
Department of

Computer Science

Analysis of Non-Strict

Functional Implementations of

the Dongarra-Sorensen

Eigensolver

S. Sur and W. Bohm

Technical Report CS-93-133

December 15, 1993

Colorado State University

Analysis of Non-Strict Functional Implementations of

the Dongarra-Sorensen Eigensolver

S. Sur and W. B�ohm �

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

December 14, 1993

Abstract

We study the producer-consumer parallelism of Eigensolvers composed of a tridiagonalization

function, a tridiagonal solver, and a matrix multiplication, written in the non-strict functional

programming language Id. We verify the claim that non-strict functional languages allow the

natural exploitation of this type of parallelism, in the framework of realistic numerical codes.

We compare the standard top-down Dongarra-Sorensen solver with a new, bottom-up version.

We show that this bottom-up implementation is much more space e�cient than the top-down

version. Also, we compare both versions of the Dongarra-Sorensen solver with the more tra-

ditional QL algorithm, and verify that the Dongarra-Sorensen solver is much more e�cient,

even when run in a serial mode. We show that in a non-strict functional execution model,

the Dongarra-Sorensen algorithm can run completely in parallel with the Householder function.

Moreover, this can be achieved without any change in the code components. We also indicate

how the critical path of the complete Eigensolver can be improved.

Address for Correspondence:

A. P. W. B�ohm

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523

Tel: (303) 491-7595

Fax: (303) 491-6639

Email: bohm@CS.ColoState.Edu

�This work is supported in part by NSF Grant MIP-9113268, Motorola Grant YCM002, and a Motorola Monsoon

donation from ARPA

1

1 Introduction

In our work we study the e�ectiveness of non-strict functional programming languages in express-

ing the parallelism of complex numerical algorithms in a machine independent style. A numerical

application is often composed of a number of algorithms. In this paper, for example, we study an

Eigensolver composed of a tridiagonalization function, a tridiagonal solver, and a matrix multipli-

cation. We verify the claim that non-strict functional languages allow the natural exploitation of

�ne-grain parallelism of modular programs [7]. Elements of a non-strict data structure can be used

before the whole structure is de�ned. Combined with the data-driven execution of functional mod-

ules, this provides for maximal exploitation of parallelism without the need for explicit speci�cation

of it.

In this paper we compare the standard top-down Dongarra-Sorensen solver with a new, bottom-

up version. We show that this bottom-up implementation is much more space e�cient than the

top-down version. Also, we compare both versions of the Dongarra-Sorensen solver with the more

traditional QL algorithm, and verify that the Dongarra-Sorensen solver is much more e�cient, even

when run in a serial mode.

Our algorithms are written in Id [8] and run on the Motorola Monsoon machine [6]. To obtain

parallelism pro�les, we run our programs on a Monsoon Interpreter. To obtain information about

the space usage of our programs, we determine the largest problem size that can run on a one node

(one processor module and one storage module) Monsoon machine.

Dongarra and Sorensen mention the possibility of exploiting producer-consumer parallelism between

Householder and their algorithm [4] and mention that \an e�cient implementation of this scheme

is di�cult". We will show that in a non-strict functional execution environment, the Dongarra-

Sorensen algorithm can run completely in parallel with the Householder function. Moreover, this

has been achieved without any change in the code components.

2 The Dongarra-Sorensen Eigensolver

Let A be a symmetric matrix, for which we want to �nd the eigenvectors and eigenvalues. The

Householder transformation function takes A and produces a tridiagonal matrix represented by the

diagonal d and upper diagonal e, and an orthogonal transformation matrix Q. The QL factorization

function transforms d and e into a vector containing the eigenvalues and a matrix Q0 of eigenvectors

of the tridiagonal system. The eigenvalues of A are equal to the eigenvalues of the tridiagonal

system, whereas the eigenvectors of A are obtained by multiplying Q and Q0. The Dongarra-

Sorensen algorithm performs the same operation as QL, but in a divide and conquer fashion. For

further details concerning eigensolvers we refer to [5].

In this section we introduce the existing theory regarding Dongarra-Sorensen algorithm for solving

the eigenvalue problem of a tridiagonal matrix in some more detail, because we will introduce a

bottom up version of the algorithm later.

The Dongarra-Sorensen algorithm is a divide and conquer approach [4, 2] for computing the eigen-

2

values and eigenvectors of a symmetric tridiagonal matrix. Let T be a symmetric tridiagonal

matrix:

T =

2
666666666666664

a1 b1 0 : : : : 0

b1 a2 b2 : : :

: :

: :

: :

:

: bn�2 an�1 bn�1

0 : 0 bn�1 an

3
777777777777775

(1)

The Dongarra-Sorensen algorithm computes the Schur decomposition

QTTQ = � = diag(�1; � � � ; �n); Q
TQ = I

by gluing together the Schur decompositions of two half sized tridiagonal problems derived from

the original matrix T. To obtain these half-sized problems we use partitioning by rank-one tearing

discussed below. Each of these reductions can in turn be speci�ed by a pair of quarter sized Schur

decompositions and so on.

2.1 Partitioning by rank-one tearing:

One can easily check that any symmetric tridiagonal matrix T can be reduced to the following

form:

T =

T1 �eke

T
1

�e1e
T
k T2

!
=

T̂1 0

0 T̂2

!
+ ��1�

ek

�e1

!�
eTk �eT1

�
(2)

where 1 � k � n and ej represents the j-th unit vector of appropriate dimension and � = bk. T̂1
is identical to top k � k tridiagonal sub-matrix of T except that the last diagonal element ~ak is

modi�ed so that ~ak = ak��, where � = �=�. Similarly, T̂2 is the bottom (n�k)�(n�k) tridiagonal

submatrix of T, with only the �rst diagonal element modi�ed. This modi�ed element ~ak+1 is given

by ~ak+1 = ak+1���
2. The factor � is incorporated to avoid certain numerical di�culties associated

with cancellation of diagonal terms [4].

2.2 Divide and conquer step:

Now we have two smaller tridiagonal eigenvalue problems to solve. We can �rst �nd the Schur

decompositions of T̂1 and T̂2 so that:

T̂1 = Q1D1Q
T
1 ; T̂2 = Q2D2Q

T
2

3

which gives,

T =

Q1D1Q

T
1 0

0 Q2D2Q
T
2

!
+ ��1�

ek

�e1

!�
eTk �eT1

�
(3)

Therefore,

T =

Q1 0

0 Q2

!
D1 0

0 D2

!
+ ��1�

q1

�q2

!�
qT1 �qT2

�! QT
1 0

0 QT
2

!
(4)

where q1 = QT
1 ek (the last row of matrix Q1) and q2 = QT

2 e1 (the 1st row of matrix Q2). The

problem right now is reduced to computing the eigensystem of the interior matrix in the previous

equation, which is discussed in the following section.

2.3 The updating problem:

The problem that is left to solve is that of computing the eigensystem of a matrix of the form

Q̂D̂Q̂T = D + �zzT (5)

where D is a real n� n diagonal matrix, � is non-zero scalar and z is real vector of order n. In our

case

D =

D1 0

0 D2

!
; z =

q1

�q2

!
; and � =

�

�

In this study we implement this eigensolver for the case where all the eigenvalues are distinct and

so we can write D = diag(�1; �2; � � � ; �n), where �i 6= �j for i 6= j. Moreover, we can sort the �'s

and sort z accordingly such that �i < �j , for i < j. We also assume that no component �i of

vector z is zero. The eigensolver can be modi�ed to solve problems with equal eigenvalues and

zero components of z by incorporating certain deation techniques into the algorithm [4]. We will,

however, not deal with these deation techniques. Under above assumptions, the eigenpair � (the

eigenvalue) and q (the corresponding eigenvector) satisfying

(D + �zzT)q = �q

can be obtained from satisfying the following equations [4]:

1 + �zT (D� �I)�1z = 0 (6)

and q is obtained from

q = (D � �I)�1z (7)

If equation (6) is written in terms of the components �i of z, then � must be a root of the equation

f(�) = 1 + �

nX
j=1

�2j

�j � �
= 0 (8)

Equation (8) is referred to as the secular equation. A Newton's method to solve this will not

converge [2] and the general bisection method would be too slow. However, this equation has the

delightful property of having a distinct root between every pair of consecutive diagonal elements

(�i; �i+1). This property is used by Dongarra and Sorensen [4] to come up with a fast root-�nder

described below.

4

2.4 The root-�nder of the secular equation:

Without loss of generality, one can assume that the coe�cient � of the secular equation is positive.

If it is not, a change of variable can be used where � can be replaced by ��. To achieve this without

changing the secular equation �i needs to be replaced by ��n�i+1 and �i needs to be replaced by

�n�i+1 for all i. Given that we wish to �nd the i-th root �̂i of the function f in equation (8), the

function can be rewritten as

f(�) = 1 + (�) + �(�) (9)

where

 (�) = �
iX

j=1

�2j

�j � �

and

�(�) = �

nX
j=i+1

�2j

�j � �

This root lies in the open interval (�i; �i+1) and for � in this interval all of the terms of are

negative and all of the terms of � are positive. This situation is very suitable for an iterative

method for solving the equation

� (�) = 1 + �(�)

One can start with an initial guess �0 close to �i in the appropriate interval so that �0 < � [2], and

then construct simple rational interpolants of the form

p

q � �
; r +

s

� � �

where � is �xed at �i+1 (the i+1th diagonal element of D) and the parameters p, q, r, s are de�ned

by the interpolation conditions

p

q � �0
= (�0); r +

s

� � �0
= �(�0);

p

(q � �0)2
=

0

(�0);
s

(� � �0)2
= �

0

(�0)

The new approximate �1 to the root �̂i is then found by solving

�p

q � �
= 1+ r +

s

� � �
(10)

A sequence of iterates is thus derived following the same principle and the process is stopped when

the value of the secular function at the current iterate goes below a certain threshold. Bunch et.

al. [2] showed that this iteration converges quadratically from one side of the root and does not

need any safeguarding.

3 A bottom-up approach

The theory described in the previous section is particularly suitable for a top-down implementation,

where each problem is recursively reduced to two smaller size problems, until the trivial case

(problem size 1) is reached. As we will see in the analysis and results section this implementation

5

is very ine�cient in terms of space. In this section we develop the theory for an alternate version

of the algorithm, which starts from the bottom instead of the top, glues the solutions of smaller

problems together at every iteration, and �nally arrives at the solution. It turns out that this

approach is extremely e�cient in terms of space and does not lose any bit of time e�ciecy. Our

bottom-up approach provides more insight in the workings of the Dongarra-Sorensen algorithm

too. Also, it is useful for other language implementations, as while loops are usually more e�cient

than the recursive calls. Moreover this form of implementation is more suitable for languages not

supporting recursive calls, e.g. FORTRAN.

In order to perform the Dongarra-Sorensen algorithm bottom-up, we need to compute the e�ects of

all the rank-one tearings, so that we solve the same size-1 problems and combine them in the same

way as the top-down algorithm does. The important observation on which our bottom-up approach

is based, is that the mathematical theory behind Dongarra-Sorensen algorithm is independent of

the position of the rank-one tearings. Therefore it is irrelevant where the matrix is partitioned as

long the �nal result size-1 matrices are derived from n � 1 tearings, one at each position. Thus,

iteratively tearing at the the top, done across all the elements, gives the same bottom case as the

recursive half and half tearing. So we start with a tridiagonal matrix given in (1) and partition it

by a rank one tearing about the �rst o�-diagonal element b1. We get,

T =

2
66666666664

a1 � b1=� 0 0 : : : : 0

0 a2 � b1� b2 : : :

: :

: :

: :

:

: bn�2 an�1 bn�1

0 : 0 bn�1 an

3
77777777775

+
b1

�

2
66666666664

1 � 0 : : : : 0

� �2 0 : : :

: :

: :

: :

:

: 0 0 0

0 : 0 0 0

3
77777777775

The second matrix of the above equation can be rewritten as b1
�

e11

�en�1
1

!
e11

�en�1
1

!T

. Here ekj

represents the j-th unit vector of length k. Tearing the matrix again with respect to element b2
gives T =

2
666666664

a1 �
b1

�
0 0 : : : : 0

0 a2 � b1��
b2

�
0 : : :

0 0 a3 � b2� :

: :

: :

:

0 : bn�1 an

3
777777775
+
b1

�

�
e11

�en�11

��
e11

�en�11

�T

+
b2

�

�
e22

�en�21

��
e22

�en�21

�T

Repeating this tearing process n�1 times, i.e. for each o�-diagonal element, the tridiagonal matrix

T can be torn down to a diagonal matrix and summation of matrices of the form �zzT , which is

given by:

6

T =

2
666666664

a1 �
b1

�
0 0 : : : : 0

0 a2 � b1� �
b2

�
0 : : :

: :

: :

:

0 : an�1 � bn�2� �
b
n�1

�
0

0 : 0 an � bn�1�

3
777777775

+

n�1X
i=1

bi

�

�
eii

�en�i

1

��
eii

�en�i

1

�T

(11)

The diagonal matrix in equation (11) is the starting point of our bottom-up approach, and as

mentioned before is the same bottom case of the top-down approach. Every element of the diagonal

matrix can be considered as the eigensolution (Schur decomposition) QDQT of a single element

matrix, where D is the element itself and Q is the 1 � 1 matrix 1. Now, two of these solutions of

size one problems can be updated to get a solution of a size two problem. The �rst combination

step can be viewed as:

T =

2
6666664

�1 +
b1

�

�
1 �

� �2

�
0 : : : 0

0 �3 +
b3

�

�
1 �

� �2

�
: : : 0

: :

: : : :

3
7777775

+
X

i=even

bi

�

�
eii

�en�i

1

��
eii

�en�i

1

�T

(12)

Where �i is the 2� 2 matrix given by:
ai � bi�1� �

bi
�

0

0 ai+1 � bi� �
bi+1
�

!

assuming b0 = 0 and bn = 0. Here the matrix �i +
bi
�

1 �

� �2

!
is in D + �zzT form and can be

Schur decomposed to QiDiQ
T
i form by solving the updating problem given in equation 5. Hence

after the �rst step of updating the tridiagonal matrix is:

T =

2
664

Q1D1Q
T

1 0 : : : 0

0 Q3D3Q
T

3 : : : 0

: :

: : : :

3
775 +

X
i=even

bi

�

�
eii

�en�i

1

��
eii

�en�i

1

�T

(13)

We now continue the same process, and in the next step include the term associated with b2, b6
etc. from the summation to inside of the updated matrix in the following form:

bi

�

2
66664
0 0 0 0

0 1 � 0

0 � �2 0

0 0 0 0

3
77775

7

The same updating is then done as given by equation 4 and Schur decomposition of 4x4 matrices

are obtained. The process is continued until all the terms of the summation outside the matrix are

exhausted and the �nal result obviously is the eigensolution of the tridiagonal problem. A top-down

recursive approach also does updating of the same elements in the recombination step (after the

problem is broken down to the bottom-most level).

4 Implementation Issues

4.1 Top-down implementation

Here we describe the functional implementation of the original top-down version of the Dongarra-

Sorensen algorithm. A function ds(d; e; n; �) takes d, the diagonal vector, e, the o�-diagonal vector,

n, the dimension and �, the stability factor � discussed in the section 2, as arguments. It returns

ev, the vector of eigenvalues and Q, the corresponding matrix of eigenvectors as the output. If

the size is 1 the only element in the diagonal vector is returned as the eigenvalue and the identity

matrix of dimension 1� 1 is returned as Q. Otherwise the problem is broken into two parts, half

the size of the original. Uneven halves originate if the problem size is not even, which need not be

treated specially because the position of the tearing does not a�ect the �nal result. Two half size

vectors are generated from each of the vectors d and e. The last element of the �rst half of d and

the �rst element of the second half of d are modi�ed, as they represent the last diagonal element

of T̂1 and �rst diagonal element of T̂2, respectively (described in section 2.1). Now, the two half

eigenproblems are solved by recursively calling ds for each half. The rest of the work is to glue

these two solutions together, i.e. the recombination step in a normal recursive function. Let us call

the vector of eigenvalues and matrix of eigenvectors of the �rst half v1 and Q1 respectively. Call

the corresponding ones for the second half v2 and Q2. Combining v1 and v2 gives the term D of

equation (5). To obtain z of the same equation, we combine the last row of Q1 and � times the

�rst row Q2. The next step is to solve the updating problem described in section 2, which requires

the elements in D to be sorted. Consequently, to keep the same correspondence between D and z

in D+ �zzT eigenproblem, z also needs to be rearranged, according to D's sorted indices. To solve

the D + �zzT eigenproblem the secular equation can now be formed and its roots will give us the

eigenvalues. A function rf(D; z; �) computes n roots by choosing a starting point �0 in�nitesimally

right of the left endpoint within each interval of components of D and iterating within the interval

as follows:

�i+1 = �i + 2b=(a+
p
a2 � 4b);

where

a = (�(1 + �i) + 2i =
0

i)=c+ + i=
0

i;

b = (�w i)=(
0

ic);

c = 1 + �i ���
0

i;

w = 1 + �i + i;

and

� = �i+1 � �i

8

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
20000

|
40000

|
60000

|
80000

|
100000

|
120000

|0.00

|3.00

|6.00

|9.00

|12.00

|15.00

|18.00

|21.00

 cycles

 In
str

uc
tio

ns

Figure 1: Idealized Parallelism Pro�le for Top-Down Dongarra-Sorensen

where � and have the same meaning as in section 2. The roots of the secular equation thus ob-

tained are the eigenvalues of the D+�zzT problem, which are also the eigenvalues of the symmetric

tridiagonal problem we started with. The corresponding eigenvectors are obtained using equation

(7) of section 2. These eigenvectors are normalized and the �nal matrix form of the eigenvectors

of the tridiagonal problem is obtained by multiplying thss matrix of eigenvectors (of D + �zzT

problem) with the zero padded Q matrix of equation (4).

4.2 Iterative (bottom-up) Dongarra-Sorensen algorithm

This implementation �rst creates the bottom case by �lling in a vector curv (the current value of

eigenvalues) with ai � bi� � bi�1=� (refer to the preceding section), assuming b0 = 0 = bn. The

corresponding matrix of eigenvectors is the identity matrix at this point of time. In a while loop

we start solving the updating problem (see section 2), and start with gluing the solutions of size 1

to solutions of size 2. Every two consecutive elements of the vector curv now contains eigenvalues

of the size-2 problem (obtained from usual formulation and solution of the secular equation). The

matrix of eigenvectors curQ contains 2x2 submatrices along the diagonal (and 0's elsewhere), that

represents the two eigenvectors of problem size-2. In the next step two of these size-2 solutions are

glued together to form solutions of size 4, and the process is continued, increasing step size by a

factor of 2 in every successive iteration, until the whole problem is solved. This method requires

that the problem size be a power of two. But this limitation can be overcome if the problem size n

is broken into sum of powers of two (the binary representation of n), and each part is solved using

the method described above, and then gluing the solutions together in the usual way (by solving

the updating problem).

9

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
20000

|
40000

|
60000

|
80000

|
100000

|
120000

|0.00

|2.00

|4.00

|6.00

|8.00

|10.00

|12.00

|14.00

|16.00

 cycles

 In
str

uc
tio

ns

Figure 2: Idealized Parallelism Pro�le for Bottom-Up Dongarra-Sorensen

 (2nd Phase Ops)
 C-6 (Instructions)
 C-5 (Instructions)
 C-4 (Instructions)
 C-3 (Instructions)
 C-2 (Instructions)
 C-1 (Instructions)
 C-0 (Instructions)

|
0

|
30000

|
60000

|
90000

|
120000

|
150000

|
180000

|
210000

|0.00

|0.80

|1.60

|2.40

|3.20

|4.00

|4.80

|5.60

|6.40

|7.20

 cycles

 In
str

uc
tio

ns

Figure 3: Idealized Parallelism Pro�le for QL

10

Function cost HH + Top-down DS HH + Bottom-up DS HH +QL

HH eigenvalue computation 93,320 89,622 91,754

HH eigenvector computation 77,905 99,699 167,002

Matrix multiply 114,553 112,781 109,756

Tridiagonal solver (HH or QL) 78,560 53,775 256,391

Total instructions 374,405 379,010 679,928

Critical path length 109,640 110,450 189,340

Max size on monsoon 1PE1IS 55�55 166�166 101�101

Table 1: Quantitative Characteristics of the Eigensolvers

5 Time and Space Analysis

Figures 1, 2 and 3 display the idealized parallelism pro�les of the three implementations of the

eigensolver for an input matrix of size 16� 16, where the (i,j)-th element equals (i+j). The algo-

rithms behave similarly for other symmetric input matrices we have tried. The horizontal cycles

axis represents the critical path measured in the number of execution cycles under the idealized

assumption that an instruction will get executed as soon as its inputs are available. The vertical

instructions axis represents the number of instructions that can execute in parallel at a certain

cycle. The simulator allows us to mark the instructions of certain function with a certain \color".

Colors 0 and 1 display the instructions executed by the run-time system. In this way we can study

the overlapping of function execution. In all �gures, color 2 represents the part of the Householder

function that produces the diagonals d and e, and color 6 represents the part of the Householder

function that produces the orthogonal transformation matrix Q. Color 4 represents the particular

tridiagonal solver, color 3 represents the matrix multiplication. The peak at the beginning of the

execution in �gure 1 represents the parallel unrolling of the divide and conquer tree of the recursive

ds function. The second peak in �gure 1 and the peak in �gure 2 represent the execution of the

root-�nder.

Table 1 gives for each implementation information regarding the number of instructions per func-

tion, the total number of instructions executed, the total critical path length, and the maximum

size problem that can be run on a one node Monsoon machine [6], which has a 4 Megaword data

memory. From the �gures and table we draw the following conclusions.

� Both top-down and bottom-up Dongarra-Sorensen implementations (color 4) exploit producer-

consumer parallelism, and run in parallel with the part of Householder that creates the diag-

onals d and e. The Dongarra-Sorensen tridiagonal solvers end virtually at the same time as

the part of Householder that creates the diagonals d and e, which indicates that the non-strict

implementation of arrays in Id is highly e�ective for this application.

� The part of the Householder function that produces Q (color 6) contributes to the critical

path. Therefore, in order to shorten the critical path of the program, attention should be

paid to this part of the algorithm. Improving the parallelism of Householder can be easily

achieved by by increasing the K-Bounds of the loops [3].

11

� The matrix multiplication (color 3) can only start after the matrix Q has been produced by

the Householder function, and contributes largely to the critical path length. Again, a more

parallel version of matrix multiply would shorten the overall critical path length, and can also

be realized by increasing K-bounds of loops.

� Table 1 indicates that the bottom-up version of Dongarra-Sorensen is much more space e�-

cient than the top-down version. The largest problem size solvable on a one node Monsoon

machine is 9 times larger for the bottom-up than that for the top-down algorithm. The

bottom-up algorithm runs out of heap memory (data structure space), whereas the top-down

algorithm runs out of frame memory (run-time stack space). This is because the recursive

algorithm is executed in an eager, breadth �rst order, which uses excessive amounts of frame

store. This relates directly to the throttling problem [9] of controlling the amount of program

parallelism such that the machine resources are utilized, but not swamped.

� For the 16 � 16 problem, QL (color 4) has a 75% longer critical path length than the two

Dongarra-Sorensen algorithms, and executes 80% more instructions. This veri�es the claim

in [4] that even in sequential mode, the Dongarra-Sorensen algorithm outperforms QL. Also

note that QL cannot do much work until all of d and e have been produced, which is an

inherent characteristic of the algorithm. This makes producer consumer parallelism hard to

achieve for QL.

6 Conclusions

We have studied symmetric Eigensolvers, consisting of the Householder tridiagonalization, a tridiag-

onal solver, and a matrix multiplication in a non-strict functional environment. For the tridiagonal

solver we have studied implementations of the Dongarra-Sorensen algorithm and compared them

with the more traditional QL algorithm. We have introduced a new, bottom-up, implementation

of the Dongarra-Sorensen algorithm, and have shown that it is considerably more space e�cient

than the top-down version without incurring time ine�ciency.

The Dongarra-Sorensen functions run completely in parallel with the Householder function, which

veri�es the claim that non-strict functional languages allow the modular design of applications,

exploiting producer-consumer parallelism to the fullest.

We have observed that the critical path of the programs can be improved by making Householder

and Matrix Multiply more parallel, and indicated how this can be achieved.

The QL algorithm needs all values of its input vectors in order to start executing and therefore

does not bene�t as much from the non-strictness of the data structures. QL has a longer critical

pathlength and executes a considerably larger number of instructions, which veri�es the claim

that for su�ciently large problems, Dongarra-Sorensen is a better algorithm, even in a sequential

execution environment.

12

References

[1] B�ohm, A. P. and R. E. Hiromoto, \The Dataow Time and Space Complexity of FFTs", J. Par and

Dist Comp, Vol. 18, pp. 301-313, 1993.

[2] Bunch, J. R., C.P. Nielsen and D. C. Sorensen, \Rank-one Modi�cation of the Symmetric Eigenprob-

lem", Numerische Mathematik, 31, pp. 31-48, 1978. Reading, MA, 1972.

[3] Culler, D. E., \Managing parallelism and resources in scienti�c dataow programs", PhD Thesis, MIT,

June 1989.

[4] Dongarra, J. J. and D. C. Sorensen, \A Fully Parallel Algorithm for the Symmetric Eigenvalue Problem",

SIAM J. Sci and Stat Comp, Vol. 8, pp. S139-154, March 1987.

[5] Golub, G. H. and C. F. Van Loan, \Matrix Computations", The Johns Hopkins University Press, 2nd

edition, 1989.

[6] Hicks, James, D. Chiou, B. S. Ang and Arvind, \Performance studies of Id on the Monsoon dataow

system," Journal of Parallel and Distributed Computing no. 18, pp 273-300, 1993.

[7] Hughes, J. \Why Functional Programming Matters", The Computer Journal, April 1989.

[8] Nikhil, R. S. , \Id Reference Manual, version 90.1", Computation structures group memo 284-2, MIT

Laboratory for Computer Science, Cambridge, MA, Sept 1990.

[9] Ruggiero, C. A. and J. Sargeant, \Control of Parallelism in the Manchester Dataow Computer",

Lecture Notes in Computer Science no. 274, pp 1-15, 1987.

13

