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Abstract

The attributes of individual software engineers are perhaps the most important factors in

determining the success of software development. Our goal is to identify the professional compe-

tencies that are most essential. In particular, we seek to identify the attributes that di�erentiate

between exceptional and non-exceptional software engineers.

Phase 1 of our research is a qualitative study designed to identify competencies to be used

in the quantitative analysis performed in Phase 2. In Phase 1, we conduct an in-depth review

of ten exceptional and ten non-exceptional software engineers working for a major computing

�rm. We use biographical data and Myers-Briggs Type Indicator test results to characterize our

sample. We conduct Critical Incident Interviews focusing on the subjects experience in software

and identify 38 essential competencies of software engineers.

Phase 2 of this study surveys 129 software engineers to determine the competencies that are

di�erential between exceptional and non-exceptional engineers. Years of experience in software

is the only biographical predictor of performance. Analysis of the participants Q-Sort of the

38 competencies identi�ed in Phase 1 reveals that nine of these competencies are di�erentially

related to engineer performance using a t-test. A ten variable Canonical Discrimination Func-

tion consisting of three biographical variables and seven competencies is capable of correctly

classifying 81% of the cases. The statistical analyses indicate that exceptional engineers (at

the company studied) can be distinguished by behaviors associated with an external focus |

behaviors directed at people or objects outside the individual. Exceptional engineers are more

likely than non-exceptional engineers to maintain a \big picture", have a bias for action, be

driven by a sense of mission, exhibit and articulate strong convictions, play a pro-active role

with management, and help other engineers.
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1 Introduction

We report on a study of the di�erences between individual software developers. This study is

based on the premise that exceptional software engineers exhibit di�erent skills which they apply

to the problems of software engineering. These unique skills can be identi�ed by careful study of

experienced software engineers. Further, once these skills are recognized, we hope that they can be

transferred to the software engineering community at large through formal training programs [1].

Thus, additional software engineers can be taught these valuable skills. Our overall goal is to identify

the skills, techniques, and attributes that di�erentiate between exceptional and non-exceptional

software engineering performance.

Much e�ort has been placed in the development of engineering approaches to software devel-

opment such as software tools, coding practices, and test technology. But the overwhelming de-

terminer of software productivity and quality is still personnel and team capability. Boehm found

personnel and team capability to be twice as important as the next most important productivity

factor [2]. By studying exceptional programmers, the individual capabilities that most in
uence

performance can be identi�ed [3].

Most research into the development of software focuses on the individual only to the extent that

individuals are members of a larger development e�ort. Although the team is a critical component

in software development, most research misses a fundamental opportunity to identify and exploit

the proven ability of highly talented individual contributors. Weinberg noted the lack of research

on individuals observing that \Our profession su�ers under an enormous burden of myths and

half-truths." [4]. The industry has a great lore about the factors a�ecting software productivity,

but few facts are known.

Bohem also cites a 25-to-1 ratio between the most productive and least productive software

developers and a 10-to-1 di�erence in their error rates [5]. If the personal attributes of these most

productive individuals can be understood, a number of exciting opportunities present themselves:

� Understanding the characteristics of the most successful software developers could lead to the

improvement of all software developers.

� Once the characteristics are understood, it may be possible to develop speci�c toolsets and

aids to further increase the productivity of these individuals.

� A valuable criterion of the selection of software developers may be discovered.

Brooks suggests the \use of great designers" as one of �ve promising approaches to improve software

development productivity [6]. One of Boehm's seven basic principles of software engineering is to

use \better and fewer people" [7].

Typical experimental approaches to studying individuals in software development start with

an individual's experience and prejudices about software development [8]. A technique for im-

provement is proposed, implemented and tested [9, 10]. The results of these experiments are then

analyzed and often valuable results are achieved.

This study follows a di�erent approach. We start with professional software developers who are

acknowledged for their software ability. Our focus on the top individual contributors breaks with

the traditional emphasis on the team. We seek to enhance the value of teams by ensuring that each

individual is operating at peak productivity.

Our aim is to determine the attributes that are necessary for exceptional performance, so that

the performance of all software engineers can be improved. We report the results from a two phase

study designed to determine the essential competencies of professional software engineers [11]. In

Phase 1 we identify these competencies via the Critical Incident Interview technique. In Phase 2
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Phase 1 Population Summary Total

#Engineers 252

#SW Engineers 150

#Study Participants 20

# of Exceptional SW Engineers Studied 10

% Studied Exceptional SW Engineers (out of total SW Engineers) 6.7%

Table 1: Phase 1 Population Summary

we di�erentially relate these competencies to engineer performance. Phase 1 corresponds to the

qualitative portion of the research in which the competencies associated with the job of software

engineering are �rst uncovered. Phase 2 corresponds to the quantitative portion of the research in

which the competencies discovered in Phase 1 are validated and considered on a di�erential basis

between exceptional and non-exceptional performers.

The remainder of this paper is organized as follows. Section 2 describes Phase 1 in detail, and

Section 3 presents the details of Phase 2. Section 4 contains a discussion of the implications of the

results. We review related work in Section 5, and our conclusions are given in Section 6.

2 Phase 1

In Phase 1, we identify critical professional competencies through an in-depth analysis of a small

sample of exceptional and non-exceptional software engineers. We use a biographical questionnaire

and a Meyers-Briggs Type Indicator (MBTI) test [12] to characterize our sample. We conduct

Critical Incident Interviews to identify the signi�cant competencies of software engineering.

2.1 Phase 1 Subjects

Subjects are drawn from �ve commercial research and development laboratories at three di�erent

sites of a single company. The subjects develop applications in test and measurement, embedded

�rmware, and computer aided design.

We use two matched subject pools with 10 subjects in each of the exceptional and non-

exceptional pools. The subjects are matched by time in current organization. Thus, if an excep-

tional engineer with four years in the current organization is identi�ed, a second non-exceptional

engineer with four years experience in the same organization is added to the study. This approach

controls for the e�ect of the organization on the individual's performance. The study does not

attempt to control any other factors, since all are possible contributors to exceptional performance.

All subjects are professional software development engineers from a major US corporation (re-

ferred to as The Company for proprietary reasons) with a minimum of two years of experience in

developing software. Each subject has successfully completed a project released to the end user.

Table 1 summarizes the population from which the Phase 1 study participants are drawn. The

#Engineers represents the number of engineers of all disciplines in the total population, while the

#SW Engineers represents the number of software engineers in the total. The #Study Participants

indicates the number of engineers that were selected for the study. The % Studied Exceptional SW

Engineers is the ratio of the number of exceptional software engineers studied to the total number

of software engineers in the population. The population represents a sample of organizational units

in The Company.
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Subjects are selected by a process in which managers identify the top performers in their or-

ganization. Managers were asked to identify an exceptional (top 5% of the organization) and

non-exceptional performing pair of individuals. The pair should have spent the same amount of

time in the organization. As a result of this process, manager bias is an inherent part of the research

design. Exceptional software engineers are those identi�ed as exceptional by managers. Vessey also

used manager assessment as a method (the \ex ante" method) for identifying experts [13].

Conducting Critical Incident Interviews is quite labor intensive. As a result, the sample size is

fairly small. With this sample we are able to perform an evaluation giving us a rich set of qualitative

information. These initial results can be validated through further studies of larger samples using

closed end survey instruments.

2.2 Biographical Pro�le

A biographical questionnaire is used to evaluate the subject pool. The questionnaire validates that

subjects represent experienced rather than naive programmers, and that subjects include a valid

cross-section of developers covering di�erent language use, target applications, and development

environments. The questionnaire requests information concerning education, on the job training,

experience, languages used, and methods employed. We �nd that:

� 75% of the subjects are male; 25% are female. The 3 to 1 ratio is consistent with published

reports that women constitute only 30% of the employed computer scientists [14].

� The mean age of the subjects is 33.45 years.

� The mean number of degrees held is 1.6. 65% of the subject hold a Bachelors degree as the

highest degree, 30% hold a Masters degree, and one subject (5%) earned a Ph.D.

� The mean number of training hours completed per subject in the two years preceding the

study is 117.70 hours. Completed training ranged from zero to 306 contact hours.

� Subject responses to the question of describe the software engineering methods and tools that

you use now or in the past in your job varied too greatly to be very useful.

� Subjects had worked at The Company a mean of 7 years in software engineering, ranging

from 2 to 15 years.

The data were split between Exceptional and Non-Exceptional subjects and compared. The bio-

graphical data were analyzed for statistical signi�cance at the .05 level when studied on a di�erential

basis. The Fisher's Exact Test was used to compare nominal variables with only two values (e.g.

gender). The t-test was used to compare the means of ordinal values (e.g. training hours).

Since this was such a small sample, we did not expect any signi�cant di�erences between the

Exceptional and Non-Exceptional groups. However, Years at Company in Software are signi�cantly

related to Exceptional Performance with the 2-tail t-test calculated value of -3.21 with a signi�-

cance level of .007. This signi�cance demonstrates that although subjects were matched for total

experience in the current organization, they were not matched for Years at Company in Software.

Table 2 shows the di�erential information concerning years in The Company in software.

The demographic analysis indicates that, with the exception of the experience variable, no

demographic data were signi�cantly di�erent between the exceptional and non-exceptional sub-

samples in this small sample of 20 subjects. The lack of other statistically signi�cant di�erences

indicates experimental control of the other variables, the uniformity of the sample, or the weakness

of the identi�ed di�erences.
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(n=20)

Years at Company Mean Std Range

in Software Dev

Exceptional 9.05 3.59 4{15

Non-Exceptional 5.00 1.75 2{7.5

Table 2: Years at Company in Software | Di�erential

2.3 Myers-Briggs Cognitive Style Type Indicator (MBTI)

The MBTI is a tool for determining psychological type [12, 15]. We use it to determine if type

di�erences exist between exceptional and non-exceptional engineers.

Through a questionnaire, the MBTI computes a score for four contrasting personality pairs:

� extrovert vs. introvert

� sensing vs. intuitive

� thinking vs. feeling

� judging vs. perceptive

The purpose of the MBTI is to identify, from self-report of easily recognized reactions, the basic

preferences of people with regard to perception and judgement [16]. The four preferences are

assumed to interact in complex nonlinear ways to produce one of 16 psychological types with

di�erent attributes [17]. The MBTI can provide a continuous score for each of the four preference

scales allowing for statistical analysis of signi�cant di�erences [12]. A detailed description of the

MBTI appears in [15].

All 20 subjects completed the Myers-Briggs Type Indicator (MBTI) test. Figure 1 shows the

distribution of the Phase 1 study participants according to one of 16 personality types. Eighteen

out of twenty subjects exhibit the Introvert type. The Introvert tendency is consistent with the

Kagan-Douthat study of students learning Fortran which found a tendency towards introversion in

higher performing programming students [18]. We also found a that 17 out of 20 subjects exhibited

the Thinking type (rather than Feeling type). This result is consistent with broader studies that

�nd that computer specialists exhibit the thinking preference 67% of the time [12].

The MBTI test uncovered an interesting tendency for exceptional engineers to favor the In-

trovert, Thinking type. The most frequent classi�cation for exceptional performers is the INTJ

(Introvert, Intuitive, Thinking, Judging) type. The INTJ type occurs in only 10% of the male col-

lege graduates [12]. Hence these exceptional engineers di�er from the (male) population at large.1

Only one of the exceptional engineers is classi�ed as an Extrovert type.

The non-exceptional engineers exhibited more varied personality types. Only two of the non-

exceptional engineers exhibited the INTJ type. Six of the non-exceptional engineers exhibited

a combination of the Introvert and Judging types. Like the exceptional group, only one of the

non-exceptional engineers is classi�ed as an Extrovert type.

A statistical analysis via the t-test of the di�erential MBTI scores revealed that there were no

signi�cant di�erences between the scores of the exceptional and non-exceptional subgroups. This

indicates that either personally type is not a good predictor of performance or that the sample size

is too small.

1The data given by Myers and McCaulley [12] is unfortunately limited to males.
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Sensing Types Intuitive Types

With Thinking With Feeling With Feeling With Thinking

ISTJ ISFJ INFJ INTJ

Introvert 3|| | | || Judging

33333

ISTP ISFP INFP INTP

Introvert 33| 3 || Perceptive

ESTP ESFP ENFP ENTP

Extrovert | Perceptive

ESTJ ESFJ ENFJ ENTJ

Extrovert 3 Judging

|= 1 Non-Exceptional Subject

3= 1 Exceptional Subject

Figure 1: Myers-Briggs Type Indicator (MBTI) Results.

We do not use the MBTI test in Phase 2 because of the inconclusive results in Phase 1 (due to

the small sample), and because the MBTI test is expensive and very time consuming for a larger

sample.

2.4 Interview Process

Each Critical Incident Interview was conducted in a private room at the subject's work site. Each

interview was tape-recorded, and the recordings were transcribed for later use. The interviews

began with casual conversation followed by a description of the scope of the research and the

general 
ow of the interview. The interview followed the basic structure and practices de�ned

in [19].

A typical interview began with an introduction similar to the following one taken from the

transcript of one of the interviews:

What I'd like you to do is start o� by thinking about a time which represents for you

perhaps your personal best associated with software engineering in whatever form, so

be it software development, software maintenance, testing, whatever it is, but a time

at which you feel you were at your personal best, and when you've got one of those

situations in mind, give me kind of a broad overview, a �fty word summary overview

which is, how did you get involved in the situation, who were the other players, what

was the nature of the task, and then we'll come back and we'll walk through it step by

step in gory detail to �nd out exactly what you did in each case of that task.

The subject would then describe an incident and the interviewer would probe for clari�cation

or increased depth of response. The interviewer used probes, open-ended questions, questions of

clari�cation, and re
ective listening to keep the participant on the subjects of interest. The only
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way that the interviewer tried to direct the conversation was to provide additional clari�cation or

to move on to other topics.

The subject generally described two to three signi�cant incidents in the course of one two

hour interview. When each incident was completed, the subject was asked to describe the critical

skill or competencies which were essential to the successful completion of the task. At the end

of the discussion of the subject's incidents, the subject was asked to describe the list of essential

competencies for an exceptional software engineer.

2.5 Analysis of Critical Incident Interviews

The Critical Incident Technique attempts to discover the critical job requirements that have been

demonstrated to make a di�erence between success and failure [20]. The technique was introduced

during World War II in the Aviation Psychology Program to study combat leadership and pilot

disorientation. The technique has since been re�ned and applied to measures of performance,

measures of pro�ciency, training, selection, job design, equipment design, and leadership.

Protocol Analysis is used to translate the verbatim copy of an interview to a generalized set of

cross-transcript results [21]. A formal process provides a record of the analysis and allows identi�ed

relations to be tied to speci�c utterances in the original transcripts [22, 23].

We used the Protocol Analysis technique described by McCracken [23]. Each written transcript

was reviewed and highlighted to identify tasks, incidents, competencies, self-described skills, and

identi�ed competencies for exceptional performance. Each transcript was reviewed individually to

identify consistent themes which could be generalized as competencies for that individual. After

each transcript was reviewed individually, the set of transcripts was examined to identify competen-

cies which appear across multiple transcripts. These competencies were generalized and reworded

as required to emphasize the similarities. Great care was taken not to over-generalize or distort

the original meanings. A set of behaviors was identi�ed based upon all of the the transcripts and

served as a detailed explanation of the intent of the competency. At this point, original transcript

text was retained and attached to the competency as further de�nition. A �nal pass allowed the

combination of related competencies into a single competency.

All of the analysis to this point was done blindly. The transcripts were tagged with an identi�-

cation number and the analyst did not know the name of the subject. Further, the analyst did not

know if the transcripts were from an exceptional or non-exceptional subject.

The next step of the process was to count the number of subjects exhibiting an identi�ed com-

petency from each of the exceptional and non-exceptional groups. Those competencies exhibited

by few subjects were dropped from further consideration. In general, at least three subjects had to

identify a competency before it was retained. However, if one exceptional and one non-exceptional

subject identi�ed a competency, it was also retained.

2.6 Identi�ed Competencies

The 20 Critical Incident Interviews yielded a massive amount of data. Each interview lasted an

average of two hours. Hence, the full set of data consists of 40 hours of taped interviews. The

transcription of these tapes produced over 200,000 words for just the subject responses.

Derived Competencies

A total of 27 competencies were derived from the analysis of the subjects description of their own

role in speci�c incidents. These competencies are identi�ed by marking the skills, knowledge, or

personal attributes alluded to while describing their own role in the incidents.
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Self-Described Competencies

Subjects were also asked to name the skills, knowledge, or personal attributes most important in

helping them achieve their success in the described incident. The subjects were prompted for this

response by a very open-ended question. Hence the replies are presumed to be the competencies

considered most signi�cant by the study participants.

Each subject enumerated those competencies that they felt most contributed to their own

success. All summary lists for each of the 20 subjects were combined into a single list of compe-

tencies. Related competencies were merged to form a single competency. The number of subjects,

both exceptional and non-exceptional, expressing the competency was noted. The competencies

mentioned most frequently were retained for future analysis. Many of the competencies cited by

engineers as being important to their own success, are, in fact, the same competencies identi�ed

from the analysis of the transcripts.

Manager Described Competencies

Another set of competencies was created by asking the managers of the subjects:

What are the Knowledge, Skills, or Attributes that di�erentiate your exceptional per-

formers from your non-exceptional performers?

These are the same managers who classi�ed the subjects in their organization as exceptional or

non-exceptional. Sixteen di�erential competencies were identi�ed by the �ve managers in the

study. There was no further discussion with these managers to provide further elaboration on

these competencies. Many of these competencies are similar to those identi�ed by the analysis of

transcripts or cited by engineers as those leading to exceptional performance.

Summary of Competencies

Table 3 summarizes the competencies identi�ed most frequently from the multiple sources. The

Derived category refers to those competencies extracted from the analysis of the interview tran-

scripts. They represent those areas which the subject chose to discuss during their narration about

their experiences. The number in this column records the number of subjects that described behav-

iors related to this competency. The Self-Described column records the number of subjects that

o�ered the listed competencies when were asked to describe the skills, knowledge, and attributes

associated with their successful performance on projects. The Manager records how many of the

�ve managers cited the listed competencies as those that di�erentiate between exceptional and

non-exceptional performers in their organization.

The competencies derived from the protocol analysis are considered to be more important than

the competencies o�ered directly by the engineers or managers. This is because this study is based

on the notion that behaviors associated with high performance are the unit of study. And it is

through the interviews that subjects demonstrate these behaviors. We consider competencies that

are validated by multiple sources to be more important than competencies that come from only one

source. A number of competencies were identi�ed by the subjects and/or managers, but were not

included in the set of competencies that will be used for further research. These competencies were

rejected because few people identi�ed the competency, or it was not validated by multiple sources.

The identi�ed competencies provide an alternative view of the job of software engineering.

Rather than an antiseptic application of formal software methods, we �nd a broad mix of knowledge,

personality, and attitude involved. In addition to the expected technical skill competencies (Use

of Prototypes, Automates Tests, Reuses Code, Uses Code Reading, ...) we �nd personality (Sense
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Self-

Competency Derived Described Manager

1. Team Oriented 14 12 2

2. Seeks Help 11 4

3. Helps Others 2 1 1

4. Use of Prototypes 14 3

5. Writes/Automates Tests with Code 13

6. Knowledge 13 12

7. Obtains Necessary Training/Learning 12 7

8. Leverages/Reuses Code 10

9. Communication/ Uses Structured 8 8

Techniques for Communication

10. Methodical Problem Solving 9

11. Use of New Methods or Tools 5

12. Schedules and Estimates Well 4 2 1

13. Uses Code Reading 4

14. Design Style 16

15. Focus on User or Customer Needs 11 1

16. Response to Schedule Pressure 9

17. Emphasizes Elegant and Simple Solutions 8 2

18. Pride in Quality and Productivity 12 1

19. Pro-active/Initiator/Driver 11

20. Pro-active Role with Management 10

21. Driven by Desire to Contribute 8 5

22. Sense of Fun 7

23. Sense of Mission 6

24. Lack of Ego 4

25. Strength of Convictions 3 4

26. Mixes Personal and Work Goals 3

27. Willingness to Confront Others 3

28. Thoroughness 4

29. Skills/Techniques 11

30. Thinking 9

31. Desire to Do/Bias for Action 5 1

32. Attention to Detail 4

33. Perseverance 13

34. Innovation 4

35. Experience 3

36. Desire to Improve Things 3

37. Quality 2

38. Maintaining a \big picture" view/ 1 3

Breadth of View & In
uence

n = 20 n = 20 n = 5
Numbers indicate the frequency that competencies are identi�ed as follows:

Derived: extracted from interview transcripts.

Self-Described: o�ered by subjects as most important competencies.

Manager: o�ered by managers as di�erential competencies.

Table 3: Essential Competencies
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of Fun, Lack of Ego, Willingness to Confront Others, Perseverance, ...) and attitude (Pride

in Quality, Strength of Convictions, Bias for Action, Desire to Improve Things, ...) emerge as

signi�cant factors in the engineering process.

The competencies were analyzed on a di�erential basis using Fisher's Exact Test with a 2-

tail probability. The score used for this test was the number of subjects that described behavior

exhibiting a particular competency. Only one of the competencies exhibited signi�cant di�erences

between exceptional and non-exceptional subjects. There was a signi�cant di�erences between the

groups with a 2-tail computed signi�cance level of 0.0108 for the Use of Prototypes competency. We

�nd that exceptional subjects are more likely to use prototypes to assess key system parameters.

This result is especially noteworthy given the small sample size. None of the remaining competencies

exhibited signi�cance at the 0.05 level or better. Although most of the competencies cannot be used

to distinguish between the exceptional and non-exceptional subjects based on this small sample of

20 subjects, the derived competencies o�er a unique view of the necessary skills of professional

software engineers. For complete a description of all of the identi�ed competencies see [11].

3 Phase 2

In Phase 2, we use the identi�ed competencies, larger samples, and objective survey instruments

to detect signi�cant di�erences between exceptional and non-exceptional software engineers. Our

objectives are to determine which competencies identi�ed in Phase 1 are di�erentially related to

performance, and determine if a simple predictor of performance exists. We develop a predic-

tive model that uses the competencies to predict whether a particular engineer will be ranked as

exceptional or non-exceptional.

3.1 Phase 2 Subjects

In Phase 2, we seek to validate the Phase 1 results against a broader population. Thus we expand

the sample of exceptional and non-exceptional software engineers both in quantity and diversity.

Matching for time in the organization is not required since the breadth of subjects is expected to

eliminate the relevance of di�erences in experience. In addition, the de�nition of \exceptional" was

widened to include the top 30% rather than the top 5% of engineers. This widened de�nition allows

a more even mix of exceptional and non-exceptional engineers in the study. Allowing more subjects

to be de�ned as exceptional is a conservative approach | we increase the risk that a competency

will not be identi�ed as di�erential. The resulting increase in the relative number of exceptional

engineers in the subject pools also aids the statistical analysis.

As in Phase 1, all subjects are software engineers employed by The Company. We did not use

a two year minimum experience criterion as in Phase 1. Managers were asked to distribute surveys

to their entire lab on a di�erential basis | 70% of the surveys are distributed to non-exceptional

performers and 30% to exceptional performers. The determination of exceptional versus non-

exceptional was again made by the managers. Managers were allowed to distribute exceptional

surveys to slightly more than 30% of their lab based on their judgment of performance. Managers

were instructed to keep the di�erential nature of the survey con�dential. A total of 275 survey

instruments were distributed to engineers working in nine divisions of The Company at three

sites. The engineers participate in the development of �ve types of software applications | test &

measurement, embedded �rmware, CAE/CAD/CASE software, graphics, and operating systems.

10



Population Summary Total

Surveys Distributed 275

Total Responses 129

Response Rate 46.9%

# Exceptional Responses 41

# Non-Exceptional Responses 88

% Exceptional 31.8%

% Non-Exceptional 68.2%

Table 4: Phase 2 Population Summary

3.2 Descriptive Statistics

Each survey packet contained a letter of instruction that outlined the assignment and clearly

indicated the voluntary nature of the study. Each packet included a Biographical Questionnaire

and a set of Q-Sort cards. The packet also included a pre-addressed return envelope for returning

the completed survey. The results were thus blind in that we did not know the names of study

participants or their corresponding rating.

The Biographical Questionnaire used in Phase 2 was nearly identical to the one used in Phase 1.

Some minor changes were made for book keeping purposes. A Results of Sorting section was added

to capture the results of the Q-Sort activity.

The total number of surveys distributed, responses, and distribution between responses from

exceptional and non-exceptional engineers are indicated in Table 4. Only four of the Phase 2

responses were incomplete in some of the major independent variables. We consider only valid

surveys in our analysis of each variable. As a result, there is some variation in the reported number

of samples n. The response rate of nearly 50% indicates the level of interest in this information

at the company studied. The sample of 129 participants provides su�cient statistical power to

complete the study. The response rate for exceptional and non-exceptional performers was similar,

since 30% of the surveys were distributed to exceptional performers and 31.8% of those returned

were from this group.

We collected descriptive statistics using a Biographical Questionnaire to ensure that the Phase 2

sample is similar to that of Phase 1 We also analyzed the data for normalcy so that subsequent

statistical steps will be valid. Phase 2 subjects can be described as follows:

� 78.9% of the subjects are male; 21.1% are female. This distribution is similar to the Phase 1

mix and re
ects the preponderance of males in Computer Science.

� The mean age is 32.45 years and is comparable to the Phase 1 mean age of 33.45 years.

� The subject pool is well educated with over 53% holding two or more degrees, and 40% have

a Master's degree as their highest degree. Over 74% hold at least one degree in Computer

Science, while only 35% of Phase 1 subjects held degrees in Computer Science.

� The mean number of training hours completed in the prior two years was 102, versus 117

hours for Phase 1 subjects.

� Subjects had worked in The Company for a mean of 6 years in software engineering, compared

to a mean of 7 years for Phase 1 participants.
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We analyzed the descriptive data to determine if there are signi�cant di�erences between the

exceptional and non-exceptional groups. The Chi-Square test is used to test for statistically signif-

icant di�erences between nominal variables such as gender. The t-test is used to test for signi�cant

di�erences between ordinal variables. Di�erences are considered statistically signi�cant when the

calculated 2-tail signi�cance level is less than 0.05. We found only three statistically signi�cant bio-

graphical variables associated with exceptional performance: Years at Company in Software, Total

Years in Software, and Total Years Worked. This is consistent with the Phase 1 result indicating

that Years at Company in Software is a di�erential attribute.

3.3 Q-Sort

The Q-Sort method is used to assist subjects in ranking the competencies identi�ed in Phase 1. Q

Methodology encompasses the Q-Sorting Technique, which is designed to provide practical means

for subjects to sort and researchers to analyze large lists of items [24]. The method stresses the

individual's perception of value in a set of statements as the actual data under study. The technique

has a long history being �rst promoted by Stephenson in the 1930's. His text continues to be a

signi�cant reference on the technique [25].

Using Q-Sort, a subject is asked to rank order a set of items against a speci�c condition of

instruction. The ordering is quasi-normal in that it asks subjects to place the item in one of a

limited number of bins or piles. The number of items is expected to far exceed the number of piles.

Each pile maintains a speci�c relationship to the other piles. The number of items to be placed in

each pile is meant to be proportional to a roughly normal distribution of the items. For example,

if there are ten items to distribute across �ve piles, the �rst pile will have one item, the second pile

will have two items, the third pile will have four items, the fourth pile will have two items, and the

�fth pile will have one item. This arrangement approximates a normal distribution.

Critical to the sorting is the condition of instruction. A subject may provide a radically di�erent

sorting based upon the instructions given. For example, a subject could be instructed to sort

competencies based upon (1) the order which most relates to being exceptional, or (2) the order

based on the subjects own behavior on the job. We would expect a di�erent result depending on

which instructions are given.

We emphasize that the criterion for sorting the competency cards is the subject's self report of

his or her own behavior.

Using Q-Methodology, a Q-Sort task is normally completed by a subject with the help of the

researcher. We used a simpli�ed approach to the Q-Sorting task to allow subjects to complete the

task on their own. Each subject received a set of Competency Cards with one competency listed

on each of 38 300 � 500 index cards. (Figure 2 shows a competency card for Competency #1, Team

Oriented.) A set of Pile Marker Cards is also included in order to prompt subjects to create the

correct number of piles and to include the correct number of cards in each pile. Further, the Pile

Marker Cards include prompts to remind subjects of the de�nition of the continuum across which

the competencies are sorted. The directions that subjects followed in completing the Q-sorting

exercise are given in Figure 3.

Study participants sorted a set of 38 competencies into a quasi-normal distribution of seven

piles. Each pile was assigned an integer value from zero to six. Zero means Least Like My Behavior

while six means Most Like My Behavior. For each survey, the Q-Sort item was assigned the integer

value associated with the pile that the subject placed it into. We calculated the mean Q-Sort for

the full sample of both exceptional and non-exceptional engineers. We also calculated the skew and

kurtosis numbers which indicate that all Q-Sort items are normally distributed.

A t-test comparison of means for each of the Q-Sort Competencies is given in Table 5.
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(Items sorted by mean score of exceptional responses)

XP NXP Sig.

Mean Mean Test Level

Delta Competency (n=40) (n=85) Value (2 Tail)

0 Concern for Reliability/Quality 4.050 4.224 0.68 0.497

0 Focus on User/Customer Needs 4.025 3.859 -0.66 0.512

0 Thinking 3.925 3.859 -0.25 0.804

+2 Pride in Quality/Productivity 3.750 3.576 -0.70 0.488

+2 Emphasizes Elegant & Simple Solutions 3.725 3.518 -0.85 0.395

-2 Driven by Desire to Contribute 3.550 4.012 2.20 0.029��

+8 Mastery of Skills/Techniques 3.500 2.965 -2.22 0.028��

+20 Helps Others 3.500 2.188 -4.99 0.000��

-1 Innovative 3.425 3.435 0.04 0.966

+12 Maintains \big picture" view 3.425 2.647 -2.66 0.009��

-2 Enjoys Challenge of Assignment { Has Fun 3.325 3.435 0.38 0.707

-7 Seeks Help From Others 3.325 3.835 2.10 0.038��

0 Lack of Ego 3.250 3.259 0.04 0.966

+6 Prior Experience 3.250 2.824 -1.67 0.097

-5 Attention to Detail 3.225 3.412 0.65 0.519

+3 Pro-active/Initiator/Driver 3.100 2.929 -0.82 0.414

-3 Team Oriented 3.050 3.235 0.65 0.515

-7 Leverages/Reuses Code 3.050 3.435 1.56 0.120

-2 Desire to Improve Things 3.050 3.141 0.40 0.687

-8 Perseverance 3.000 3.447 1.63 0.107

+9 Strength of Convictions 2.975 2.341 -2.04 0.044��

+13 Pro-active Role with Management 2.925 2.035 -2.95 0.004��

+4 Schedules and Estimates Well 2.900 2.471 -1.56 0.122

-8 Methodical Problem Solving 2.900 3.235 1.58 0.117

-7 Writes/Automates Tests with Code 2.775 3.224 1.66 0.099

+6 Driven by a Sense of Mission 2.750 3.388 -1.61 0.111

-3 Use of New Methods or Tools 2.700 2.871 0.66 0.513

-3 Uses Decomposition Design Style 2.700 2.765 0.25 0.805

-3 Desire to Do/Bias for Action 2.675 2.588 -0.28 0.777

-9 Obtains Necessary Training/Learning 2.600 3.035 1.86 0.065

-8 Uses Code Reading 2.550 2.965 1.59 0.115

-1 Use of Prototypes 2.550 2.459 -0.33 0.740

+3 Possesses Unique Knowledge 2.325 2.094 -0.97 0.332

0 Mixes Personal and Work Goals 2.250 2.529 1.11 0.270

-6 Thoroughness - Methodical, Cautious 2.150 2.753 1.89 0.061

-5 Willingness to Confront Others 2.125 2.706 2.23 0.027��

+1 Structured Techniques for Communication 2.050 2.012 -0.14 0.890

-1 Responds to Schedule Pressure by 1.600 2.294 2.29 0.024��

Sacri�cing Parts of Design Process

XP = Exceptional Subject, NXP = Non-Exceptional Subject.

Di�erences are considered statistically signi�cant when the calculated signi�cance is less than 0.05.

These instances are in bold print and are denoted by \��".

Table 5: Di�erential Q-Sort Competency Responses, T-Test Results
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DEFINITION

I value the synergy of group e�orts and invest the e�ort required

to create group solutions, even at the expense of my individual

results.

Key Behaviors

� I balance the strengths and weaknesses of other team mem-

bers.

� I promote constant communicationamong teammembers us-

ing techniques such as brainstorming sessions, travel, phone

calls, e-mail, or just being physically close to the rest of the

team.

� I recognize synergy of group e�orts and invest personal time

and energy to leverage it.

Item #1

Figure 2: Q-Sort Card for Competency #1, Team Oriented.

The means are calculated separately for exceptional and non-exceptional performance and tested

for di�erence. The two means are considered di�erent when the calculated signi�cance level is less

than 0.05. These entries are denoted by �� in Table 5. The table is sorted by the mean scores

of the exceptional responses. The Delta column represents the number of places that a particular

competency moves in its rank order when sorted by exceptional means rather than sorted by the

full sample means.

Nine competencies show statistically signi�cant di�erences in the mean values reported by

the exceptional and non-exceptional engineers. Thus 24% of the 38 competencies are related to

the di�erence in performance of exceptional and non-exceptional engineers. The �ve competencies

which have a higher mean for exceptional performers and the behavior and/or attitudes of engineers

that exhibit each competency are brie
y described as follows:

1. Helps Others: spends a signi�cant amount of time assisting others in the completion of

their tasks or in
uencing broad organizational direction. These engineers act as lab-wide

consultants for process or product issues; they review, direct, or in
uence the work of other

engineers; they teach engineering skills to other engineers.

2. Pro-active Role with Management: pro-actively attempt to a�ect project direction by in-


uencing management. These engineers discuss issues concerning other engineers with their

managers; they attempt to set project direction and make project decisions by in
uencing

their managers; they promote product ideas through demos or selling of ideas to management.

3. Exhibits and Articulates Strong Convictions: exhibits and articulates strong beliefs and con-

victions, and acts in accordance with these beliefs, even when they are counter to speci�c

management direction. These engineers act in accordance with their beliefs rather than act-

ing solely on their assignment; they risk their performance ranking in an e�ort to secure the

best solution; they argue forcefully for a speci�c point of view.

4. Mastery of Skills and Techniques: mastered the skills and techniques necessary for good

software design and implementation. These engineers have a strong technical and software
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Competency Sorting Exercise

The objective of this exercise is to determine which job competencies identi�ed in Phase 1 research

best characterize the Company's Software Engineering population. You will sort these competencies

based on how well they describe your behaviors on the job, especially when you're performing at your

best. Try to think of the best software experience you've had and use that to guide selection of which

attributes best describe your behavior on the job.

1. Be sure that you have a clear desk or table to work on before you start. You will be placing

3 � 5 cards in one of 7 piles so you need space to spread these out. Find the supplied pile

markers in the envelope and lay these out on your table in order from number 6 on your left

to number 0 on your right. These pile markers are annotated to remind you that column 6

represents those competencies that are most like your behavior and column 0 represents those

competencies that are least like your behavior.

2. Read through all 38 competency cards to become familiar with them.

3. Sort all of the cards into 3 piles of any number of cards. Place to the left the cards which include

the competencies which best describe your behavior in the process of software engineering.

Place to the right those cards which include competencies which least describe your behavior

in the process of software engineering. Place those cards with competencies about which you

are unsure in the middle pile.

4. During the sorting you will spread the items in piles under the pile markers, while maintaining

the general left-center-right relationships.

5. Select the 2 items that most strongly relate to your behavior on the job as a software engineer.

Think in particular about those time which have been a personal best for you. Place these

two cards under the column marker labeled 6. The order of these cards under the marker is

not important. All will receive the same score.

6. Now select the 2 items that least re
ect your behavior on the job as a software engineer. Place

these under the column marker labeled 0.

7. Continue in this way, alternating between the left and right sides of the distribution, placing

the indicated number of cards below each column marker. Feel free to move any card at

any time should you change your mind about which competencies are most closely related to

your actual behavior. All that matters is that the right number of cards eventually are found

beneath each column marker. Try not to take too long agonizing over the placement of any

one card. Your �rst impulse for placing the card is probably the best. If it helps, you can jot

a short phrase that captures the essence of the competency directly onto the card as a prompt

to use in sorting.

8. Review your groupings to be sure that they accurately re
ect your behavior while completing

your software engineering assignments. Move any cards you wish to better re
ect which

competencies most apply to you doing your job. Now record the item identi�cation numbers

found in the lower right hand corner of each card in the appropriate column on the back of

the Biographical Questionnaire.

If you have any questions, don't hesitate to give me a call at 123-4567 to ask for help.

Figure 3: Q-Sorting Instructions given to Company Participants.
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development background; They are comfortable with multiple software design and implemen-

tation techniques; they have very strong software development skills.

5. Maintains \Big Picture" View: sees the overall situation rather than focusing on details in

an attempt to in
uence the project direction. These engineers remain aware of what other

engineers are doing and suggest ways to better achieve project objectives; they try to be sure

that project goals make sense, and work to change them if necessary; they try to �t their

project into the broader scheme of division programs.

The four competencies which have a higher mean for non-exceptional performers are:

1. Seeks Help from Others: pro-actively seeks the assistance of others in learning, researching,

designing, understanding, debugging, or checking results. These engineers ask previous devel-

opers to explain their designs; they ask other engineers to critique or evaluate their designs;

they survey others to create lists of alternatives.

2. Responds to Schedule Pressure by Sacri�cing Parts of Design Process: In response to schedule

pressure, these engineers are forced to provide incomplete documentation; they do not have

time to adequately inspect or test the product; they will not prototype or adequately design

risky parts of the product.

3. Driven by Desire to Contribute: values the sense of accomplishment which comes from making

a direct contribution. These engineers seek assingments where they can contribute and feel

rewarded by the chance to contribute.

4. Willingness to Confront Others: confront others when necessary to ensure a good design or

product solution. These engineers will not let a con
ict simmer and will openly confront

another person in order to resolve a problem; they will raise a tough issue of con
ict with

another engineer to their manager in an e�ort to have the con
ict resolved.

Of particular interest, the Use of Prototypes is not di�erential according to the Q-Sort, although

it was di�erential in Phase 1 with a signi�cance level of 0.0108. We o�er two possible explana-

tions for this discrepancy. A 0.0108 signi�cance level means that there is a 1% chance that the

relationship found in Phase 1 was just the result of chance, and Use of Prototypes was not really

di�erential. A more likely explanation is that the criteria for determining exceptional performance

were signi�cantly di�erent between Phase 1 and Phase 2. In Phase 1 the exceptional group was to

be in the top 5% of the organization, while in Phase 2 the exceptional group included the top 30%.

The di�erences between the exceptional and non-exceptional groups are likely to be diminished by

relaxing of standards for selecting exceptional engineers.

Both exceptional and non-exceptional engineers indicate that they do not respond to schedule

pressure by sacri�cing parts of the design process. The Responds to Schedule Pressure competency

was ranked 38th | last | by exceptional engineers and 37th | next to last | by non-exceptional

engineers. Although both groups ranked this competency very low, the di�erence in ranking proved

to be statistically signi�cant. Non-exceptional engineers are more likely to provide inadequate doc-

umentation or inadequate testing when the schedule gets tight. Somehow the exceptional engineers

are able to avoid this trap.

A few of the results are counter-intuitive. For example, there is not a signi�cant di�erence

between the exceptional and non-exceptional groups in their use of new methods and tools and

their view of the role of innovation. In both cases the non-exceptional engineers ranked these

competencies slightly higher than the exceptional group. A possible explanation for the counter-

intuitive results is that there may be a discrepancy between how engineers view their own activities
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VARIABLE

Gender

Highest Degree Held

Computer Science Degree?

Engineering Degree?

Math Degree?

Training Hours

Total Years in Software

Total Number of Languages

38 Competencies

Table 6: Retained Variables for Discriminant Analysis

and an evaluation of an outside observer. Exceptional and non-exceptional engineers may view

themselves equally in terms of innovation as described in the competency cards:

\I am innovative in my solutions to problems. I like to create alternatives that are both

creative and practical. I have creative ideas and solutions to problems."

Yet an outside observer might rank the exceptional and non-exceptional engineers quite di�erently.

Both the exceptional and non-exceptional engineers engineers rank innovation highly | innovation

is ranked 9th by the exceptional engineers and 8th by the non-exceptional engineers (out of 38

competencies).

3.4 Discriminant Analysis

We performed a discriminant analysis of the full set of non-correlating variables, and then perform

the analysis using a set of fewer variables. First we analyzed the correlations of variables, since

highly correlated variables cannot be used in the analysis.

Cross-correlations of the biographical variables demonstrates that age and experience variables

are highly correlated. This is expected since engineers who are older will tend to have more

experience. We assume that experience rather than age is the important variable here. Since not

all of these variables can be used in subsequent analysis, we select Total Years in Software as the

most appropriate variable. This choice is consisting with prior literature [26]. There is also a natural

high correlation between the Number of Degrees Competed and the Highest Degree Completed. We

use the Highest Degree Completed in subsequent analysis. None of the 38 competency variables were

correlated with each other or with the biographical variables at a level of 0.60 or better. Hence all

are used in the subsequent discriminant analysis. The variables that will be used in the discriminant

analysis are shown in Table 6. These variables were entered into a stepwise discriminant analysis

using a 24 step process with the results shown in Table 7.

Table 7 shows that 49% of the variance (1 � �) can be explained by the 20 variables in the

Canonical Discriminant Function following the analysis. A more signi�cant result is demonstrated

in Table 8 where we �nd that the function composed of the 20 variables in Table 7 is able to

correctly classify 86% of the cases collected in this study.

As a practical re�nement, the discriminant analysis was rerun over the same variables, but

only allowing the �rst 10 variables of Table 7 to enter the Canonical Discriminant Function. This

was an attempt to create a more tractable predictor function which can be more readily used in
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Action Vars Wilks' Competency (C) or

Step Add Delete In Lambda Sig. Biographical Variable (B)

1
p

1 .83854 .0000 Helps others (C)

2
p

2 .76331 .0000 Total years Software experience (B)

3
p

3 .72147 .0000 Driven by bias for action/urgency (C)

4
p

4 .69362 .0000 Total languages used professionally (B)

5
p

5 .67090 .0000 Willingness to confront others (C)

6
p

6 .64644 .0000 Exhibits and articulates strong convictions (C)

7
p

7 .62845 .0000 Perseverance (C)

8
p

8 .61493 .0000 Driven by sense of mission (C)

9
p

9 .59993 .0000 Responds to schedule pressure (C)

10
p

10 .58924 .0000 Math Degree Held? (B)

11
p

11 .57852 .0000 Uses prototypes to assess design (C)

12
p

12 .56804 .0000 Schedules and estimates well (C)

13
p

13 .55790 .0000 Maintains \big picture view" (C)

14
p

14 .55016 .0000 Uses structured techniques for communication (C)

15
p

15 .54255 .0000 Team oriented (C)

16
p

16 .53526 .0000 Engineering degree held? (B)

17
p

17 .52980 .0000 Takes pride in quality and productivity (C)

18
p

18 .52393 .0000 Total training hours (C)

19
p

19 .51692 .0000 Uses code reading (C)

20
p

20 .51101 .0000 Focuses on user or customer needs (C)

21
p

19 .51579 .0000 Maintains \big picture view" (C)

22
p

18 .51986 .0000 Uses prototypes to assess design (C)

23
p

19 .51465 .0000 Writes/automates tests in parallel (C)

24
p

20 .50901 .0000 Uses methodical problem solving approaches (C)

Table 7: Full Discriminant Analysis | Summary Table

Predicted Group

No. of Membership

Actual Group Cases 0 1

Group 0 83 73 10

Non-exceptional 88.0% 12.0%

Group 1 40 7 33

Exceptional 17.5% 82.5%

% of \grouped" cases correctly classi�ed: 86.18%

125 Cases were processed.

0 Cases were excluded for missing or out-of-range group codes.

2 Cases had at least one missing discriminating variable

123 Cases were used for printed output

Table 8: Full Discriminant Analysis | Classi�cation Results
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Predicted Group

No. of Membership

Actual Group Cases 0 1

Group 0 83 68 15

Non-exceptional 81.9% 18.1%

Group 1 40 8 32

Exceptional 20.0% 80.0%

% of \grouped" cases correctly classi�ed: 81.3%

125 Cases were processed.

0 Cases were excluded for missing or out-of-range group codes.

2 Cases had at least one missing discriminating variable

123 Cases were used for printed output

Table 9: Limited 10 Variable Discriminant Analysis | Classi�cation Results

practice. The full discriminant analysis in Table 7 shows that after the �rst 13 variables entered

the discriminant function, subsequent variables explained less than 1% of the remaining variance.

Thus we �nd a practical cuto� for additional variables. Further, the eleventh and thirteenth vari-

ables entered (Uses Prototypes and Maintains \big picture" view competencies) were subsequently

removed from analysis. This is an indication that the eleventh, twelfth, and thirteenth variables are

not important to retain for further analysis. Hence the analysis included only the �rst 10 variables

in the Canonical Discriminant Function. Table 9 gives the classi�cation results for the reduced

case of 10 variables. The function of 10 variables is able to correctly classify over 81% of the cases

collected in this study.

The ten variable function is nearly as e�ective as the full twenty variable function in classifying

the exceptional and non-exceptional cases. The total variance explained by these ten variables is

41%. The Helps Others competency explains 16% of the variance in the sample. The Total Years

Software Experience variable explains another 8% of the variance. The Bias for Action competency

explains 4% of the sample variance. Each of the seven remaining variables explains less than 3%

of the variance of the sample.

In the ten variable function, seven of the variables are competencies; the remaining three are

biographical variables. Four of the competencies in the function were found as di�erential using the

t-test. Thus, three of the competencies are di�erential in the ten variable Canonical Discriminant

Function, but are not di�erential using the t-test. These three di�erential competencies and the

behavior and/or attitudes of engineers that exhibit each competency are brie
y described as follows:

Two of these di�erential competencies have a higher mean for exceptional performers:

1. Desire to Do/Bias for Action: driven by a bias for action and sense of urgency in

completing assignments. When faced with a tough problem, these engineers do not

hesitate to get started and develop the required capabilities as they go; they are results

oriented and want to make progress on a regular basis; they push themselves to achieve

results quickly.

2. Sense of Mission: driven by a sense of mission and clearly articulate goals to achieve a

speci�c result. These engineers create and articulate clear and speci�c goal statements;

they drive the project to achieve speci�c goals.

One of these di�erential competencies has a higher mean for non-exceptional performers:
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1. Perseverance: methodical, organized, and cautious in their work. These engineers make

sure that all paths are covered in their design and problem solving; they work slowly

and carefully to avoid making mistakes.

4 Discussion

We conclude from our evaluation of Phase 2 results that experience is indeed a signi�cant predictor

of performance. This is particularly true when the experience is in software engineering and the

experience is received at the company where a subject still works. It seems that either companies

reward the experience at their own company more, or the experience at the company is more

relevant to the tasks of that company.

The experience variable by itself is not a satisfying predictor of performance. Experience alone

is only able to correctly classify 63% of the 123 (complete) cases from this study. Two other bio-

graphical variables enter into the ten variable Canonical Discriminant Function, Total Languages

Used Professionally (which might be considered a \breadth of experience" variable), and Math

Degree Held?, with both variables associated with exceptional performance. However, the compe-

tencies are of major importance in classifying the engineers using either the Canonical Discriminant

Function or the t-test.

The competencies can be organized into four categories, Task Accomplishment, Personal At-

tributes, Situational Skills, and Interpersonal Skills as shown in Table 10. The competencies in

each category of this table are listed in rank order based upon the mean competency score for the

entire sample.

The categories shown in Table 10 form natural clusters of related competencies. Task Ac-

complishment competencies are those competencies most closely related to the unique skills or

capabilities required to complete the task at hand. Personal Attributes are those competencies

which describe inherent traits of the individual and are generally presumed to be competencies

which are independent of the task itself. Situational Skills are the competencies that relate to the

process by which an individual completes a task. Interpersonal Skills describe the competencies

related to the interactions among the engineers.

All competencies listed are important even if they prove to not be di�erential between excep-

tional and non-exceptional performers. The list describes all of the competencies found in software

engineers in this study. The list of competencies provides a well rounded view of the extent of

skills, knowledge, and attributes required for a software engineer to be successful.

Five competencies are associated with exceptional performance and four competencies are asso-

ciated with non-exceptional performance via the t-test. Using the ten variable discrimination func-

tion, four competencies are associated with exceptional performance (two of these are also identi�ed

with the t-test), and three competencies are associated with non-exceptional performance (two of

these are also identi�ed with the t-test. Thus, a total of seven competencies are associated with

exceptional performance and �ve competencies are associated with non-exceptional performance.

The competencies associate with exceptional performance, Mastery of Skills & Techniques,

Maintains \big picture" View, Desire to Do/Bias for Action, Driven by a Sense of Mission, Exhibits

& Articulates Strong Convictions, Pro-active Role with Management, and Helps Others, generally

cluster around the theme of external focus. The exceptional engineer is di�erentiated by behaviors

associated with externalization | behaviors directed at people or objects outside the individual.

The exceptional engineer takes a broad view of situations and develops strong convictions about

how to proceed. The exceptional engineer drives toward this vision by pro-actively working with

management to set goals on directions for the team. The exceptional engineer helps other engineers

in an attempt to ensure the full success of the project. The one task accomplishment skill exhibited
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Task Accomplishment T-Test1 Discrim2

Leverages/Reuses Code

Uses Methodical Problem Solving

Mastery of Skills & Techniques XP

Writes/Automates Tests with Code

Prior Experience

Obtains Necessary Training/Learning

Uses Code Reading

Use of New Methods or Tools

Schedules and Estimates Well

Use of Prototypes to Asses Design

Possesses Unique Domain Knowledge

Uses Structured Techniques for Communication

Personal Attributes

Driven by Desire to Contribute NXP

Pride in Quality and Productivity

Sense of Fun

Lack of Ego

Perseverance NXP

Desire to Improve Things

Pro-active/Initiator/Driver

Maintains \big picture" View XP

Desire to Do/Bias for Action XP

Thoroughness - Methodical , Organized, Cautious

Driven by a Sense of Mission XP

Exhibits & Articulates Strong Convictions XP XP

Mixes Personal and Work Goals

Pro-active Role with Management XP

Situational Skills Competencies

Concern for Reliability & Quality

Focus on User or Customer Needs

Thinking - Strong Analytic Skills

Emphasizes Elegant and Simple Solutions

Innovation

Attention to Detail

Design Style

Responds to Schedule Pressure by Sacri�cing NXP NXP

Parts of the Design Process

Interpersonal Skills Competencies

Seeks Help NXP

Team Oriented

Helps Others XP XP

Willingness to Confront Others NXP NXP

1. Entries indicate which competencies have statistically signi�cant di�erences for exceptional (marked XP) and non-
exceptional (marked NXP) performers. (Based on Phase 2 Q-Sort results.)

2. Entries indicate which competencies entered the canonical discriminant function of ten variables. Competencies are

marked XP (exceptional) and NXP (non-exceptional). (Based on Phase 2 Q-Sort results.)

Table 10: Competencies by Category
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by exceptional engineers is Mastery of Skills & Techniques. This is a more self-directed competency

and reinforces the fact that engineers need to be completely capable in their own discipline before

they achieve the exceptional status related to an external focus. One engineer in the study states,

\My perception of someone who is successful is not someone that knows the most, it is someone

who can use the knowledge they do have the best."

The non-exceptional engineer is associated with �ve competencies, Driven by Desire to Con-

tribute, Perseverance, Responds to Schedule Pressure by Sacri�cing Parts of the Design Process,

Seeks Help, and Willingness to Confront Others. Here the unifying theme is one of internal focus.

These competencies all relate an individual acting largely alone attempting to compete tasks. The

interaction with others is either one of seeking help or one of confrontation. These engineers �nd

that they give in to the external schedule pressure and sacri�ce parts of the design process that they

would rather not sacri�ce. The motivation of the non-exceptional engineer comes from a personal

desire to contribute. This contrasts with the exceptional engineer who takes a broader view and

works to in
uence project direction.

One way of viewing these characteristics is to place them in the context of experienced versus

inexperienced individuals. Many of the competencies related with non-exceptional performance

can be viewed as the behaviors of inexperienced engineers. When an engineer �rst begins a career,

they will be unsure of their skills and capabilities. As a result, they will concentrate heavily on

their own performance and exhibit an internal focus. As they mature in the job and become more

con�dent of their skills, they will begin to take a broader view and be more pro-active in setting

project direction. Thus, we �nd experience is a di�erential characteristic of exceptional performers.

The relationship between experience and competencies does not explain all of the di�erence

in the sample, however. Many experienced software engineers never become exceptional. These

experienced engineers fail to exhibit the externally focussed competencies even after many years

of experience. We assume that there is a relationship between experience and certain key compe-

tencies. However, the mechanism by which experience reinforces or transfers the key competencies

does not work for all individuals. Thus, we raise the question of how competencies are reinforced.

Why do some software engineers use their experience to develop the competencies associated with

exceptional performance while others do not? This question is beyond the scope of this research,

but indicates a signi�cant direction for future research.

5 Related Work

Approaches for behavior-oriented software engineering research generally lie along a continuum

between tightly controlled experiments (often with limited generality) and more broadly de�ned

studies which stress qualitative psychological techniques [15, 27, 28, 29, 30].

The bulk of the research to date favors the tightly controlled experimental approach. Studies

seeking to correlate easily measured a priori factors with programmer performance have shown

mixed results. In a study conducted by Evans and Simkins [31], 34 easily measured demographic,

academic, experience, and behavioral variables could account for no more than 23% of the variation

in student performance. On the other hand, Chrysler was able to explain over 85% of the variance

in performance based on only thirteen program variables and �ve programmer variables [26]. The

subjects in Chrysler's study were experienced professional programmers rather than students. In

another similar study, Moher and Schneider were able to explain 45-55% of the performance vari-

ability in student programmers, but for professional programmers only the years of experience was

signi�cant [32].

Our results on a small sample of professional programmers also found that the number of years

of experience is the only statistically signi�cant biographical factor. On the larger sample the total
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number of languages and the math degree held? variables contributed to the ten variable canonical

discriminant function. Rather than search for other simple predictors of performance, our major

emphasis is on studying the actual behavior of software engineers when solving software engineering

problems.

In behavioral experiments conducted at MCC, three experienced software developers were video-

taped during the process of developing a design solution [33, 34]. The observed development process

was not linear | designers operated simultaneously at various levels of abstraction and detail. Also,

each designer exhibited a markedly di�erent approach to design. Guindon describes the nonlinear

design process as serendipitous or opportunistic [35].

Of particular interest in the MCC studies is the use of an observational technique for gathering

information. By observing the video tapes the researchers were able to obtain thinking aloud reports,

and by collecting notes used in the designs were able to reconstruct the actual design sequence. The

researchers also used protocol analysis to uncover cognitive factors at work in design. The major

drawback to this study is its limited sample size.

Littman et al also used the observational technique to study a small sample [36]. Four expe-

rienced and two novice software designers were interviewed during a two hour period while they

designed an electronic mail system. They found that the experienced designers took the users view

of the system before proceeding with the design. Experienced designers set goals and subgoals,

used analogies to prior problems, and kept notes to monitor the progress of the design. The novice

designers would plunge into the design details immediately.

The MCC and Littman et al studies provide insights into the problem solving techniques of

experienced software developers; these studies did not examine the di�erences between exceptional

and average performers. Vitalari and Dickson compared the problem-solving behavior of one low-

and one high-rated systems analyst from each of nine companies [37]. Subjects verbalized their

thought processes as they solved a requirements engineering problem over a two hour period.

They found that the high-rated performers were more likely than low-rated performers to reject

hypothesis, try several strategies, apply heuristics, set more goals, and look for analogies to prior

problems. High rated performers were more likely to work for a productive relationship with the

user and specify more requirements than the low-rated analysts.

Rather than directly observing behavior, our study analyses in-depth interviews of subjects

describing their behavior. Although the incident interviews and transcript analysis used in our

study require signi�cant e�ort, they are far less labor intensive than the observational approach

used in the MCC, Littman et al, and Vatalari and Dickson studies. We examine a much larger

sample size than done at MCC or by Littman et al even in Phase 1. Like Vatalari and Dickson,

we compare highly rated to less highly rated developers. However, we investigate the behaviors

of software engineers in a larger context than one project. We study how engineers work in a

team, and in an organization. None of the forgoing observational studies performed a quantitative

follow-up study on a larger sample similar to our Phase 2. Thus, the signi�cance of the results

from the observational studies have not been demonstrated.

Student programmers are common subjects for studies of programmer behavior. Kagan and

Douthat used extensive psychological testing to predict student performance [18]. They found

a relationship between introversion and �nal success in an introductory Fortran class of 326 stu-

dents. The results were based on responses to questionnaires that determine personality traits using

Eysenck's Personality Inventory, the Crowne-Marlowe Social Desirability Scale, Self-Monitoring of

Expressive Behavior, the Hostility Inventory, and a Type A Behavior measure.

In another study of students, Love searched for predictive factors in student programming

performance [38]. The search itself is fairly brute force in that a wide array (24 factors) of data

are collected for each run of a student assignment. Each factor is considered in an analysis of
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variance calculation to determine predictive factors of performance. The study also attempts to

relate \human information processing abilities" to programming performance. Data was collected

concerning factors that a�ect the success of individual runs of a program, and was thus quite

narrowly focused.

The extension of results from the study of students to the realm of experienced professionals is

unclear at best. Since the correlation of grades and professional success is not high [39], there is

no reason to expect the predictive factors from a study of students to generalize to the study of

professionals.

We also used the MBTI test to determine the personality of the Phase 1 subjects. An abbrevi-

ated version of the MBTI was used by Evans and Simkin in their study of programmer productivity

and demonstrated correlation between the introversion, intuitive, and judging types and perfor-

mance on exams [31]. We were unable to �nd signi�cant di�erences between the personality types

of the exceptional and non-exceptional engineers.

The focus of our research is on competencies. A competency is any personal characteristic or

attribute that contributes to e�ective performance [40]. A job competency is any attribute that

contributes to doing a speci�c job well. These attributes can be specialized knowledge, an ability,

an interest, a trait, or a motivation. However, they are not a job competency unless they contribute

to doing the job well.

The case for studying competencies rather than intelligence was made by McClelland in a

criticism of the predictive validity of intelligence tests [39]. McClelland argues that tests which

sample job skills are the best predictors of competence. In order to create the tests the researcher

must know which skills are necessary to achieve competent performance in a particular job. The

aim of our study is to uncover these competencies.

Kelley and Caplan's development of a training program for Bell Laboratories is especially rel-

evant [1]. They compared top performers to average workers at Bell Labs. Like our study, the

top performers were those identi�ed as \stars" by managers, but top performers also had to also

be identi�ed as stars by their peers. They found that stars do not have more innate ability than

average performers. Academic talent was not a good predictor, which is consistent with our study.

Nine key work strategies were identi�ed: taking initiative, networking, self-management, teamwork

e�ectiveness, leadership, followership, perspective, show-and-tell, and organizational savvy. Both

groups agreed with these key work strategies, but their views about them di�ered. Networking

ability and initiative accounts were described quite di�erently by the two groups. Taking initiative

was ranked as the most important strategy by the stars, while ranked as least important by average

performers. The key work strategies seem quite similar to the competencies that are identi�ed as

di�erential in our study. Like our study, strategies associated with externalization seem most im-

portant. Of greatist signi�cance, Kelley and Caplan �nd that the skills and strategies of the stars

can be taught to the average performers.

6 Conclusions

The results of our study of exceptional and non-exceptional software engineers can be summarized

as follows:

� No simple predictor of performance exists.

� Experience variables are di�erentially related to performance, but can only correctly predict

the classi�cation of exceptional and non-exceptional performance of 63% of the subjects.

� 38 identi�ed competencies characterize the necessary skills and attributes of professional

software engineers.
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� 9 competencies are di�erentially related to performance; they tend to cluster around personal

attributes or interpersonal skills competencies.

� A discriminant function of 10 variables | 3 biographical variables and 7 competencies | can

correctly predict the classi�cation of exceptional and non-exceptional performance of 81% of

the cases.

These results were obtained in a two phase investigation using professional software engineers from

a major US Corporation (The Company). Phase 1 is a qualitative study of a small sample of

software engineers that identi�es the competencies. Phase 2 is a quantitative study using a larger

sample that validates the the competencies and evaluates the di�erences between the exceptional

and non-exceptional software engineers.

In Phase 1 of our research, we use the Critical Incident Interview technique in an in-depth

review of 20 professional software engineers employed by a major computer �rm. Our review

includes an evaluation of biographical, Myers Briggs Type Indicator tests, and Critical Incidence

Interview data for 10 exceptional and 10 non-exceptional subjects. On the small sample used

in Phase 1, one biographical factor, Years at Company in Software, is signi�cantly related to

exceptional performance. The Myers Briggs Type Indicator results were consistent with other

studies that �nd most programmers exhibit the Introvert and Thinking personality types. However,

using the Myers Briggs Type Indicator, we found no signi�cant di�erences in personality types

between the exceptional and non-exceptional software engineers on this small sample. We also

analyze competencies identi�ed by software managers. By combining the data obtained through the

interviews and by the managers, we identify 38 essential competencies of software engineers. These

competencies are shown in Table 3. We consider the identi�ed competencies of software engineers

as threshold competencies | competencies that are important to the job and are exhibited equally

by exceptional and non-exceptional performers.

During Phase 2 of this research, we collected data from 129 subjects. These subjects are all

experienced professional software engineers engaged in the creation of software products. The data

included biographical information and the results of a Q-Sort of the 38 competencies identi�ed

in Phase 1. The only biographical data demonstrating a statistically signi�cant relationship to

exceptional performance under univariate analysis are years of experience variables. In addition

to years of experience, the number of languages and math degree held? variables entered into a

ten variable canonical discriminant function used to classify the Phase 2 subjects. The remaining

signi�cant variable are the rankings of the competencies using the Q-Sort exercise. The analysis of

the results of the Q-Sort exercise shows nine competencies are statistically related to performance

under univariate analysis. Five of these competencies are more related to the behavior of exceptional

performers while four of the competencies are related to non-exceptional performers. Using the

multivariate technique of discriminant analysis, we �nd that an equation of twenty variables is able

to correctly classify the exceptional and non-exceptional cases under study 86% of the time. A

simpli�ed equation of only ten variables provides correct classi�cation 81% of the time.

The derived competencies are an important result. Even the competencies that do not di�eren-

tiate between exceptional and non-exceptional performers are important. The set of competencies

provides a description of the wide range of skills, knowledge, and attributes required for a software

engineer to be successful.

Table 10 indicates which competencies (by category) are considered di�erential via the t-test and

ten variable canonical discriminant function. We are led to the insight that Personal Attributes

and Interpersonal Skills are most closely linked with performance di�erences. Skills associated

with task or situation did not generally emerge as di�erential. This study demonstrates that

the exceptional engineer can be distinguished by behaviors associated with an external focus |
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behaviors directed at people or objects outside the individual. Exceptional engineers are more likely

than non-exceptional engineers to maintain a \big picture", have a bias for action, be driven by a

sense of mission, exhibit and articulate strong convictions, play a pro-active role with management,

and help other engineers.
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