
Department of

Computer Science

Remapping Subpartitions of

Hyperspace Using Iterative

Genetic Search

Keith Mathias and Darrell Whitley

Technical Report CS-94-101

January 7, 1994

Colorado State University

Remapping Subpartitions of Hyperspace Using

Iterative Genetic Search

Keith Mathias and Darrell Whitley

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

mathiask, whitley@cs.colostate.edu

Abstract

Various strategies for remapping hyperspace associated with two iterative genetic algo-

rithms are reviewed, compared and empirically tested on a particular \real-world" problem.

Both algorithms reduce the hypercube at each iteration such that each new mapping sam-

ples only subpartitions of the search space. Delta coding remaps the search space at each

iteration by sampling the subspace numerically adjacent to the previous solution. Canon-

ical delta folding canonically reorders and folds hyperspace producing new mappings that

sample subpartitions distributed across the search space. Empirical results suggest that

more local sampling strategies generally produce better solutions and that identi�cation

of \good" mappings is di�cult.

1

Remapping Subpartitions of Hyperspace Using
Iterative Genetic Search

Abstract

Various strategies for remapping hyperspace associated with two iterative genetic algorithms are re-

viewed, compared and empirically tested on a particular \real-world" problem. Both algorithms reduce

the hypercube at each iteration such that each new mapping samples only subpartitions of the search

space. Delta coding remaps the search space at each iteration by sampling the subspace numerically

adjacent to the previous solution. Canonical delta folding canonically reorders and folds hyperspace pro-

ducing new mappings that sample subpartitions distributed across the search space. Empirical results

suggest that more local sampling strategies generally produce better solutions and that identi�cation

of \good" mappings is di�cult.

1 Introduction

The goal of genetic search is to exploit statistical information about hyperplane partitions by

using the relative �tness of strings sampled from those partitions to allocate reproductive oppor-

tunities. The resulting selective pressure should direct the search toward partitions of hyperspace

representing above average solutions. However, hyperplane feedback can mislead the search so

that it converges to a sub-optimal solution. Liepins and Vose (1990) argue that for any speci�c

problem there exists some transformation of the space such that all hyperplane competitions

lead to the global optimum (c.f., Battle and Vose, 1991). Unfortunately, there is currently

no general method for transforming an arbitrary function so as to make it easier to optimize.

Furthermore the space of all possible mappings is much larger than the original search space.

However, the search for �nding \easier" mappings of hyperspace need not yield the opti-

mal mapping. Any number of remappings may potentially decrease the di�culty of a search

space as compared to a single mapping, as is normally used in genetic search. The use of an

iterative genetic algorithm provides an ideal opportunity for exploring multiple mappings of hy-

perspace, since a new mapping can be implemented with each new restart. However, a method

for identifying \good" mappings is necessary to exploit these transformations.

Various strategies for remapping hyperspace associated with two iterative genetic algorithms

are reviewed, compared and empirically tested on a particular \real-world" problem. Both

algorithms reduce the hypercube from one iteration to the next. As a result, each new mapping

only samples subpartitions of the entire search space. Delta coding remaps the search space at

each iteration by sampling the subspace numerically adjacent to the previous solution. Canonical

delta folding canonically reorders and folds hyperspace; the result is a mapping composed of

points selected from distributed subpartitions of the search space.

Empirical results suggest that local sampling strategies are generally more e�ective in �nd-

ing improved problem solutions than more distributed sampling strategies. Empirical results

1

also indicate that it is di�cult to evaluate how \good" a particular mapping of hyperspace is

based solely on performance. This is because the variance in �tness associated with di�erent

transformations of the space cannot be distinguished from the variance observed across di�erent

population samples using a single mapping.

2 The Delta Coding Algorithm

Delta coding (Whitley, Mathias and Fitzhorn 1991) uses GENITOR (Whitley, 1989) as the basic

engine for genetic search. The genetic algorithm is executed in a normal fashion on the �rst

iteration except that the population diversity is monitored by measuring the Hamming distance

between the best and worst members of the population. If the Hamming distance is less than 2,

the search is temporarily stopped and the best solution is saved as the interim solution. A new

population is created randomly and GENITOR is restarted. Each parameter is subsequently

decoded, however, as a delta value (��) that is added (or subtracted) to the interim solution.

At the termination of each delta iteration the delta coding algorithm uses information about

the interim solution to trigger operations that sometimes reduce or increase the number of bits

per parameter in the string. This permits the search to temporarily focus on a reduced area of

the search space. The method for delta parameter decoding remains the same for all iterations.

If the sign bit of the delta value is zero, directly add the delta value to the interim solution

parameter. If the sign bit of the delta value is one, complement all other bits and add the result

to the interim solution parameter. All addition is performed mod 2b, where b is the number of

bits in the original parameter encoding.

Each iteration e�ectively remaps the search space by constructing a new hypercube with the

interim solution at the origin. This has two e�ects: 1) each new hypercube creates a new set of

hyperplane competitions (via remapping) and 2) a di�erent set of points may be sampled if the

interim solution changes or if the parameter representation is changed (Figure 1).

Interim 3−δ +δ

2 4 6 8 10 12 140

Interim 1

16-2-4-6-8-10-12-14-16

Interim 2

−δ

−δ +δ

+δ

{ Delta Resampling Region}

Figure 1: Points Sampled In Numeric Space Using Delta Coding.

3 The Canonical Delta Folding Algorithm

Canonical delta folding uses the same iterative mechanisms present in the original delta coding

algorithm but employs a more general method for remapping hyperspace. This remapping is

applied in two phases. First, the space is placed in canonical order by exclusive or-ing (denoted

2

�) each string in the space with the interim solution. This preserves the same hyperplane

partitions, but \rotates" hyperspace to place the interim solution at the origin. Second, the

search space is folded. The folding remaps the strings in the new search space, changing the

relationships between strings and hyperplane partitions in the space. This transformation is

given by �S = [Cf1(S � I)] where S is the string from the population being remapped, �S is its

canonical delta fold representation, I is the interim solution bit string, and Cf1 is the bitwise

complement function applied conditional upon the \fold bit" being one. Subscript \f1" denotes

the fold bit as bit 1. The invertible point-to-point mapping, transforming strings in the delta

fold hypercube back to the original parameter space, is represented as S = [(Cf1(�S))� I] :

The folding mechanism applied to a 3 bit problem in canonical delta folding via Cf1 can be

represented in matrix form where a string S, in the original coding of the space is related to �S;

a string in the canonical delta fold space in relation to the interim solution string, I, by:

(I � S)

2
64
1 1 1

0 1 0

0 0 1

3
75 = �S

All vectors are row vectors and addition is mod 2 (equivalent to �). However, as any bit

may serve as the fold bit, the folding function can be generalized to Cfx, where x represents

the position of the fold bit. Changing the fold bit merely means that the space is folded along

another dimension. Therefore, the generalized matrix for mapping strings from the original

coding of the space to the canonical delta version of the search space has 1 bits in the row

corresponding to the fold bit, 1 bits on the diagonal and 0 bits everywhere else. A more detailed

description of canonical delta folding is given by Mathias and Whitley (1993).

3.1 Focusing the Search: Shrinking the Hypercube

Canonical delta folding, like delta coding, focuses the search at each iteration by reducing

or expanding the number of bits used to encode parameters. While this mechanism remaps

the search space in both strategies to some degree, it is designed to remap hyperspace in a

predetermined fashion in delta folding. When the hypercube is reduced, di�erent subpartitions of

hyperspace may be sampled depending on how hyperspace is remapped. The following sampling

and remapping strategies are examples of the transformations used by delta folding.

Figures 2 through 4 represent the sampling distribution of hyperspace for each of the three

strategies. The lines, from top to bottom, represent a reduction of the search space by 1 bit.

The raised portion of each line represents the subpartitions of the space currently being sampled.

Strategy 1 samples information local to the interim solution, located at 0, and wraps around the

original space to sample information about it's global complement. The algorithm for mapping

strings in the reduced space back to the original space is given by:

IF (bit1 of �S == 1) =) (Cf1(�S)) and pad to the left with 1's

ELSE =) Pad �S to the left with 0's

XOR Padded-string with current interim solution

3

x0

x00

x000

x0000

.125 .25 .5 .75 .875 1

Figure 2: Points Sampled in Hamming Space for Remapping Strategy 1.

The second strategy is designed to sample the global complement of the interim solution

in the original problem space and the local complement in the reduced space. It still folds

the global complement of the interim solution to a position adjacent to the interim solution in

Hamming space. Figure 3 shows the subpartition sampling pattern for this strategy and the

algorithm is outlined below. References to \bit1" and \bit2" refer to the �rst and second bit of

�S, respectively.

IF (bit1 of �S == 0) =) Pad �S to the left with 0's

ELSE IF (bit1 == 1) && (bit2 == 0) =) (Cf1(�S)) and Pad to the left with 1's

ELSE IF (bit1 == 1) && (bit2 == 1) =) Pad �S to the left with 0's

XOR Padded string with current interim solution

x0

x00

x000

x0000

.125 .25 .5 .75 .875 1

Figure 3: Points Sampled in Hamming Space for Remapping Strategy 2.

The third strategy is similar to strategy 2 except it does not always resample the global

complement of the interim solution, but instead samples the current complement of the reduced

form of the interim solution and the complement of the interim solution at the level above (i.e.

with one additional bit added to the representation). Therefore, in the �rst sampling the global

and local complements are sampled. At the next level of reduction the local complement at the

current level and the local complement of the current interim solution with one additional bit

are sampled. The points sampled in canonic space over multiple reductions of the search space

for this strategy are shown in Figure 4.

IF (bit1 == 1) && (bit2 == 1) =) Pre�x with 1

IF (bit1 == 1) && (bit2 == 0) =) (Cf1(�S)) and Pre�x with 0

Pad pre�xed-string to the left with 0's

XOR Padded string with current interim solution

x0

x00

x000

x0000

.125 .25 .5 .75 .875 1

Figure 4: Points Sampled in Hamming Space for Remapping Strategy 3.

Strategies 2 and 3 sample more information that is local to the interim solution than strategy

1. Strategy 1 restricts it's sampling sets to the information in Hamming space that is directly

adjacent to the interim solution and it's complement.

4

4 Empirical Performance

In this paper, delta coding and canonical delta folding are empirically tested and compared

using a rigid body transformation problem. The goal of the search is to �nd optimal rigid body

transformations to map a set of points in three dimensions (3-D) onto a target set of points in

a 2-D domain. Eight transformation parameters were encoded using 12 to 14 bits each, for a

total of 104 bits representing: translation along and rotation around three axes, a uniform scale,

and perspective. A �tness function designed to measure Euclidean distance between the target

and transformed points was used to evaluate the parameter sets. Solutions with zero error are

known to exist.

4.1 Remapping and Subpartition Sampling Strategies

As shown previously (Whitley, et. al., 1991), delta coding �nds more precise solutions in fewer

trials using smaller populations than the GENITOR and the parallel GENITOR II algorithms.

Representative runs have been chosen for Figures 5 through 7 to understand and compare the

behaviors of the algorithms. These plots track the best individual in the population over a single

search. As representative samples they re
ect the general behavior and performance exhibited

by each strategy and the general variance between the runs.

The GENITOR runs in Figure 5a were tuned for best performance, using a population of

5000 and a selection bias of 1.25. The delta algorithms exhibited in Figures 5b through 9a used

a population of 500 and a bias of 2.0. All delta coding and canonical delta folding searches used

a lower limit of 6 bits/parameter, unless otherwise speci�ed.

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000

E
r
r
o
r

Recombinations

Typical GENITOR Runs

Run 1
Run 2

(a)

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000
Recombinations

Typical Delta Coding Runs

Run 1
Run 2

(b)

Figure 5: Typical GENITOR and Delta Coding Searches for 3-D Transformations.

The typical performance and behaviors for the canonical delta folding algorithm using the

strategies presented in section 3.1 and Cf1 are shown in Figures 6a, 6b, and 7a. Most of the

5

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000

E
r
r
o
r

Recombinations

Canonical Delta Folding Strategy 1 Fold bit 1

Run 1
Run 2

(a)

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000
Recombinations

Canonical Delta Folding Strategy 2 Fold bit 1

Run 1
Run 2

(b)

Figure 6: Typical Delta Folding Searches Using Strategies 1 and 2.

canonical delta folding runs did not perform as well as delta coding. And in no case did the

average performance of any canonical delta folding strategy match that of delta coding.

These di�erent behaviors appear to be a result of the amount of locality in their subpartition

sampling strategies. Strategy 1 provides for the sampling of the strings located adjacent in Ham-

ming space to the interim solution and it's global complement. Empirical tests show that strings

in this complementary subpartition often produce very poor solutions. Including the comple-

mentary subpartition in the reduced search space appears to impair the genetic algorithm's

ability to �nd good solutions and results in a high degree of variance between searches.

Runs using strategies 2 and 3 provide for the sampling of subpartitions that are more local

to the interim solution in Hamming space (Section 3.1) and are shown in �gures 6b and 7a,

respectively. These strategies typically produce better solutions and display less variance than

searches using strategy 1.

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000

E
r
r
o
r

Recombinations

Canonical Delta Folding Strategy 3 Fold bit 1

Run 1
Run 2

(a)

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000
Recombinations

Canonical Delta Folding Strategy 3 Fold bit 5

Run 1
Run 2

(b)

Figure 7: Typical Delta Folding Searches Using Strategy 3.

6

While it is not known how to choose an optimal folding bit for a particular problem when

using a particular remapping strategy, the e�ects of applying a wide variety of fold bits combined

with di�erent sampling strategies were examined experimentally. The searches in Figure 7a em-

ploy a scheme using the �rst bit in each parameter for folding the hyperspace. The experiments

in Figure 7b employ the �fth bit in each parameter for folding. While these runs are only rep-

resentative of the many fold bit schemes that were tested, some schemes consistently produced

better solutions than others. Also, given a �xed strategy, the choice of the fold bit can impact

the variance (in terms of the best solution found) across multiple runs.

4.2 Exploiting Locality With A Moving Subpartition Window

Another conspicuous behavior of canonical delta folding is that after the search has focused on

a particular area of hyperspace the search makes no new progress in spite of the re-initializations

and remappings. This behavior is not observed in the delta coding runs. Delta coding continues

to make progress toward a better solution over the length of the run. The computational

behavior of delta coding and canonical delta folding was studied to try to isolate the cause of

these di�erences.

Delta coding remaps and resamples subpartitions in the search space with each new iteration

by sliding a window in numeric space (Figure 8a). This allows the algorithm to sample new

points based on each new interim solution. Convergence to a new interim solution for each

iteration enables the search to \crawl" along the error surface in search of new solutions. If

the same solution is converged upon consecutively (for example, a local minima in a basin of

attraction larger than the current sampling window, as in Figure 8b) then the re-expansion

mechanism will enlarge the sampling window. This allows the search to escape the attracting

basin (Figure 8b) and continue searching for new problem solutions.

(a) (b)

Figure 8: Side A�ects of the Delta Coding Focus Mechanisms.

Canonical delta folding samples subpartitions based on adjacency in Hamming space, which

is generally not equivalent to adjacency in numeric space. By constructing subpartitions of hy-

perspace representing numerically adjacent points, delta coding is able to relocate the reduced

hypercube in the original search space. One failure of canonical delta folding which we have

identi�ed is that once the hypercube has been reduced, the more signi�cant bits in the represen-

7

tation are �xed and the reduced hypercube cannot be relocated within the original search space.

Consider strategy 1 in section 3.1. Note that remapping occurs only in the reduced hypercube;

the same \pad bits" are always added as pre�xes to map the reduced delta strings back to the

canonical ordering of the full space. After exclusive-or is applied to the padded strings, the

resulting pre�xes can only match the pre�x of the interim solution or its complement.

This means that the subpartition sampling window produced by strategy 1 cannot move,

and that in order to sample a di�erent subpartition of the space, the algorithm must converge

to the same interim solution so that the search window can be re-expanded. However, strategy 1

makes it di�cult to converge to the same solution on consecutive iterations. This is because the

reduced search space is remapped at each iteration with respect to the new interim solution and

the resulting hyperplane competitions can change dramatically at each iteration. The changing

hyperplane competitions make it unlikely that the search will converge to exactly the same point

twice in a row (although the same solution may be revisited over the course of the search many

times). Thus, re-expansion is never triggered and the search e�ectively stagnates.

Strategies 2 and 3 have only slightly greater freedom than strategy 1. These strategies

include limited information about a hypercube that is 1 dimension (assuming a single fold bit

is used) larger than the current subpartition window. That is because the subpartition around

the \local complement" is drawn from this larger subspace. The subpartitions sampled by the

reduced hypercube can change to a limited degree, but only within the �xed subspace that is 1

dimension larger than the current reduced hypercube. In other words, the least signi�cant pad

bit can change values depending on the value of the interim solution, but all other pad bits are

�xed.

4.3 Hyperspace Remapping Versus Sampling Bias

Figure 6a and 6b suggest that it is possible to determine that one subpartition sampling strategy

produces better results than another after several iterations of remapping the search space. But

a more basic question is whether one can evaluate the \goodness" of any particular remapping

of hyperspace from one iteration to the next. Note that a subpartition sampling strategy is

di�erent from a remapping of hyperspace. To remove the e�ects of subpartition sampling from

hyperspace remapping, the following tests were done without reducing the search space.

Figure 9a illustrates the behavior of an algorithm where the original search space is remapped

at each iteration by moving the interim solution to the origin (using �) and folding the space

using Cf1. No subpartition sampling strategies are employed. Figure 9b shows the behavior of

GENITOR using the same restart and convergence parameters, but no remapping mechanisms

are applied. If remapping the space signi�cantly a�ects the trajectory of the search, we would

expect remapping to produce more variation in performance as measured at the end of each

iteration. Analogously, we would expect the searches using GENITOR without remapping to

display less variance.

The remapping algorithms were tested against the non-remapping algorithm using numerous

population sizes for several di�erent fold bits. No signi�cant di�erence could be measured using

an ANOVA test between the variance in performance associated with runs that remap the space

8

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000

E
r
r
o
r

Recombinations

Canonical Delta Folding Fold Bit 1 (Single) No Parameter Reduction

Run 1
Run 2

(a)

0

3

6

9

12

15

0 50000 100000 150000 200000 250000 300000 350000
Recombinations

GENITOR Repeated Bias 2.0 Convergence Criteria Restarts

Run 1
Run 2

(b)

Figure 9: Canonical Delta Folding(a) and Iterated GENITOR(b); No Search Space Reduction.

versus runs that did not. This suggests that the e�ects of remapping on performance cannot be

distinguished from the e�ects of sampling bias associated with restarting the search. A good run

may be due to remapping the space, or it may merely be due to fortuitous population sampling.

Another relevant observation is that both algorithms display \regression toward the mean."

This implies that particularly good runs are the exception and that subsequent runs typically

produce results that are closer to the mean. Thus even if one could identify a relatively good

mapping of hyperspace, most subsequent mappings (if chosen randomly) would be inferior.

5 Conclusions

Analyzing the computational behavior of delta coding and canonical delta folding should lead to

a better understanding of other algorithms that reduce the search space such as DPE (Schrau-

dolph and Belew, 1990) and ARGOT (Shaefer, 1987). The results shown here should be in-

terpreted with respect to the speci�c problem used in this study. Nevertheless, the limitations

identi�ed in canonical delta folding are general in nature and independent of the problem envi-

ronment.

Locality in the subpartition sampling mechanism used to de�ne the reduced hypercube ap-

pears to play a key role in performance. Strategies that use more local forms of subpartition

sampling yield the best solutions and result in the least variance between runs. At the same

time, it appears critical that this locality not be restricted to a �xed subpartition sampling win-

dow. The local search window used by delta coding allows the algorithm to exploit local optima

while still allowing the algorithm to move to other portions of the search space. Canonical delta

folding does not appear to exploit local information as well. This may be due to the fact that

remapping causes the local view of the �tness landscape to constantly change.

Another phenomenon resulting from the subpartition sampling of Hamming space used by

canonical delta folding is the e�ective stalling of the search. Unlike the numeric sampling

strategy of delta coding, the subpartition sampling mechanisms of canonical delta folding fail to

sample new partitions of the space after converging to a new interim solution. Failure to include

9

new sample points from the original search space in the construction of the reduced hypercube

prevents the algorithm from discovering better solutions. This problem must be corrected in

future versions of canonical delta folding. This may be a simple matter of �nding a better

subpartition sampling strategy or changing the mechanism detecting when search has stalled.

The subpartition sampling strategy used by delta coding and it's
exibility in relocating it's

sampling window in hyperspace may be key to consistently �nding better solutions quickly for

this problem, in spite of the less general method of remapping. And even though the solutions

may not be the global optimum, delta coding locates local optima that are competitive with the

known optimal solutions. This may be su�cient for many optimization problems.

Experiments show that the choice of fold bit can a�ect the outcome of the search. While the

use of some fold bits only occasionally result in good solutions, the use of other fold bits produce

good results with little variance between runs. There is currently no evidence, however, that a

particular fold bit may work well across all subpartition sampling strategies for this particular

problem. This indicates that there is some interaction between subpartition sampling strategies

and the remapping strategies that are employed in canonical delta folding. Additionally, the

remapping of the search space by the fold bit when subpartition sampling strategies are not used

seems to have little e�ect on the search results when compared to searches where remapping is

not employed.

While the data indicates that the particular mappings provided by the choice of the fold bit

may a�ect the results of the search, the evidence also suggests that it may be di�cult to identify

good mappings of the space. Certainly it appears to be di�cult to identify good mappings by

looking at performance from one iteration to the next. This is due in part to the sampling

bias inherent in the randomly initialized populations used at the start of each new iteration.

If the populations did not contain any sampling bias one would expect that all of the di�erent

mappings explored by canonical delta folding mechanisms would result in a much higher variance

than the single mapping encoded for the basic GENITOR algorithm.

References

[1] Battle, D. and Vose, M. (1990) \Isomorphisms of Genetic Algorithms." In, Foundations of Genetic Algo-

rithms. G. Rawlins, ed. Morgan Kaufmann.

[2] Liepins, G. and Vose, M. (1990) \Representation Issues in Genetic Algorithms." Journal of Experimental

and Theoretical Arti�cial Intelligence, 2:101-115.

[3] Mathias, K. and Whitley, D., (1993) \Remapping Hyperspace During Genetic Search: Canonical Delta
Folding." Foundations of Genetic Algorithms 2. D. Whitley, ed. Morgan Kaufmann.

[4] Schraudolph, N., Belew, R., (1990) \Dynamic Parameter Encoding for Genetic Algorithms."CSE Technical

Report #CS 90-175.

[5] Shaefer, C., (1987) \The ARGOT Strategy: Adaptive Representative Genetic Optimizer Technique." Ge-

netic Algorithms and their Applications: Proc. of the 2nd Int'l. Conf. J. Gre�enstette, ed.

[6] Whitley, D. (1989) \The GENITOR Algorithms and Selective Pressure: Why Rank Based Allocation of
Reproductive Trials is Best." Proc. of the 3rd Int'l. Conf. on Genetic Algorithms. Morgan Kaufmann.

[7] Whitley, D., Mathias, K., Fitzhorn, P. (1991) \Delta Coding: An Iterative Search Strategy for Genetic
Algorithms." Proc. of the 4th Int'l. Conf. on Genetic Algorithms. Washington, D.C., Morgan Kaufmann.

10

