
Department of

Computer Science

Domain Based Testing :

Increasing Test Case Reuse

Anneliese von Mayrhauser, Richard Mraz,

Je� Walls, and Pete Ocken

Technical Report CS-93-131

December 10, 1993

Colorado State University



Domain Based Testing : Increasing Test Case Reuse

Anneliese von Mayrhauser, Richard Mraz, Je� Walls, and Pete Ocken

Abstract

Domain Based Testing (DBT) uses Domain Analysis and a Domain Model to automate test gen-

eration for command-based systems. Instead of using a Domain Model for reuse, we use it as a

structure to generate test cases. Part of the Domain Model for DBT includes the syntax and se-
mantics of the command language. Domain Based Testing separates command language syntax

from command language semantics. The test generation process is divided into three phases, (1)
Scripting, (2) Command Template Generation, and (3) Parameter Value Selection. DBT handles
the complexity of the semantic rules by distributing them across all three phases. Because it is
based on ideas from software reuse, DBT also provides a good structure for test case reuse. Our
DBT tool, Sleuth, archives test cases at each phase of test generation. Production use of Sleuth

to generate system tests for an automated robot tape library con�rms that Domain Based Testing
provides a wide variety of test case reuse scenarios.

Key Words: Domain Analysis, Domain Models, Automated Test Generation.

1Address correspondence to A. von Mayrhauser Department of Computer Science, Colorado State University,
Fort Collins, CO 80523. (303)491-7016. Fax: (303) 491-6639, Email: avm@cs.colostate.edu

Research partially supported by the Colorado Advanced Software Institute (CASI), StorageTek, and the Air Force
Institute of Technology. CASI is sponsored in part by the Colorado Advanced Technology Institute (CATI), an agency
of the state of Colorado. CATI promotes advanced technology teaching and research at universities in Colorado for
the purpose of economic development.

Copyright c
1993 by Anneliese von Mayrhaurser Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial advantage, the copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of the author.

1



Requirements

Analysis

Software

Language

Software

TestingReuse

Formal

Domain Based

Testing

Figure 1: Foundations for Domain Based Testing

1 Introduction

Domain Analysis supports development and use of reusable components [4] [8]. Domain Analysis
provides an organized model of a family of applications. Therefore, such a model, if de�ned properly
should also be useful to develop a structured set of test cases for testing software in such domains. We
call testing that is based on a domain analysis geared toward test generation Domain Based Testing

(DBT) 2. Its Domain Analysis and Domain Model facilitate reuse of test cases at several levels of

abstraction. DBT has tool support (Sleuth version 1.1 is in production use by a system testing group
at StorageTek), and experience has been very positive. Domain Based Testing combines domain
analysis and automated test suite generation using a variety of sentence generation mechanisms to
generate large sets of test cases that are syntactically and semantically correct.

We do not, however, rely on traditional use of grammars to generate test cases [5] [6] [7]. The

main reason is that for practical problems with signi�cant amounts of semantic information, the
underlying grammars 3 quickly become unmanageable and di�cult to maintain 4. Further, possible

reuse and incremental change or temporary disabling of selected semantic rules is more di�cult with

techniques that combine all aspects of test generation in a single mechanism. Instead, we assumed
a three step process to test data generation:

(1) Scripting: Dynamic behavior as sequences of actions on logical or physical objects of a system.

(2) Individual Manipulation of Object(s): In Command Languages these would be single command
templates.

(3) Objective Attribute Value Selection: In Command Languages this refers to parameter value
selection.

2This should not be confused with Domain Testing as described in [3].
3VanWijngaarden grammars, Attribute grammars [1].
4This has been con�rmed in private conversation with J. Hutchison and J. Schlauer, as well as our own experience.

2



The advantages of this approach are:

1. Separation of concerns simpli�es test suite generation at each step

2. Reusability becomes possible at all three levels of re�nement. We will explore this further in

Section 3

At this time, feasibility and practical usefulness of this approach have been demonstrated for

command-based software systems that possess the following properties of the command language:

� Parameters in particular must have a high semantic content.

This ensures that the Test Domain Model is rich enough to enable semantically meaningful

test suite generation. Thus, a command generator for a compiler is inappropriate at the

compiler invocation level (e.g. cc example.c), since all relevant knowledge is in the content
of the �le example.c rather than at the compiler invocation level (i.e. the command cc itself).

This serves to identify the proper level of analysis rather than constrain the applicability of
Domain Based Testing.

� Command Language parameters and command types must map to physical or logical objects
of the system under test.

This ensures that we can actually build a domain model that relates back to the commands
of the system under test. In our analysis, all command languages exhibited this property well
enough to be worthwhile candidates for Domain Based Testing.

Domain Analysis for testing is described in detail in Section 2. This section also shows how to
structure the resulting objects, relationships and rules about dynamic behavior to facilitate test case

reuse. Section 3 describes the automated test generation engine Sleuth. Sleuth supports Domain
Based Testing. Its domain con�guration phase allows descriptions of domain analysis results. Test
engineers \customize" Sleuth for a particular testing domain. Sleuth then generate suites of test
cases using the three step approach described above to facilitate test case reuse. Section 4 reports
experiences with Domain Based Testing of an automated robot tape library system, particularly

its usefulness in reuse of test cases at various levels of abstraction. Such reuse improves regression

testing, incremental testing, and testing a variety of system con�gurations. Section 5 provides our
conclusions.

2 Domain Analysis for Testing

Early reuse was con�ned to shared libraries, reusable programs, and reusable software components.

Recently, software reuse concepts have been applied throughout the software life cycle. In general,

reuse looks beyond single projects or systems where information common to a set of similar systems
is exploited. For software reuse to be successful, one must be able to extract common information

about a problem domain, specify the operations of the domain, and package the information such

that one can build a new system based on the reuse knowledge. One way to capture this information

3



Other

Inputs

Existing

Systems

Domain

Expert Domain

Analyst
Usage

Data

Reuse

Manager

domain

analysis

methods

R

D

S

waterfall software development

Domain Engineer

specs

system i

Asset Manager Librarian

tuning

Domain Models
Domain
Analysis

Reusable Resources

T

Figure 2: A Reuse Infrastructure [9]

is to perform a Domain Analysis. Prieto-Diaz de�nes Domain Analysis as, \a process by which
information used in developing software systems is identi�ed, captured, and organized with the

purpose of making it reusable when creating new systems" [9]. The result of a Domain Analysis
is called a Domain Model. Domain Models represent the reuse problem domain and serve as a
mechanism to create instances of reusable components when building new software for the same
domain.

Software reuse can be exploited at every phase of the software life cycle. Prieto-Diaz suggests a

\reuse infrastructure" for waterfall software development (see Figure 2) [9]. Domain Models are
used at each phase of software development. Feedback loops are provided to update the Domain
Models. We explored the possibilities of a Domain Model for testing and automated test generation.

In Figure 2, those boxes highlighted with BOLD lines denote the focus. From this point of view,
Domain Based Testing can be used as a test generation tool, a \reusable" test case generator, or
to identify regression test suites. For the remainder of the paper, we will show how to use Domain

Based Testing as a \reusable" test case generator.

2.1 Objects, Relationships, and Semantic Rules

Domain Based Testing is based on a specialized Domain Analysis. The steps for the Domain
Analysis are listed in Table 1. For command-based systems, we can easily identify parameters of

the command language. We can also identify whether they are part of or describe a property of a
physical or logical object. This analysis gives us a �rst cut of the objects and their particular object

elements. Objects denote physical or logical entities in the problem domain. Object elements are

similar to the concept of \object attributes" in Object-Oriented Analysis/Object-Oriented Design

4



1. Command Language Analysis

1.1. Identify/De�ne a Command Language Interface
1.2. Check Semantic Content

1.3. Check Parameter to Object Mapping

1.4. Create Command Language Glossary
2. Object Analysis

2.1. Identify Objects and Their Elements

2.2. Identify Object Relationships
2.3. Create Object Glossary and Object Element Glossary

3. Command De�nition
3.1. Command Language Representation

3.2. Identify Pre/Post Conditions

3.3. Identify Intracommand Rules
4. Script De�nition (Command Sequencing)

4.1. Script Analysis
4.2. Script Classes
4.3. Script Rules

Table 1: Domain Analysis Steps for Domain Based Testing

(OOA/OOD). An attribute in OOA/OOD de�nes qualities and properties of the object [10]. Rarely
do OOA/OOD methods re�ne the concept of an object's attributes. For Domain Based Testing,
we found that classifying attributes more precisely simpli�es test generation. Table 3 shows our
detailed classi�cation for object elements.

Object elements when derived from the command language can be attributes, modes, or states.

Attributes describe parts of an object like name, physical or logical part, etc. Modes relate to modes
of use, display, etc. For example, a command parameter may specify whether to run a software
system in a novice mode or expert mode. In this case, the object element is a parameter of type
mode and associated with the highest level (i.e. system) object. Similarly, it may be possible to
in
uence the state of objects in the system via parameters (e.g. ON/OFF). Figure 3 also shows

Mode EventAttribute

Nonparameter

State

Parameter

State

Object

Element

Figure 3: Object Element Classi�cation

5



State

NP State

EventAttribute

Mode
Attribute

State

Event

Object4

NP State

NP State

Object3

Mode

Commands

Commands
State
Mode
Attribute Event

NP State

Object2

Object1

Attribute
Mode

State

Event

Commands

attribute1 -> attribute4

attribute2 -> attribute3

Figure 4: Generic Object Model

nonparameter elements. These represent events or states that occur as an implicit consequence of
the dynamics of system operation but are not directly set via parameter values in commands. They
are,however, important for test data generation to provide semantically correct command sequences
as events and states may cause certain commands or parameter values to be no longer valid for

semantically correct commands (e.g. if a tape library is full, I cannot enter another tape into it, yet
I cannot set a library to \full" with a command).

Once the objects and their elements are de�ned, we need to show object relationships. In Domain
Based Testing, relationships between objects de�ne semantic rules about parameter values. These
relationships are captured in an object hierarchy. Figure 4 shows a generic object hierarchy with four

objects. The existence of a relationship between objects is shown by an arrow from one object to
another. The arcs are annotated with detailed information about the relationship or parameter value
constraint. In Figure 4 the annotation between Object 1 and Object 2 indicates a relationship
between attribute 1 of Object 1 and attribute 4 of Object 2. For \small" objects, rules and
attributes can be listed directly in the object model �gure. For larger objects, a table for detailed

information is more appropriate to prevent clutter and unreadable graphics. Table 2 shows a generic

attribute table for a \large" object. In particular, the attribute de�nition table lists all possible
values for an attribute. The relationship de�nition table describes relationships between object
attributes in more detail. In our domain analysis for testing, all rules so far have been parameter

inheritance rules, i.e. the value of one attribute constrains the value of another. Mode, state, and

event object elements on the other hand appear in rules for parameter selection at the command

level and constrain which commands are semantically valid for a script (dynamic behavior).

Next, command syntax and semantic rules are de�ned for each command. These are used later to
generate command templates. The semantic rules ensure the test is meaningful. Three types of

semantic rules exist for commands: Preconditions, postconditions, and intracommand rules. Pre-

conditions identify the conditions that must hold before the command can execute. Postconditions

list the conditions that are true after the command executes. Preconditions ensure proper state or

mode for a command. They also may further constrain valid parameter values. Postconditions state

6



Rule Type Rule Speci�cs

O1.attribute1 ! O2.attribute4 (O1.attribute1 = val1) ! O2.attribute4 � subset(O2.attribute4)
O1.attribute2 ! O3.attribute3 (O1.attribute2 = val1) ! O3.attribute2 � subset(O3.attribute3)

Table 2: Generic Attribute Table for a \Large" Object

e�ects on object elements and in
uence future command sequences or parameter value selection.

Intracommand rules identify constraints placed on parameter value selection within a command.

Intracommand rules thus handle semantics of object manipulation via commands. An example of

such a rule is \you must not copy a �le onto itself." This leads to a rule filename1 6= filename2

in a copy command template such as:

copy <filename1> <filename2>

Such rules are only active during the execution of the command with which they are associated.

At this point of analysis we have a static model of our domain, its objects, commands that ma-
nipulate objects, and the rules that govern such manipulation. We have not yet analyzed dynamic
behavior. The dynamic behavior model of our domain describes rules for possible consequences of

actions (in our case, command sequences). It corresponds to the scripting phase during test gener-
ation. Sequencing information is necessary because arbitrarily ordering a list of commands rarely
produces semantically correct test cases 5. Besides capturing dynamic system behavior, scripting
allows the test engineer to develop meaningful test cases at a high level of abstraction. Two types
of semantic rules are associated with the scripting phase:

1. Command Sequencing Rules

In some systems, commands must be issued in a particular order. It may not make sense to

issue some commands before others. For example, is does not make sense to \dismount" a
tape from a tape drive unless one has previously been \mounted." Semantic rules like this
form \bracketing" information that must be obeyed for meaningful test generation.

2. Script Parameter Selection Rules

This type of script rule de�nes how to choose parameters for script sequencing. Table 3 shows

three script parameter selection rules. The �rst rule, p*, states that parameter p can be
selected from any valid choice according to object inheritance constraints. The second rule,

p, restricts the value of parameter p to a previously bound value. The third rule, p-, denotes
that parameter p can be selected from any valid choice except for the currently bound value

of p. Script rules are valid for the duration of a command sequencing rule. To illustrate, the

MOUNT - DISMOUNT sequence is annotated with script parameter selection rules.

5We experimented with a prototype [2] that used no sequencing rules and found that only about 30%-40% of the
test cases were meaningful without sequencing rules.

7



Notation Description

p* Choose any valid value for p
p Choose a previously bound value for p

p- Choose any except a previously bound value for p

Table 3: Script Rule: Parameter Value Selection

MOUNT tape-id*

<A list of commands>

RELEASE tape-id

This rule states the tape-id parameter can be selected from any valid choice for the MOUNT

command. The DISMOUNT command must use the previously bound value for the tape-id.
Simply stated, the tape that is mounted should be the one that is dismounted.

These three aspects of domain description form a domain model that is su�cient to generate
meaningful test cases for command-based software. As we will see in the next section, it is also an
excellent basis for automated test suite generation.

3 Automation and Experience

Sleuth is an automated test generation tool developed at Colorado State University. Sleuth supports

Domain Based Testing by providing tools and utilities to automatically generate tests. The �rst
step for any new problem domain is to capture the testing domain. Sleuth does this during a System
Speci�cation phase in which the user de�nes a domain model in terms of command language syntax,
script, command, and parameter inheritance rules. Using the speci�cation, test engineers are given
a \work space" to con�gure the system for speci�c tests. Speci�cally, they can turn commands and

sets of commands on/off, they can also turn scripting or command rules on/off. They can use
or decide to switch o� object inheritance rules. Sets of possible parameter values can be edited.

While in the scripting phase, testers can de�ne their own \megascripts" using classes of commands

or importing existing tests (e.g. \bug�nders" that have worked well in the past). This turned out
to have great practical value for our test engineers as they could reuse and leverage existing test

cases while at the same time enjoying the bene�ts of Sleuth's new technology.

Figure 5 shows the main window of the tool. Test generation follows the three phase approach
outlined above. First, the scripting phase generates a list of command names. Second, a command

template is created for each command by taking a random-walk through the command's syntax

diagram 6. Third, parameter values are selected based on the current system con�guration. At each

phase only those rules are applied that are associated with a particular phase, i.e. scripting uses

6Sleuth allows command syntax to be represented and edited as syntax diagrams or BNF. Syntax diagrams were
vastly more popular since they appear to be easier to understand and work with.

8



Figure 5: Window Based Test Generation Tool

command sequencing rules, command template generation applies command rules, and parameter
selection utilizes parameter (inheritance) rules. This greatly simpli�es the test suite generation
process and reduces the number of active rules at any one point. It avoids some of the complexity
problems of other approaches while making it possible to turn various rules on/off at will. This

latter capability was of particular interest to our test engineers.

Test engineers can archive tests at each phase of test generation using the EXPORT button. By saving
tests at each phase, we can reuse tests in a variety of ways. Figure 6 illustrates the potential of

this three phase approach for test case reuse. From a single script, we can generate several di�erent

command template sequences. Each command template would be speci�c to a software release,
domain con�guration, or semantic rule set up. For each command template, Sleuth can instantiate

di�erent parameter values and thus generate test cases using di�erent system con�gurations, pa-
rameter values, or parameter inheritance rules. Through the DESCRIPT button this mechanism also

works in reverse, i.e. a command can be turned into a template, a set of command templates can
be turned into a sequence of command values. These can then be \re-generated" using di�erent

system con�guration, rules, etc. These mechanisms provide the infrastructure for test case reuse.
We explore its practical implications in the next section. Through test case reuse, test engineers

become more productive, they can re-run tests, and they can recall and modify test cases easily.

Combining test cases also provides a mechanism to create stress tests for the system. Table 4 lists
how one could generate a reusable script, command template, or test case.

9



CommandCommand

Template 3

Case 2.1

Test

Template 1

Command

Test

Case 2.2

Script

Template 2

Test

Case 2.3

Figure 6: Test Case Reuse Concept

Steps in Sleuth

Reuse Script 1. Generate Command List
2. Export Command List

Reuse Command Template 1. Generate Command List

2. Generate Command Template

3. Export Command Template

Reuse Test Case 1. Generate Command List
2. Generate Command Template

3. Generate Parameter Values

4. Export Test Case

Table 4: How to Create Reusable Tests in Sleuth

10



Storage
Module

Transports
TapePort

Library

Access
Cartridge

Unit
Control
Library

Figure 7: ACS Hardware [11]

4 Example Problem Domain - Robot Tape Library

StorageTek Corporation produces an Automated Cartridge System (ACS) that stores and re-
trieves cartridge tapes [11]. The system maintains cartridge tapes in a 12-sided storage device
called a Library Storage Module (LSM). Tapes are placed in storage cells in the outer and inner

panels. New tapes can be entered into an LSM through a special door called a Cartridge Access
Port (CAP). Figure 7 shows a single LSM with tape drives, access panel, and control unit. The
robot inside the LSM identi�es tapes using an optical scanner. Once a tape is identi�ed, the robot
can move the tape to a cell, mount the tape in a tape drive, dismount tapes, or eject tapes through
a CAP. An ACS can support up to sixteen LSMs. Figure 8 shows a \top-down" look at three

LSMs and the associated hardware. Tapes can move between LSMs through special doors called

\pass-through-ports."

The ACS and its components are controlled through a command language interface called the
Host Software Component (HSC). The commands manipulate cartridges, set the status of various

components in the system, and display status information to the operator's console. The command

language consists of 30 commands and 45 parameters. The object hierarchy for the StorageTek

problem domain is shown in Figure 9. The hierarchy also identi�es the parameter inheritance

rule classes for the attributes of the objects. On some of the arcs, speci�c constraint relations
are annotated. For example, the choice of a particular ASC (acs-id) restricts the choices for the
LSM (lsm-id). An annotated attribute table would list speci�c values. Note that we �nd all three

types of object elements, e.g. the LSM object has attributes (lsm-id), modes (lsm-subpool-threshold,

lsm-scr-threshold), and state (lsm-status) elements.

Table 5 shows a list of possible test case reuse scenarios at all three levels of test case generation.

11



Through
Port

Pass

Cells
Storage
Cartridge

Port
Access
Cartridge

Robot

Figure 8: Library Storage Module - Top View [11]

Many of these applications were suggested by the test engineers at StorageTek. We �nd three
classes of reuse scenarios: (1) Varying Software Releases, (2) Varying System Con�gurations, (3)

Varying Test Case Construction. The testers at StorageTek are using Sleuth with all three.
The following sections provide a short overview of each class and show how the test engineers at
StorageTek employ Sleuth to reuse archived tests. Even though the examples presented here are
speci�c to the robot tape library, it is reasonable to assume that other systems will have similar
reuse needs.

4.1 Scenario #1 - Software Releases

Between releases, the command language for command-based systems may change. Typically, this is

represented as a new version of the command language or as a new release of the system. Usually,

a new software release is similar to the previous one. New commands may be added, obsolete
commands are deleted, or command syntax is modi�ed. In some cases, a new release may in
uence

semantic rules like command pre/post conditions or parameter inheritance rules.

At StorageTek, test engineers use HSC commands to generate tests for the robot tape library.
These tests can be archived at all three phases of test case generation. When a new release of the

software is issued, archived test cases can be recalled at the Scripting level for reuse. Once the

script is recalled, a command template can be generated using the updated command syntax and
semantic rules. Each command template can be used to generate tests for a wide variety of hardware

con�gurations. StorageTek has a requirement that software should be upwardly compatible from

release to release. Therefore, test cases that ran without incident on one release should run without

incident on the new release. Sleuth provides utilities to recall test cases for this simple form of

12



ptp-id

Port

dsn

lsm-id -> ptp-id

drive

Pass 

CDS

Through
Playground

cap-status
prefvlu

playgnd-cc

subpool-name

LMU

Tape

lsm-scr-threshold

Transport

PTP-Column

ptp-cc

lsm-status

Scratch

Row
rr

LSM

subpool-threshold

stationPool
lsm-id

pp -> rr
pp->cc

acs-scr-threshold

cap-id

CAP Row
cap-rr

acs-subpool-threshold

lsm-subpool-threshold

CAP Column
cap-cc

cap-id -> cc

cc

cap-id -> rr

pp

acs-id

Cartridge
volser
location

Column

acs-id -> lmu-id

ACS

msg-id

command-name

Documentation
name

cc
Console

HSC

acs-id -> lsm-id

CAP

lmu-status

a -> b

Panel

Legend

Object

Inheritance Rule
Attribute
State Parameter
Mode Parameter

Attribute

State

NonParameter State NP State

Mode

lsm-id -> drive
lsm-id -> pp

lsm-id -> cap-id

Figure 9: StorageTek Object Hierarchy

13



Reuse Possibility

Reuse Script Regression Testing
Command Syntax Change

New Software Release

Stress Test
Creating new test scripts

Operating System Version

Reuse Command Template Regression Testing
Domain Speci�cation Change

Domain Con�guration Change

Hardware Con�guration Change
Stress Test

Creating new command templates
Parameter Value Change

Reuse Test Case Regression Testing
Re-run Test Case
Creating new test cases

Stress Test

Table 5: Domain Based Testing - Reuse Scenarios

regression testing.

This same reuse scenario can be used for operating system versions. Many times command-based
systems are used across di�erent operating systems. There may be many commands in common,
but some slight di�erences in the command language. For example, some commands may be needed

for one OS and not another. Using this same scenario, test cases can be recalled at the Scripting

level, and new tests can be generated for various OS versions. Since all test suites are identical at
the Script level, we build uniform, comparable test suites for a variety of releases and platforms.

4.2 Scenario #2 - System Con�gurations

In general, test cases for command-based systems can be changed by altering the parameter values

that can be selected. The set of parameter values represents a con�guration of the problem domain.
Sometimes it represents a con�guration of a logical object while other times it may represent a

con�guration of physical devices.

The StorageTek robot tape library hardware can be con�gured in many ways. To test these

con�gurations, testers can execute tests on a Library Management Unit (LMU) simulator or on
actual ACS hardware. The simulator is convenient for testing because it can model a customer's

installation or it can be set up to model any valid ACS con�guration. ACS hardware can be

con�gured in many ways. Tests run on the actual hardware is typically used to test timing problems

or real-time processing faults. Each ACS con�guration needs a separate set of parameter value �les

14



and parameter inheritance rules.

For this scenario, tests will be reused at the Command Template level. Upon recalling a command

template, test cases can be regenerated based on the new con�guration. Hence, a single command

template can generate a test case for each parameter con�guration. This saves generation time,

but more importantly make test cases comparable because at the scripting and command template

level they test \the same thing."

4.3 Scenario #3 - Test Case Construction

Often testers �nd a particular list of commands is good at detecting an error. Test engineers may

also have a set of commands that puts the system in a particular state before running a test case. It

should be easy to recall such test cases and to include them in a new test suite. In Sleuth, this reuse

scenario spans all three phases of test generation. For instance, a new test case can be constructed
from a set of \building blocks." One script is included to put the system in a particular state,
another presents a workload to the system, and then a third tests for a particular fault. Command
templates can be included to create a larger test sequence. Finally, archived test cases can be
included to form a stress test for the system. To support test case construction, Sleuth provides a

feature to include archived scripts, command templates, and test cases.

In a similar scenario, testers should be able to merge several tests. Merging test cases takes several
archived �les and \shu�es" them into a single test suite. This scenario is important when testing
shared devices. It provides a simple way to interleave commands from several users. Merging
tests can be applied across all three phases. Sleuth provides a feature to merge scripts, command

templates, or test cases.

5 Summary

Domain Based Testing currently is a test method for command-based systems. Using a Domain

Analysis and the resulting Domain Model, DBT provides a structure for generating test cases and
for test case reuse. In this paper, we described the general ideas for test case reuse and listed three
reuse scenarios. The concepts of Domain Based Testing have been implemented in a test generation

tool called Sleuth. Sleuth is currently in use at StorageTek. The following bene�ts from Domain

Based Testing have been reported:

� It is easily to test a product enhancement

� It allows test engineers to \sleuth" for bugs

� It supports stress testing

� It identi�es real-time bugs and hardware timing errors

� It generates tests against requirements speci�cations while allowing testers to follow their natural inclinations,
i.e. thinking in terms of what they want to test (namely objects)

� It allows operational pro�le testing (Sleuth's test case construction capabilities)

15



� It tests new hardware con�gurations

� It increases tester productivity

� It provides test case reusability and uniform testing across releases and con�gurations

Our e�orts have shown that domain based testing is useful for system test engineers at Storage

Technology for an automated tape library. We now need to evaluate how well the test generation

method works in other industrial settings, and we need to apply it to other problem domains.

Feedback from di�erent domains will either reinforce our DBT method, or it will give us insight

about how we can improve it. At the same timewe are also investigating how to build domain models

for graphical user interfaces (GUI) from which we can generate sequences of test instructions in a

language that captures GUI-based system use for replay (e.g. visual basic, Test System Language

(TSL), and Test Command Language (TCL)).

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman, Compilers : Principles, Techniques, and

Tools, Addison-Wesley, 1986.

[2] Anneliese von Mayrhauser and Steward Crawford-Hines, Automated Testing Support for a
Robot Tape Library, Proceedings of the Fourth International Software Reliability Engineering

Conference, November 1993, pp. 6-14.

[3] Boris Beizer, Software Testing Techniques. VanNostrand, second edition, 1990.

[4] Ted J. Biggersta� and Alan J. Perlis, editors, Software Reusability, Volume I : Concepts and
Models, Frontier Series, ACM Press, 1989.

[5] A. Celentano, S. Crespi Reghizzi, P. Della Vigna, C. Ghezzi, G. Gramata, and F. Savoretti,

Compiler Testing using a Sentence Generator, Software-Practice and Experience, 1980, vol. 10,
pp. 897-918.

[6] A.G. Duncan and J.S. Hutchison, Using Attributed Grammars to Test Designs and Implemen-

tations, Proceedings of the Fifth International Conference on Software Engineering, 1981, pp.

170-177.

[7] Susumu Fujiwara, Gregor v. Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abderrazak

Ghedamsi, Test Selection Based on Finite State Models, IEEE Transactions on Software En-

gineering, (17)6, June 1991, pp. 591-603.

[8] Charles Krueger, Software Reuse, ACM Computing Surveys, (24)2, pp.131-183, June 1992.

[9] James W. Hooper and Rowena O. Chester, Software Reuse : Guidelines and Methods, Plenum
Press, 1991.

[10] Kenneth S. Rubin and Adele Goldberg, \Object Behavior Analysis", Communications of the

ACM, 35(9), pp.48-62, September 1992.

16



[11] StorageTek, StorageTek 4400 Operator's Guide, Host Software Component (VM) Rel 1.2.0,

StorageTek, 1992.

17


