = z[n1+i];

}

}

in v

};

% 1-D FFT on a slice: I-Structure Code

In the above code the function slice copies a slice of values from x.

When the function is implemented in imperative M-structure style, we need to sequen-

tialize the problem using explicit barriers before every stage, because the arrays y and z will

be reused. The function read slice reads a slice of values from x and updates y with these

values. The function fft updates z. The results of each fft are updated back into v.

def cffts IS n1 n2 x ro v= {

typeof x = M_vector(F); typeof ro = I_vector(F); typeof v = M_vector(F);

stride = n1*n2; size = n1*2;

z = {M_array (1,size) of | [j] = 0.0 || j<- 1 to size};

y = {M_array (1,size) of | [j] = 0.0 || j<- 1 to size};

{for j<-1 to n2 do

_ = read_slice j n1 stride x y;

_ = fft y ro IS z;

{for i<-1 to n1 do

10

v!![(j-1)*n1 +i] = z!![i];

v!![(j-1)*n1 +i +stride] = z!![n1+i];

}

}

in v

};

% 1-D FFT on a slice: Imperative M-Structure Code

When writing the same code in a data-driven M-structure style, we get rid o� all the

explicit barriers except one. Lack of this barrier causes writing on the same location of x

(within the i loop), before it is extracted (by function get y). The function get slice extracts

values out of x and puts them in y. The function �t extracts the values out of y and puts

them in z, which is emptied again in the code that rewrites the slice of x that was emptied

by get slice.

def cffts IS n1 n2 x ro = {

typeof x = M_vector(F); typeof ro = I_vector(F);

stride = n1*n2; size = n1*2;

z = 1d_X_array(1,size); y = 1d_X_array(1,size);

{for j<-1 to n2 do

% fn get_y fills y and empties a section of x

_ = get_y j n1 stride x y;

_ = fft y ro IS z;

{for i<-1 to n1 do

x![(j-1)*n1 +i] = z![i];

x![(j-1)*n1 +i +stride] = z![n1+i];

}

}

in x

};

% 1-D FFT on a slice: Data-driven M-Structure Code

Building an array out of a variable number of variable sized sub-arrays turns out to be quite

hard to implement in the purely functional style. The problem here is that the output value

of one element of a slice is not known independently, as for one input slice, all the elements

of the resulting slice are evaluated. It would be too expensive to evaluate a whole slice of

elements just to get the value of one element, as we did in the bottom 4 case. To get around

this problem, we create an intermediate vector of vectors, each vector representing a slice.

def cffts IS n1 n2 x ro = {

stride = n1*n2; size = n1*2; length = 2*stride;

typeof tv = vector(vector(F));

tv = { vector (1,n2) of

| [j] = get1d j n1 stride x || j <- 1 to n2};

11

Method Functional I-structure M-structure

S1 S1 S1 S1 S1 S1

4x4x4 3,241 220 1,025 230 1,257 340

8x4x4 6,403 300 1,556 300 1,902 520

8x8x4 13,729 480 2,665 480 3,211 840

8x8x8 32,303 800 4,973 800 5,877 1,600

Table 1: S1 and S1 for FT benchmark (in 1000-s)

defsubst get1d j n1 stride x = {

y = get_y j n1 stride x;

z = fft y ro IS;

in z

};

v = { vector (1,length) of

| [(j-1)*n1 +i] = tv[j][i] || j <- 1 to n2; i <- 1 to n1

| [(j-1)*n1 +i +stride] = tv[j][i+n1] || j <- 1 to n2; i <- 1 to n1};

in v

};

% 1-D FFT on a slice: Functional Code

4 Results and Analysis

4.1 Time Analysis

Figures 2,3, and 4 give the parallelism pro�les for our various FT codes (functional, I-

structures, data driven M-structures). Table 1 summarizes the instruction counts (S1) and

critical path lengths S1 for a larger set of problem sizes. The functional code has the

maximum instruction count. This is caused by the inability to share computation in array

comprehensions, and by the need to create intermediate data structures, as shown in the slice

example. The I-structure code has the lowest instruction count, and a critical path length

close to the functional code, which indicates that the higher parallelism of the functional

code is super
uous. The M-structure code requires about 20% more instructions than the

I-structure code. Also, the M-structure code has a 75% to 100% longer critical path length.

This is caused by the need for explicit synchronization, and by the fact that M-structures

need to be completely emptied before they can be reused in a next stage. This occurs after

the checksum operation. Also, the code performing the checksum needs to use the more

expensive reads in order to simplify the emptying of the array.

12

 (2nd Phase Ops
 (Instructions)

|
0

|
60000

|
120000

|
180000

|
240000

|
300000

|
360000

|
420000

|
480000

|0.00

|6.00

|12.00

|18.00

|24.00

|30.00

|36.00

|42.00

|48.00

 cycles

 In
str

uc
tio

ns

Figure 2: Idealized pro�le of functional code for input size 8x8x4

 (2nd Phase Ops)
 (Instructions)

|
0

|
50000

|
100000

|
150000

|
200000

|
250000

|
300000

|
350000

|
400000

|
450000

|3.60

|4.00

|4.40

|4.80

|5.20

|5.60

|6.00

|6.40

|6.80
|7.20

 cycles

 In
str

uc
tio

ns

Figure 3: Idealized pro�le of I-structure code for input size 8x8x4

13

 (2nd Phase Ops)
 (Instructions)

|
0

|
100000

|
200000

|
300000

|
400000

|
500000

|
600000

|
700000

|
800000

|
900000

|2.80

|3.20

|3.60

|4.00

|4.40

|4.80

|5.20

|5.60

|6.00

 cycles

 In
str

uc
tio

ns

Figure 4: Idealized pro�le of M-structure code for input size 8x8x4

4.2 Space Analysis

To reach the goal of running a 64�64�64 size problem on the one node Monsoon machine, we �rst

need to determine how many such arrays can be stored before we run out of heap memory. Running

just the random vector generator (generating U in �gure 1), we establish that the maximum size of

a 3-D object that can be generated on our machine is 128�128�80, and that at most 4 64�64�64

arrays can exist at the same time. According to the benchmark speci�cation (see �gure 1), Exp

needs to be created once and remains needed throughout the program. In the �rst stage of the

program U and V coexist. After that, only V will be needed. In the cycle for t from 1 to 6, W and

X coexist. Therefore at least 4 3-D objects must coexist. In the M-structure implementations we

can over-write V on U and X on W , which brings the requirement down to 3 3-D objects. From

this we conclude that on a one node monsoon, we can never run any larger than 643 problem.

To establish the space usage of our 1-D FFT codes, we ran these independently of the rest of

the FT benchmark. The functional code without resource management allows problem sizes of up

to 216, whereas with resource management it allows problem sizes of up to 218. The corresponding

numbers for the I-structure implementation are 217 and 218. The M-structure code does not require

explicit resource management as it reuses its data structures. It allows problem sizes up to 219.

The double capacity of the M-structure code is explained by the fact that it writes the resulting �t

back on its input array.

The maximal FT benchmark problem sizes we could run were 163 for the resource managed

functional code, 323 for the I-structure code, and 643 for the M-structure code. This phenomenon

corroborates our discussion in the implementation section. The functional implementation creates,

even when resource managed, intermediate structures. The I-structure implementation requires

independent structures for input and output, whereas the M-structure implementation can write

14

results back into the input structure.

5 Conclusion

In this paper we have studied certain declarative language features and their e�ect on the time

and space e�ciency of our programs. More speci�cally, we have studied three declarative imple-

mentations of the NAS FT benchmark: a purely functional, an I-structure, and an M-structure

implementation, all written in the programming language Id and executed on the Monsoon Inter-

preter and Monsoon hardware. The purely functional code provides the most parallelism, but at

the cost of a high instruction count. I-structures provides the fastest implementation: the lowest

instruction count and a critical path length very close to that of the functional code. However,

I-structure code is less space e�cient than M-structure code. Only the M-structure code allows

the 643 problem speci�ed in the FT benchmark to be run. Therefore, we have the ability to trade

space for time between the M-structure and I-structure implementations of this benchmark.

References

[1] Arvind, Nikhil R.S., and Pingali, K.K., \I-structures: Data Structures for Parallel Computing"

ACM Transactions on Programming Languages and Systems, Vol 11, No 4, October 1989, pp

589-632.

[2] Barth, Paul S., R. S. Nikhil and Arvind, \M-structures: Extending a parallel, non-strict,

functional language with state," Proc. Functional Prog Languages and Comp Arch,

Cambridge, MA, Aug 1991.

[3] Hicks, James, D. Chiou, B. S. Ang and Arvind, \Performance studies of Id on the Monsoon

data
ow system," Journal of Parallel and Distributed Computing no. 18, pp 273-300,

1993.

[4] B�ohm, A. P. W. and Hiromoto R.E.,\Data
owTime and Space Complexity of FFTs", Journal

of Parallel and Distributed Computing no. 18, pp , 1993.

[5] Bailey, D., et. al., \The NAS Parallel Benchmarks", Report RNR-91-002 revision 2, NASA

Ames Research Center, 1991.

[6] R.S. Nikhil, Id (version 90.0) Reference Manual. TR CSG Memo 284-1, MIT LCS 1990.

15

