
Department of

Computer Science

Uniqueness and Completeness

Analysis of Array

Comprehensions

David Garza and Wim Bohm

Technical Report CS-93-132

December 15, 1993

Colorado State University

Uniqueness and Completeness Analysis of Array
Comprehensions 1

David Garza and Wim B�ohm

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

tel: (303) 491-7595

fax: (303) 491-6639

email: bohm@cs.colostate.edu

Abstract

In this paper we introduce the uniqueness and completeness problems of array comprehensions.
An array comprehension has the uniqueness property if it de�nes each array element at most
once. Uniqueness is a necessary condition for correctness in single assignment languages such
as Haskell, Id, and Sisal. The uniqueness problem can be stated as a data dependence problem,
which in itself can be reformulated as an integer linear programming problem. We derive
algorithms to solve uniqueness using the Omega Test, an Integer Linear Programming tool. An
array comprehension has the completeness property if all its elements are de�ned. Completeness
is a necessary condition for strict arrays. We present an algorithm that tests for completeness
and describe an implementation of the algorithm based on multivariate polynomials.

1 Introduction

Some functional languages, such as Haskell, Id, and Sisal [11, 14, 13], have been designed to be

used for scienti�c computing, and should therefore have e�ciently implementable array operations

[8, 3, 9, 2]. An array comprehension is a functional monolithic array constructor, de�ning an array

as a whole entity. Id and Haskell have incorporated recursive array comprehensions, where array

elements can be de�ned in terms of other array elements of the same array. Id and Haskell arrays

are non-strict, i.e., not all elements of the array need to be de�ned. Sisal 2 [6] has incorporated the

simpler form of non-recursive array generator. Sisal arrays are strict, i.e., they must be completely

de�ned.

An example of an Id style array comprehension for part of the \pascal triangle" is given in �gure 1.

In the �rst line, the dimensionality and bounds of the array are de�ned. The following lines de�ne

regions of the array. A region the form [target] = expression k generators is equivalent to the loop

for generators do array[target] = expression. The syntax for an array comprehension creating an

n-dimensional array consisting of m regions is:

1This work is supported in part by NSF Grant MIP-9113268

1

A = { 1D_array((1,n),(1,n)) of

| [1,j] = 1 || j <- 1 to n

| [i,1] = 1 || i <- 2 to n

| [i,j] = A[i-1,j] + A[i,j-1] || i <- 2 to n ; j <- 2 to n

}

Figure 1: Array Comprehension for the Pascal Triangle in Id

nD array((l1; u1); : : : ; (ln; un)) of

j [f1
1
(I1); : : : ; f

n

1
(I1)] = expr1 h jj gen1

1
; : : : ; gend1

1
i

j [f1
2
(I2); : : : ; f

n

2
(I2)] = expr2 h jj gen1

2
; : : : ; gend2

2
i

...

j [f1
m
(Im); : : : ; f

n

m
(Im)] = exprm h jj gen1

m
; : : : ; gendm

m
i

where h::i indicates option. Each generator expression genk
j
, is of the form: ik

j
 lk

j
to uk

j
. Zero or

more generator expressions de�ne a cross product of nested loops. Ij is the vector of loop variables

for region j. The loop variables of region j are called ik
j
(1 � k � dj). The bounds expressions l

k

j

and uk
j
of a generator may use previously de�ned loop variables. The expression f

p

j
; (1 � p � n)

de�nes the subscript expression in the p-th dimension of region j.

Array comprehensions must obey the single-assignment rule of functional languages, which pre-

scribes that an array-element may not be de�ned more than once. We say that an array is uniquely

de�ned if none of its elements is de�ned more than once. In the current implementation of Id a

rede�nition of an array element will give rise to a run-time error [14]. Checking for this error intro-

duces run-time ine�ciency, which can be avoided by compile time uniqueness analysis. Uniqueness

analysis employs subscript analysis techniques, similar to those used in optimizing and parallelizing

conventional language compilers[19].

A signi�cant number of data dependence tests [4, 19, 7] assume a prede�ned \standard" order

of computation [7]. In array comprehensions we do not have such prede�ned order. The Omega

test [15, 16] is an exact data dependence test based on integer linear programming. It is free

of assumptions on evaluation order. The Omega test can work with symbolic values, and it can

also be used to simplify integer programming problems instead of just deciding them. We will

derive algorithms that turn a uniqueness problem of an array comprehension into an integer linear

programming problem that then will serve as input for the Omega test.

An integer linear programming problem consists of a number of equalities and inequalities of the

form:
P

n

i=1 aixi = c and
P

n

i=1 aixi � c, where ai (1 � i � n) and c are constants and xi (1 � i � n)

are variables. Given an integer linear programming problem P, the Omega test decides whether

there is an integer solution to P, and if so, the values of the variables that satisfy the constraints

are produced.

2

The uniqueness problem exists for Sisal style strict array generators as well as for Id style non-strict

array comprehensions. An added problem of strict arrays is that a check is needed to ensure that

the whole array is de�ned. Either run time checks, or static completeness analysis are required in

order to verify this. We present a compile time completeness test.

The rest of this paper is organized as follows. Section two presents an algorithm for checking

bounds. Section three presents algorithms for uniqueness analysis with some examples. Section

four presents the completeness test and discusses limitations of the approach. Section �ve presents

a compiler interface required for our completeness and uniqueness analysis. Section six discusses

related and future research. Section seven provides concluding remarks.

2 Bounds Test

Before the uniqueness test we apply algorithm 1 which checks if a speci�c region of the array

comprehension is de�ning elements out of the bounds of the whole array. This will simplify the

uniqueness and completeness tests which rely on the assumption that all the elements are de�ned

within the bounds of the array.

Algorithm 1: Bounds Test

1. Set d to the number of loop variables in vector I of the region being tested, and n to the

dimensionality of the array.

2. Generate vector X = (x1; x2; x3; : : : ; xd). This vector represents the set of unknown loop

variables for which we will try to �nd an integer solution.

3. For each element ek (1 � k � d) of X generate constraints expressing that ek falls in the

appropriate loop bounds. These constraints are of the form lk � ek � uk where lk and uk are

the upper and lower bounds of the loop variable ik.

We will call P the integer programming problem resulting from the constraints de�ned in this

step.

4. For p from 1 to n, create a problem Lp obtained by adding the following constraint to P:

fp(X) < lp

lp is the lower bound of the p-th dimension of the array.

5. For p from 1 to n, create a problem Up obtained by adding the the following constraint to P:

fp(X) > up

up is the upper bound of the p-th dimension of the array.

The omega test is used to check if a solution exists to the Lp or Up problems. If no solution is

found, then the region de�nes array elements within the array bounds.

3

3 Uniqueness Analysis

The algorithms in this section describe how to transform an array comprehension into a linear

integer programming problem representing a uniqueness problem. When checking for uniqueness,

we search for output dependence between two de�nitions in the array comprehension. We know that

for any two n-dimensional array references sx : a(f
1
x
(Ix); : : : ; f

n

x
(Ix)) and sy : a(f

1
y
(Iy); : : : ; f

n

y
(Iy)),

there is an output dependence between sx and sy if and only if f1
x
(Ix) = f1

y
(Iy)&; : : : ;&f

n

x
(Ix) =

fn
y
(Iy).

There can be two forms of output dependence. Elements in one region can be de�ned more than

once. This occurs when sx and sy are the same expression. The second source of dependence is

when we have an output dependence between two de�nitions from two regions. This occurs when sx
and sy are two di�erent expressions. The intra-regional uniqueness test checks whether there is

a rede�nition of an array element in the same region. The inter-regional uniqueness test checks

whether there is a rede�nition of an array element between any two di�erent regions. An array

comprehension has the uniqueness property if and only if all its regions are intra-regional unique

and the array is inter-regional unique.

3.1 Intra-regional Uniqueness

Algorithm 2: Intra Regional Uniqueness Test

1. Set d to the number of loop variables in vector I of the region being tested, and n to the

dimensionality of the array.

2. Generate two vectors X = (x1; x2; x3; : : : ; xd) and Y = (y1; y2; y3; : : : ; yd). These vectors

represent the set of unknown loop variables for which we will try to �nd an integer solution.

3. For each element ek (1 � k � d) of X and Y generate constraints expressing that ek falls in

the appropriate loop bounds. These constraints are of the form lk � ek � uk where lk and uk

are the upper and lower bounds of the loop variable ik.

4. For each subscript expression fp (1 � p � n) generate the equality that represents the test

for dependence:

f
p(X) = f

p(Y)

fp(X) and fp(Y) are obtained from fp(I) by variable replacement of each instance of ik of

the I vector by xk or yk. The integer programming problem resulting from the constraints

de�ned in the previous steps is called P.

5. For k from 1 to d, create a problem Pk obtained by adding the constraint xk < yk to P .

The Omega test is used to check if a solution exists to any of the Pk integer programming problems.

If no solution is found, we declare the region intra-regional unique.

4

3.1.1 Example

Consider the following array comprehension

A = {2D_array ((1,75),(1,75) of

| [2i+1,j] || i <- 0 to 25; j = i+1 to 50 %region 1

| [2*k,2*k+j] || i <- 1 to 4; k <- i+1 to 2i; j <- 2*k+1 to i+2*k} %region 2

For region 1, the vector of loop variables is I1 = (i; j) with 0 � i � 25 and i+1 � j � 50 and index

expressions f11 (I1) = 2i+ 1 and f12 (I1) = j.

We �rst check bounds using algorithm 1. Step 2 of the algorithm will create the vectorX = (x1; x2).

Step 3 creates the following constraints:

0 � x1 � 25; x1 + 1 � x2 � 50.

Step 4 will add the constraint 2x1+1 < 1 to P yielding problem L1. It will also add the constraint

x2 < 1 to P yielding problem L2. Step 5 adds the constraint 2x1 + 1 > 75 to P yielding problem

U1 and it also adds constraint x2 > 75 yielding problem U2. The omega test determines that there

is no solution to any of the problems L1, L2, U1, and U2 therefore all the elements de�ned in region

1 are within the bounds of the array.

For region 2 the vector of loop variables is I2 = (i; k; j) with 1 � i � 4, i + 1 � k � 2i and

2k + 1 � j � i + 2k and the index expressions are f21 (I2) = 2k and f22 (I2) = 2k + j. Step 2 of the

algorithm will create the vector X = (x1; x2; x3). Step 3 creates the following constraints:

1 � x1 � 4; x1 + 1 � x2 � 2x1; 2x2 + 1 � x3 � x1 + 2x2

Step 4 will add the constraint 2x2 < 1 to P yielding problem L1, It also adds the constraint

2x2+ x3 < 1 to P yielding problem L2. Step 5 adds the constraint 2x2 > 75 to P yielding problem

U1 and it also adds constraint 2x2+ x3 > 75 yielding problem U2. The omega test determines that

there is no solution to any of the problems L1, L2, U1, and U2 therefore all the elements de�ned in

region 2 are within the bounds of the array.

Now we proceed to check for intra-regional uniqueness using algorithm 2. Step 2 will create the

vectors X = (x1; x2) and Y = (y1; y2). Step 3 creates the following constraints:

0 � x1 � 25; x1 + 1 � x2 � 50; 0 � y1 � 25; y1 + 1 � y2 � 50.

Step 4 adds 2x1 + 1 = 2y1 + 1 and x2 = y2. All the above constraints de�ne problem P . Step 5

adds the constraint x1 < y1 to P yielding problem P1. The Omega test, determines that P1 has

no solution. We generate problem P2 by adding the constraint x2 < y2 to P . The Omega test

determines that there is no solution to problem P2 either, and since we now have exhausted all the

possible problems for this region, we can conclude that region 1 is intra-regional unique.

For region 2 step 2 creates vectors X = (x1; x2; x3) and Y = (y1; y2; y3). Step 3 creates the

constraints

5

1 � x1 � 4; x1 + 1 � x2 � 2x1; 2x2 + 1 � x3 � x1 + 2x2

1 � y1 � 4; y1 + 1 � y2 � 2y1; 2y2 + 1 � y3 � y1 + 2y2

Step 4 adds 2x2 = 2y2 and 2x2 + x3 = 2y2 + y3.

All the above constraints de�ne integer programming problem P .

Step 5 adds the constraint x1 < y1 to P resulting in problem P1. The Omega test determines that

there is a solution to this problem.

Region 2 de�nes array elements [8,17],[8,18],[10,21],[10,22],[10,23],[12,25], [12,26], and [12,27] more

than once, and is therefore not intra-regional unique.

3.2 Inter-regional Uniqueness

Algorithm 3 obtains a summary of array references for each of the region de�nitions and then checks

if there is an overlap between any of these array references.

Algorithm 3: Inter-regional Uniqueness Test

1. Set n to the dimensionality of the array and m to the number of regions in the array com-

prehension.

2. For each region r (1 � r � m) perform steps (a) through (d)

(a) Set d to the number of loop variables in vector Ir.

(b) Generate inequality constraints based on the bounds of each element ik
r
(1 � k � dr) of

vector Ir:

lk
r
� ik

r
� uk

r

(c) Create n new variables xp (1 � p � n) , and de�ne the constraints on xp
r
in terms of the

bounds of each of the dimensions of the original array:

lp � xp
r
� up

(d) Create n equality constraints (1 � p � n) to represent the relation between the index

expression fp
r
(1 � p � n) and the new variable xp

r
de�ned in step (c):

fp
r
(Ir) = xp

r

This equality represents a summary of the array elements being accessed in region r.

3. For region r, steps (a), (b), (c), and (d) above de�ne a problem Pr. For each combination of 2

regions, s and t, generate n equality constraints in terms of the variables xp
s
and x

p

t
(1 � p � n)

created in step 2c.

6

xp
s
= x

p

t

Pst is the integer programming resulting from combining the constraints in Ps; Pt, and the

constraints de�ned in this step.

If the Omega test �nds that there is no solution to any of the Pst problems, we declare the

array comprehension inter-regional unique.

Step 2b of the algorithm creates constraints that de�ne the range of values that each loop variable

can take on each of the di�erent regions of the array comprehension. Step 2c de�nes new variables

for each array dimension and de�nes the bounds for these variables. Step 2d �nds a summary of

the array references that are done on each array dimension for a particular region. Step 3 generates

the constraints that check if there are any two overlapping regions.

3.2.1 Example

We apply algorithm 3 to the following array comprehension:

A={ 1D_array(1..2m) of | [1] = 1 %region 1

| [2*i] = i || i = 1 to m %region 2

| [2*j+1] = j || j = 1 to m-1} %region 3

Step 2 generates the following constraints: for region 1 step 2b generates no constraints, step 2c

creates the constraint 1 � x1 � 2m and step 2d produces the constraint 1 = x1. Similarly, for

region 2 the constraints are 1 � i � m, 1 � x2 � 2m, and 2i = x2. For region 3 the constraints

are 1 � j � m � 1, 1 � x2 � 2m and 2j + 1 = x3. Step 3 de�nes problem P12 by taking all the

constraints generated for regions 1 and 2 and adding the constraint x1 = x2. This problem is given

to the Omega test, which determines that there is no solution. We generate problem P13 in the

same way. Again the Omega test �nds no solution to this problem. The last problem generated is

P23, once again the Omega test determines that there is no solution. Since we have exhausted all

possible combinations of two regions we conclude that the array is inter-regional unique.

Now we make a slight change to the array comprehension and set the index expression of the �rst

region to 2. The Problem P12 will consist of the following constraints:

1 � x1 � 2m; 2 = x1; 1 � i � m; 1 � x2 � 2m; 2i = x2; x1 = x2

The Omega test �nds a solution to this problem (x1 = x2 = 2), meaning that there is a rede�nition

of array elements.

7

4 Completeness Analysis

After the uniqueness and bounds tests have been satisfactorily performed, the completeness test

reduces to checking whether the size of the total array is equal to the sum of the sizes of all its

regions, where the size of a region is de�ned as the size of its iteration space. For example, in

�gure 1 the size of array A is n2, and the sizes of the three regions are n, n � 1, and (n � 1)2,

respectively. When we compare the size of the array against the sum of the sizes of the regions,

we obtain that both expressions are equal to the polynomial n2. Note that verifying this involves

manipulating non-linear expressions. Also note, that we do not need to solve a non-linear equation,

we merely need to check equivalence of two polynomials.

The size of the array is given by
Q

n

i=1(ui� li+ 1), where n is the dimensionality of the array. This

product expands into a multivariate polynomial that consists of the sum of 3n terms such that each

term is of the from (a1a2 � � �an) where ai is either ui, or �li, or 1.

For a given region j with k loop variables, the upper and lower bounds ul
j
and ll

j
of the loop

variables il
j
; (1 � l � k) are linear functions of previously de�ned loop variables. The iteration

space of region j consists of all the integer points de�ned by the following equations (leaving out

subscript j of loop variable i for simplicity):

p1;1 � i1 � q1;1

p2;1i
1 + p2;2 � i2 � q2;1i

1 + q2;2

...

pk;1i
1 + � � �+ pk;k�1i

k�1 + pk;k � ik � qk;1i
1 + � � �+ qk;k�1i

k�1 + qk;k

In the above equations, px;y and qx;y (1 � x; y � k) are integer constant values, and px;xandqx;x can

be symbolic integer variables. Therefore the size of a region is computed by summing multivariate

polynomials whose upper and lower bounds are multivariate polynomials:

q1;1X

i1=p1;1

� � �

qk�1;1i
1+���+qk�1;k�2i

k�2+qk�1;k�1X

ik�1=pk�1;1i
1+���+pk�1;k�2i

k�2+pk�1;k�1

(qk;1i
1+ � � �+ qk;k�1i

k�1+ qk;k � (pk;1i
1+ � � �+ pk;k�1i

k�1+ pk;k)+1)

The �rst task of the completeness test is to derive symbolic expressions for the array and region

sizes. These sizes are expressed as multivariate polynomials in the upper and lower bounds of the

array declaration for the size of the whole array, and as multivariate polynomials of the upper and

lower bounds of the generators for the sizes of the regions. The second task is to verify that for all

possible lower and upper bounds of the array, the sum of the sizes of all the regions equals the size

of the whole array.

The following algorithm tests for completeness of an array comprehension, it assumes that the

uniqueness and bounds test have been satisfactorily applied to the array. We will call the array

being tested A.

8

Algorithm 4: Completeness Test

1. Set n to the dimensionality of the array, and m to the number of regions.

2. Derive j A j, the size of the array space:

j A j=
nY

i=1

(ui � li + 1)

3. For each region j (1 � j � m) derive j A(Ij) j, the size of its iteration space as follows:

(a) if vector Ij is empty then

j A(Ij) j= 1

else

(b) Set k to the number of loop variables in vector Ij

j A(Ij) j=

u
1

jX

i
1

j
=l

1

j

u
2

jX

i
2

j
=l

2

j

� � �

u
k�1
jX

i
k�1
j

=l
k�1
j

(uk
j
� lk

j
+ 1)

where uk
j
, and lk

j
are linear expressions in the loop variables ir

j
and the bounds ui and li of

A, (1 � i � n; r < k).

4. Derive j A(I) j as the sum of the sizes of all the regions of A:

j A(I) j=
mX

j=1

j A(Ij) j

5. If j A(I) j � j A j� 0 then the array comprehension is complete. Otherwise it is incomplete.

4.1 Implementation Details of the Completeness Algorithm

We have written a program that implements algorithm 4. This program takes as input the bounds

of each dimension of the array and the upper and lower bounds of the loop variables of each region.

As output we get the array space size, the size of each region, and the sum of the sizes of all the

regions of the array. We also get a polynomial that represents the di�erence between the array

space and the sum of the sizes of the regions.

The program implements primitive operations of multivariate polynomials needed to expand the

sums and products used in algorithm 4. These operations are exponentiation, multiplication,

addition, subtraction, simpli�cation, and replacement of one variable of a polynomial by another

variable or polynomial.

9

The program works as follows: It computes j A j by doing simple additions and multiplications of

polynomials. The value of j A(Ij) j is then computed for each of the regions of the array. This

computation is accomplished by �rst creating the polynomial over which the multiple sums should

be applied using simple addition of polynomials. Then we repeatedly expand a sum, starting from

the inner sum and proceeding outwards, exploiting the scope rules of the nested loop, which state

that the bounds of an inner loop can depend on outer loop variables, but that the bounds of an

outer loop cannot depend on inner loop variables. To expand a sum of a polynomial it is �rst

normalized, that is, the sum is modi�ed such that its lower bound is set to 1, then each of the

terms of the polynomial is replaced by the expanded form of the sum of that term.

Once the sizes of all regions have been computed, we compute j A(I) j by performing an addition

of all the j A(Ij) j polynomials. Finally a subtraction of j A(I) j and j A j is performed. If the

result of this is the 0 polynomial then the array and iteration space are of the same size.

4.2 Examples

We apply algorithm 4 to the following examples which are unique and have all elements de�ned

within the bounds of the array.

A = {1D_array((1,2*n+1)) of

| [1] = 1

| [2*j] = j || j <- 1 to n

| [2*n+1] = n

| [2*k-1] = 1 || k <- 2 to n }

Step 2 gets the size of the array space j A j= 2n + 1. Step 3 obtains the sizes for each region:

j A(I1) j= 1; j A(I2) j= n; j A(I3) j= 1; and j A(I4) j= n � 1. Step 4 computes j A(I) j= 2n + 1.

Finally step 5 computes j A(I) j � j A j= 0. Therefore we conclude that the array comprehension

is complete.

If we modify the upper bound of the array dimension in the previous example and set it to 2�n+2,

then j A j= 2n + 2 and in step 5 we get j A(I) j � j A j= �1, so we conclude that the array

comprehension is incomplete.

In a more complex example, we apply the completeness test to the next array comprehension that

de�nes 4 tetrahedral regions of a cube as shown in �gure 2.

A = {3D_array((1,n),(1,n),(1,n)) of

| [i,j,k] = 1 || i <- 1 to n ; j <- i+1 to n ; k <- 1 to j-i % region 1

| [i,j,k] = 2 || i <- 1 to n ; j <- 1 to i-1 ; k <- 1 to i-j % region 2

| [i,j,k] = 3 || i <- 1 to n ; j <- n-i+2 to n ; k <- 2n+2-i-j to n % region 3

| [i,j,k] = 4 || i <- 1 to n ; j <- 1 to n-i ; k <- i+j to n } % region 4

10

region 1

region 2

region 4

(1,1,1)

region 3

(n,n,n)

Figure 2: Cube with tetrahedral regions

Step 2 gets the size of the array space j A j= n3. Step 3 obtains the sizes of each region. For

example, the size of region 1 j A(I1) j is described by

nX

i=1

nX

j=i+1

(j � i� 1) + 1

which reduces to
nX

i=1

n2=2 + n=2� in� i=2 + i2=2

which is further reduced to n3=6� n=6. Similarly, j A(I2) j=j A(I3) j=j A(I4) j= n3=6� n=6. Step

4 computes j A(I) j= 2n3=3 � 2n=3. Finally step 5 computes j A(I) j � j A j= �n3=3 � 2n=3.

Therefore we conclude that the array comprehension is incomplete. This is because the points in

the inner tetrahedron delimited by the diagonals (the thick and dotted lines in �gure 2) are not

de�ned.

4.3 Limitations

An obvious limitation of both uniqueness and completeness tests is that they rely on the bounds

and index expressions to be linear. Another limitation of algorithm 4 can be illustrated with the

following example:

A = {1D_array((1,m)) of

| [1] = 2x+y

| [i] = i || i <- 2 to n - 1

| [n] = z }

11

Here our algorithm obtains j A j= m and j A(I) j= n and since j A(I) j � j A j= m�n, we conclude

that the array is incomplete. However, ifm = n then the array would be complete. Currently, when

analyzing the array comprehension in vacuo, we don't have enough information about m or n to

conclude completeness. In our compiler, constant propagation and induction variable replacement

optimizations [1] must be performed prior to our completeness analysis, allowing us to have as

much information as possible regarding symbolic variables used in the array comprehension.

When expanding the sums, the size of the integer coe�cients in the multivariate polynomials grows

very large very quickly. We therefore need to extend our implementation to support multiple

precision integers.

5 Compiler Interface

Our algorithms require certain compile time information gathered in a record with the following

�elds:

� Array Id: Array Identi�er that uniquely identi�es the array.

� Dimension: The dimensionality of the array.

� Num Regions: The number of regions of the array comprehension.

� Bounds: A pointer to a data structure which contains, for each dimension of the array, the

values of the upper and lower bounds.

� Region Info: A pointer to a data structure that contains the following information speci�c to

each region:

{ Num Vars: The number of loop variables used in the region.

{ Vars Info: A pointer to a data structure that contains Num Vars tuples and each tuple

consists of a variable identi�er for the loop variable, and the upper and lower bounds of

that variable.

{ Subscript Expr: A pointer to a matrix similar to the atom data structure described

in [12], where each row corresponds to one dimension of the array and each column

corresponds to one of the Num Vars loop variables of the region. There are two extra

columns: one that indicates if the subscript expression is linear and the other for the

constant term. Each entry in row d column j, is the coe�cient of the loop variable j for

the subscript expression in dimension d.

Given this information our algorithm can extract the data needed and use the Omega test and our

completeness analysis tool. The omega test has an interface that consists of several data structures,

procedures and functions. The main data structure de�ning the integer linear programming problem

contains the number of variables, number of equalities, number of inequalities, and an array of

12

equalities and inequalities each represented by a data structure similar to the Subscript Expr �eld

above described.

6 Related and Future Research

When testing for inter-regional uniqueness we can think of each of the regions as a procedure call in

an imperative language that de�nes certain elements of a globally de�ned array. Typical methods

for testing data dependence in the presence of procedure calls base their analysis on obtaining a

summary of the array references of each procedure and then testing for overlap between any of

these array elements [18, 10, 7, 12]. One problem with these approaches is that except for [7] and

[12] the approaches produce an approximate summary of the array references. For our problem we

require precise information.

Burke and Cytron [7] propose to linearize the array space and to generate a list of array access

information for each procedure. In order to prove independence between the array region accessed

by procedure A and the array region accessed by procedure B, one needs to generate all possible

pairs obtained by combining each of the elements of the list of array accesses from procedure A

with each element from the list of procedure B, and check the independence of all pairs.

Li and Yew's [12] approach is similar to Burke and Cytron's since they also form a set of array

references and then apply a standard dependence test to prove independence between any two pairs

of references. Two main di�erences are that they don't linearize the array space, mainly because

data dependence tests are less precise when linearization has been applied. Secondly they introduce

a data structure called atom which contains information about the array references and is used to

propagate this information to the calling procedure.

Hudak and Anderson [2] propose the use of subscript analysis for functional monolithic arrays. They

recognize the uniqueness problem which they call Detecting Write Collisions, and they propose the

use of Banerjee Inequalities test to check for independence. However, since this test is inexact they

have to make pessimistic assumptions when the test is not able to disprove dependence. They

also identify the completeness problem which they called Detecting Empties. However, no detailed

algorithm or tool to check for this is given.

Besides uniqueness and completeness analysis there are other compile time checks that can be

performed to reduce run-time ine�ciencies of functional arrays. Currently we are studying the

following problems:

� Well-de�nedness: For non-strict arrays an error will occur if the array comprehension tries

to use array elements that never will be bound, e.g., because of circular dependencies. Well-

de�nedness analysis can check for this.

� Order of evaluation: Some implementations of functional arrays rely on dynamic element

level synchronization, like a per array element \presence-bit". Computations that use array

elements will be synchronized by checking the presence-bit. This approach clearly causes

13

run-time overhead, especially in machines without hardware support for presence bits. Also,

for this approach to work, all processes de�ning an array element need to be started up at

the same time, which causes high resource usage. If we are able to perform static order of

execution analysis, we can schedule the array computations in such a way that the element

level synchronization can be eliminated, and only the processes that can write an array

element at some moment in the execution, will be started. This analysis will transform the

programmer-de�ned regions of the array into a set of regions, which are intra regionally data

independent. As an example, in �gure 1, the user-de�ned regions are a row, a partial column

and a submatrix, whereas the regions with intra regional data independence are anti-diagonals.

We will determine the use of the Omega test to solve this restructuring problem.

7 Conclusions

We have presented algorithms that check bounds and test for intra and inter regional uniqueness

and completeness of array comprehensions for functional languages. Our bounds and uniqueness

algorithms use the Omega test as a tool. The Omega test was chosen because it is an exact, fast,

and e�cient and does not assume a standard order of evaluation. For our completeness analysis

we have written a program that implements the completeness test by manipulating multivariate

polynomials.

We have applied our uniqueness, bounds and completeness algorithms to some array comprehension

examples. The proposed algorithms should be applied to a more extensive number of examples in

order to �nd possible practical limitations of the algorithms or of the Omega test itself. These

limitations can lie in the exponential worst case complexity of the Omega test, or in the fact that

bounds and index expressions must be linear. Also our current implementation of the completeness

test should be extended to handle multiple precision integers.

Subscript analysis and program optimizations based on the information obtained from this type of

analysis have been heavily used in imperative languages in order to improve parallelism and locality.

We believe that functional languages can similarly bene�t from subscript analysis, and this work

shows some of the bene�ts that can be obtained. We hope that more research in this direction can

further help us to come up with optimizations and implementations of functional languages that

will exploit parallelism and locality.

14

References

[1] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques and Tools. Addison-Wesley,
Reading MA, 1986.

[2] Steven Anderson and Paul Hudak. Compilation of Haskell Array Comprehensions for Scienti�c Com-
puting. In Proceedings of the ACM SIGPLAN '90 Conference on Programming Language Design and

Implementation, pages 137-149, June 1990.

[3] Arvind and Rishiyur S. Nikhil. I-Structures: Data Structures for Parallel Computing.ACM Transactions

on Programming Languages and Systems, 11(4):598{632, October 1989.

[4] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishing, 1988.

[5] Utpal Banerjee. Loop Transformations for Restructuring Compilers. The Foundations. Kluwer Academic
Publishing, 1993.

[6] A.P.W. B�ohm, D. C. Cann, J. T. Feo and R. R. Oldehoeft. SISAL 2.0 Reference Manual. Technical Re-
port CS-91-118, Computer Science Department, Colorado State University, Fort Collins, CO, November
1991.

[7] Michael Burke and Ron Cytron. Interprocedural Analysis and Parallelization. In ACM SIGPLAN '86

Symposium on Compiler Construction, pages 162-175, June 1986.

[8] D. C. Cann. Compilation Techniques for High Performance Applicative Computation. Ph.D. thesis,
Colorado State University, Computer Science Department, Fort Collins, CO, 1989.

[9] G. R. Gao and Robert Kim Yates. An E�cient Monolithic Array Constructor. ACAPS Technical Memo
19, School of Computer Science, McGill University, Montreal, Canada, June 1990.

[10] Paul Havlak, Ken Kennedy. Experience with Interprocedural Analysis of Array Side E�ects. In Super-

computing '90, pages 952-962, 1990.

[11] P. Hudak et. al. Report on the programming Language Haskell - A non-strict, Purely Functional Lan-
guage - version 1.0, Technical report, Yale University, April 1990.

[12] Zhiyuan Li and Pen-Chung Yew. E�cient Interprocedural Analysis for Program Parallelization and
Restructuring. In ACM SIGPLAN PPEALS, pages 85-99, 1988.

[13] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R. Oldehoeft, J. Glauert, C. Kirkham, W. Noyce, and
R. Thomas. SISAL: Streams and iteration in a single assignment language: Reference manual version
1.2., Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA, March 1985.

[14] R.S. Nikhil, Id (version 90.0) Reference Manual. TR CSG Memo 284-1, MIT LCS 1990.

[15] William Pugh. The Omega Test: a fast and practical integer programming algorithm for dependence
analysis. In Supercomputing 1991, pages 4-13, November 1991.

[16] William Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Communications of the

ACM, 35(8):102{114, August 1992.

[17] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, New
York, 1987.

[18] Rimi Triolet, Francois Irigoin, and Paul Feautrier. Direct Parallelization of Call Statements. In Proceed-

ings of the SIGPLAN '86 Symposium on Compiler Construction, pages 176-185, June 1986.

[19] Hans Zima with Barbara Chapman. Supercompilers for Parallel and Vector Computers. ACM Press,
NY, 1990.

15

