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RESEARCH PROPOSAL ABSTRACT

DOMAIN BASED TESTING : A REUSE ORIENTED TEST METHOD

In general, the test data generation problem is equivalent to the Halting Problem; therefore, it

is undecidable. This does not have to be the case for speci�c problem domains. We propose a

solution to the test data generation problem for command-based systems, and we call our method

Domain Based Testing (DBT). DBT uses Domain Analysis and a Domain Model to automate test

generation. Domain Analysis was originally developed to support software reuse. It is one way to

extract common information about a problem domain. The result of Domain Analysis is a Domain

Model. Domain Models represent the reuse problem domain and they serve as a mechanism to

create instances of the reusable components. Instead of using the Domain Model for reuse, we

use it as a structure from which test cases can be generated. Part of the Domain Model for DBT

includes the syntax and semantics of the command language. Historically, grammars have been

successful at test generation for compilers. On the other hand, grammars have not been successful

at general purpose test generation because of the combinatorial explosion of semantic rules that

must be written and maintained. Domain Based Testing addresses these issues in two ways.

First, command language syntax is separate from command language semantics. Second, the test

generation process is divided into three phases, (1) Scripting, (2) Command Template Generation,

and (3) Parameter Value Selection. DBT is able to handle the complexity of the semantic rules by

distributing them across all three phases. Domain Based Testing can be classi�ed as a method that

supports a wide variety of Black-Box test strategies. Because it is based on ideas from software

reuse, DBT also provides a good structure for test case reuse. In fact, test cases can be archived

at each phase of test generation. The DBT Domain Model also provides a unique structure from

which regression test suites can be selected.
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Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

Semester - Fall 1993
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Chapter 1

PROPOSAL OVERVIEW

1.1 Introduction

Software testing consumes \at least half of the labor expended to produce a working program"

[Bei90]. Therefore, a fundamental consideration in program testing is one of economics. Testing

is expensive in time, machine, and labor costs. Research over the past 30 years has focused on

reducing the time to test a software product, reducing the number of test case executions needed to

test the software, and increasing the productivity of test engineers [Mye79] [Mye76] [Bei90] [GH88]

[ABC82]. Typical goals are to maximize the yield on each test case, and maximize the number of

errors found with the fewest number of test cases.

The literature shows that software testing is a di�cult problem [Mye79] [Bei90]. The com-

plexity of the problem can be demonstrated by examining White-Box Testing, Black-Box Testing,

and Formal Methods. White-Box Testing is a testing strategy based on the internal structure of

the program. Test cases are created by looking at the logic of the program's source code. The

ultimate test suite will execute every path in the program at least once. Unfortunately, loop con-

trol structures make this criterion almost impossible to achieve. Even for small programs with a

single loop, the number of paths through the program is too large to test. Therefore, exhaustive

testing of execution paths cannot be achieved. Black-Box Testing identi�es the conditions where a

program does not behave according to its speci�cation. The ultimate Black-Box test suite would

use every possible input condition as a test case. The test suite would include not only valid input

conditions but all possible input conditions. Potentially, we could have in�nite test cases. We could

restrict some of the input values because programs run on �nite machines. Yet, the sets would be

so large that we can consider them as in�nite for testing purposes. Again, exhaustive testing of all

inputs cannot be achieved. Because exhaustive testing is not feasible, test engineers must choose

a subset of all possible test cases. The subset is sometimes called the \reliable test set." If the

program is correct with respect to the \reliable test set," then we assume it is correct with respect

to the entire input domain. Unfortunately, the problem of choosing the \reliable test set" is not



easy, and Howden shows that it is equivalent to solving the Halting Problem [vM93a]. In general,

test data generation is undecidable, but it does not have to be for speci�c problem domains. We

propose an automated test generation method for a speci�c domain, Command-Based Systems.

Based on research from the software reuse community, we call our method Domain Based Testing

(DBT).

For command-based systems, test case generation can be automated using the syntax of the

command language. For truly meaningful tests, one must also consider semantic content, too.

Research shows that using grammars to generate tests for compilers has been successful [Pay78]

[BS82] [CRV+80] [FvBK+91]. From this work, others attempted to automate test generation for

general designs and implementations [BF79] [DH81]. Their results were not as promising. In

retrospect, we cite two reasons for their lack of success. First, all syntax and semantic information

were coded into the grammar. Such grammars are called attribute grammars or W-grammars.

They are complex grammars that can represent context-sensitive information, but they do not

make automated test generation easy. The number of semantic rules that must be de�ned and

maintained during test generation becomes unmanageable. The second reason test case generation

for general design didn't work was that all phases of the test generation were placed into a single

mechanism. This makes it di�cult to modify the system under test because grammar productions

must be re-written. It also limits the applicability of the test generation system. It may be good

for test generation, but it can't be used for other software testing issues.

Understanding both the bene�ts and the shortcomings of using a grammar for test generation,

DomainBased Testing relies on three phases (1) Scripting, (2) CommandTemplate Generation, and

(3) Parameter Value Selection. Each phase addresses a speci�c part of the test generation process.

Scripting focuses on command sequencing, CommandGeneration creates command templates, and

Parameter Value Selection �lls each command with parameter values. A grammar will be used to

represent the syntax of the command language, but the semantic information will be encoded as

rules that span all three DBT phases. This strategy will help us manage the complexity of test

case generation, improve test case reuse, and create a unique structure from which regression test

suites can be selected.

1.2 Problem Statement

The objective of our research is to develop a Domain Based Testing system that automatically

generates test cases for command-based systems. Domain Based Testing is a reuse oriented testing

method based on Domain Analysis and Domain Modeling. Domain Analysis has long been used to

2



develop reusable software components [BP89] [HC91]. This research proposes to extend Domain

Analysis to software testing. One objective of software test research has been to increase the

productivity of the test engineer. DBT is designed to address this objective by automating test

case generation, archiving test cases for reuse, and by using the DBT Domain Model for regression

test suite selection.

Several issues must be resolved for this research to be successful. First, Domain Analysis for

DBT must be de�ned. The Domain Analysis examines the system under test and it generates a

Domain Model from which tests can be generated. The command language must be examined,

static and dynamic behaviors of the software system must be represented, and syntax and semantic

rules must be de�ned. Once the Domain Model is developed, we need procedures for test case

generation. We call this the Test Generation Process Model. The process model must provide an

easy to use, interactive environment for the tester. Testers must be able to modify the system

con�guration, semantic rule de�nition, and parameter values. The process model should provide

mechanisms for the tester to modify test criteria.

The third issue to resolve is Domain Based Regression Testing. Software is constantly under-

going modi�cation, update, and change. Regression testing is a term used when a software product

is tested after modi�cation. The goal of regression testing is to make sure old features still work

and the \�xes" don't cause new problems. Most of the time, it is economically infeasible to re-run

all of the test cases from the original system. Therefore, one must choose a subset of test cases

that have a high potential to detect errors. The Domain Model for DBT de�nes a structure from

which regression test rules can be de�ned. E�ective regression test suites reduces the number of

test cases that need to be executed. Automating some of the test selection also improves tester

productivity.

3



The goals of our research can be summarized as follows:

� De�ne a General Testing Approach for Testing Command-Based Systems

� Obey both Syntax and Semantic Rules

� Automate Test Case Generation

� Generate Test Cases E�ciently

� Create an Environment for Test Case Reuse

� Create a Structure for Regression Testing Rules

Domain Based Testing should be a general purpose testing method for command-based systems.

To meet this goal, we must develop Domain Analysis procedures, a Domain Model representation,

and a Test Generation Process. Tests should obey both the syntax of the command language

as well as semantic rules for command sequencing and parameter value selection. This goal will

increase the \yield" on meaningful test cases, and it may reduce the number of commands each

test case executes. Domain Based Testing can be realized through a test generation tool. Testing

is a time consuming and sometimes tedious job. Hand-written test cases tend to be error prone

and ine�cient. Using an automated test generation tool allows testers to focus on high level test

scenarios instead of low level details. We envision an interactive tool used by the test engineer

to achieve this goal. Testers will work from a high level of abstraction and the test tool will

handle command syntax and parameter value selection. While generating test cases, we must be

concerned about e�ciency. We know from previous research that semantic rules can overwhelm

test generation for arbitrary designs. Domain Based Testing must be able to handle semantic rules

and generate test cases within a reasonable amount of time. Because the testing tool is interactive,

test engineers will expect a short Script-to-Test Case cycle time. If the time between scripting

and test case generation is too long, testers will not use the tool. Domain Based Testing also

provides unique ideas for test case reuse. Because Domain Base Testing is based on ideas from the

software reuse community, we should expect promising results from test case reuse. For example,

one could save tests at each stage of generation (Script, Command Generation, Parameter Value

Selection). Later, archived tests can be recalled for future tests, modi�ed for new con�gurations,

or re-generated using a new release of the command language syntax. The last goal of this research

is to de�ne rules for Domain Based Regression Testing. Regression testing is used to make sure

modi�cations to a software system does not corrupt old features and the new features perform

as expected. It is not economically feasible to re-run all of the previous test cases. The Domain

Model for Domain Based Testing provides a unique structure from which regression test suites can

be selected.

4



1.3 Overview of the Proposal

The remainder of the proposal is divided into �ve chapters. Chapter 2 presents background

material and a literature review. In Chapter 3, we develop the Domain Analysis procedures for

Domain Based Testing. A general approach for DBT analysis is provided and it shows what needs

to be represented for automated test generation. Chapter 4 discusses the Test Generation Process

Model. Here, we talk about some implementation and design issues for Domain Based Testing.

In Chapter 5, we present our research plan for assessing Domain Based Testing and the ideas for

constructing Domain Based Regression Testing rules.

5



Chapter 2

EXISTING WORK

2.1 Introduction

This chapter provides background information and a literature review for our research. As

shown in Figure 2.1, Domain Based Testing (DBT) exploits ideas from (1) Formal Languages,

(2) Software Reuse, (3) Requirements Analysis, and (4) Software Testing. A formal language is

used to represent the syntax of the command language for DBT. Results from earlier work show

that grammars can be used for automated test generation, but one must be careful about design

and implementation issues. Software Reuse is a popular research topic with respect to capturing

common information, designs, and programs from a problem domain. Extending these ideas to

software testing serves as a basis for Domain Based Testing. Requirements Analysis is needed by

DBT because one must analyze the system under test. For Domain Based Testing, we will not

need a general purpose analysis method because our problem domain is restricted to the testing

phase of the life cycle. The last area discussed in this chapter is Software Testing. Some ideas in

software testing can be used directly by DBT while others are used for design and implementation

decisions. We also compare Domain Based Testing to other testing methods.

In the following sections, we review all four areas. Our format for each section is to present

background information and literature review �rst. Then, we describe how the information can be

useful for Domain Based Testing.

2.2 Formal Language

Over the past 20 years, formal languages have been used for automated test generation. Some

methods have been successful when constrained by a speci�c problem domain. For example, most

of the early research investigated automated test generators for compilers [Pay78] [BS82] [CRV+80].

Others tried to use formal languages to generate test plans or to generate test cases for generic

designs and implementations [BF79] [DH81]. The e�orts to extend formal languages into generic

test case generation were not too successful because of the combinatorial explosion of semantic
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Figure 2.1: Research Basis for Domain Based Testing

rules that must be applied. In the next two sections, background information about using formal

languages for test case generation is presented. We also outline the requirements of a command

language that must be met for Domain Based Testing. Finally, we show how we can use formal

languages in the proposed research.

2.2.1 Background - Language Requirements

In general, not all command languages can be used to automatically generate test cases. While

tests can be generated using the syntax of the language, one must also consider semantic content.

To be a worthwhile candidate for Domain Based Testing, the command language must pass two

tests. First, parameters must have a high semantic content, and second, the parameters must map

to physical or logical objects in the system.

The �rst requirement states that most of the semantic information for the commands must be

encoded in the parameters of the language. A counterexample demonstrates the point. Consider

a compiler with a command language interface. The following command compiles source program

example.c using the code optimizer, renaming the object �le, and linking the math library.

cc -O -o example example.c -lm

The compiler has parameters in its command language interface, but little semantic content is found

in the parameters. Instead, we must go to the contents of the example.c �le. Because compiler

command languages do not have a high degree of semantic information in their parameters, they

do not represent a good choice for automated test generation using a command language.
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The second requirement states that the parameters of the command language must be asso-

ciated with objects of the system. Associating parameters with objects is important for several

reasons. First, the e�ects of the parameter or command can be identi�ed by the objects it in
u-

ences. For instance, as commands are issued, the values of the parameters can update the state

of the system. Second, the objects of the system can be organized into a hierarchy. From the

hierarchy, constraints on parameter values can be identi�ed, and relationships between parameters

can be de�ned. Finally, as objects are modi�ed, added, or deleted, regression testing rules can

be applied to identify new test cases, test cases that need to be rede�ned, and test cases that no

longer apply.

Let's examine a system that would be a good candidate for automated test generation using a

command language. Consider a manufacturing plant with robotic machining devices. Each robot

can use tools to cut, drill, and to shape various products. Suppose we have a command language in-

terface to the robots. Commands perform such things as machine set up, tool selection, robot arm

movement, and status reports. This system would be a candidate for automated test generation for

several reasons. First, command language parameters hold the semantic content of the language.

This would meet the �rst requirement for the command language. For example, the command

\ROBOT r23 DRILL using Drill-Bit2 at (100,100)" explicitly identi�es the command to exe-

cute, what drill bit to use, and the location of the hole to drill. We do not have to examine the

contents of a �le to understand the semantics of the command. Second, the parameters of the

command language map to objects in the system. We imagine objects such as Robot Tool, Co-

ordinates, Drill, Router, and Saw as possible objects. Furthermore, as commands are issued,

the state of the system can be updated by examining the values of the parameters. In the \Drill"

command example above, the robot state can be set to Busy. The objects, once arranged in a

hierarchy, could identify parameter constraints. For instance, suppose the robot-tool parameter is

currently set to Drill. Then, another parameter such as drill-coordinates may be constrained to

prevent damage to another assembly or to obey safety rules for plant employees.

2.2.2 Background - Using Formal Language for Test Generation

The idea of using formal language de�nitions to automatically generate test cases is not new

[BS82] [BF79]. Early research by Purdom shows how to e�ciently generate sentences to test

parsers [Pur72]. His research concentrated on generating sentences from a context-free language

such that each production in the grammar is used at least once. His algorithms were presented to

make sure \production coverage" is met with a minimal number of sentences. This method can

also be used to debug grammars. In 1978 Payne developed a method to specify messages in a
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real-time system using a formal grammar [Pay78]. From the grammar, messages are automatically

generated to perform \overload" tests on the real-time system. Along with encoding the syntax of

the messages in BNF, Payne also associated probabilities with the terminals and non-terminals of

the BNF. The probabilities were used to alter the frequencies of each syntactic unit.

Celentano et. al. extended the work by Purdom [CRV+80]. They designed and implemented

an automatic sentence generator to test compilers. Using syntax-directed translation, their system

could create (1) Totally incorrect, (2) Lexically correct, (3) Syntactically Correct, (4) Compile-

Time Correct, and (5) Run-Time correct tests. The semantic rules for the tests were encoded in

the grammar. Because their tests were based on Purdom's minimal production coverage criteria,

the number of sentences in the test cases were manageable. Empirical results from testing a

PL/1 compiler were successful. However, they also reported poor performance while testing an

interpreter. The interpreter was de�ned as a �nite state machine with several states and many

transitions. Because the test generator tries to minimize the number of sentences, the test cases

were too short and too simple to exercise the interpreter.

In a more recent paper, Duncan and Hutchison report �ndings from using an attribute gram-

mar to automatically generate test cases for designs and implementations [DH81]. Their system

generated test cases to compare implementations with their speci�cation. Each test case listed

the inputs of the test and it de�ned the expected output. The system could perform structural

tests, module tests, and system tests. Empirical results were shown from (1) Testing conditional

statements in Ada, (2) Testing a Sort Algorithm, and (3) Testing a Text Reformatter. Unfor-

tunately, follow up interviews with Hutchison revealed that their initial concept did not work as

well as planned. During test case generation, the combinatorial explosion of semantic rules was

overwhelming. Because of the large number of rules maintained by the parse tree and on the stack,

automatically generating test cases for arbitrary problems did not work [vM93c].

From the work cited above, we know that formal language can be used for automatic test

generation. Not only can the syntax be represented but in some cases semantic information can

also be used. For speci�c problem domains, tests can be generated quite e�ciently. For more

general problem domains, the combinatorial explosion of semantic rules makes automatic test

generation impossible for reasonably sized problems.

2.2.3 Formal Language - Speci�cation and Design Issues

Two results from early work with formal languages and test generation must be understood.

Both in
uence design decisions for Domain Based Testing. First, the syntax and semantics of the
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Attribute Grammar

Production Semantic Rules

L! Enewline print(E.val)
E ! E1 + T E:val := E1:val+ T:val

E ! T E.val := T.val
T ! T1 � F T:val := T1:val x F:val

T ! F T.val := F.val
F ! (E) F.val := E.val
F ! digit F.val := digit.lexval

W-grammar

Metaproductions N :: n j Nn

ABC :: a j b j c
Hyper-rules s : Na j Nb j Nc

nNABC : letterABCNABC

nABC : letterABC

Table 2.1: Attribute Grammar and W-Grammar Examples

command language must be represented for good, meaningful, high quality test cases. Second,

using the grammar to handle all syntax and semantic rules is not a good design strategy.

It is almost trivial to generate sentences from a grammar with no regard to semantic content.

While some of the sentences are meaningful tests, most of them will fail because they do not consider

semantic rules for command preconditions, parameter choice rules, or command sequencing. In an

early prototype for Domain Based Testing, we found that less than 50% of the test cases where

worthwhile because so many of them violated semantic rules [Cra93]. To increase the \yield" on

the number of meaningful commands in a test case, Domain Based Testing must handle both the

syntax and the semantics of the command language.

The second result seems intuitive, but let's analyze the shortcomings of using a formal language

for both syntax and semantics. Consider two types of grammars that allow semantic information

to be encoded with the productions of the language. The �rst grammar is called a W-grammar

and it is named after Aad Van Wijngaarden [CU84]. W-grammars encode semantic information

by deriving language productions from higher level productions and a set of derivation rules.

The second grammar is called an attribute grammar. Attribute grammars are a special form

of syntax-directed translation where semantic rules are associated with each production, but the

syntax de�ned by the BNF and the semantic rules are separate. Attribute grammars can evaluate

semantic rules at each node of the parse tree from the bottom up (leafs to the root). Table 2.1 shows

examples of an attribute grammar and a W-grammar [ASU86] [CU84]. The attribute grammar

produces an evaluation of an arithmetic expression and the W-grammar generates sentences from

the context-sensitive language fanbncn j n � 1g.

From the point of view of a compiler writer, W-grammars can describe complex context-

free grammars. But, the expressive power of W-grammars is not free because no general parsing

algorithm has been de�ned for them. For our problem, automated test generation, we can relax

some of the parsing issues. Compilers check to make sure strings are in the language de�ned by

the grammar. For automated test generation, we need to solve the converse problem. Given a
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language de�ned by a grammar, generate strings of the language. Because sentence generation is

easier, W-grammars could be used for automated test generation.

With the parsing problem resolved, we must also consider other design issues. For example,

W-grammars encode semantic rules in the BNF of the language. We can assume that most test

engineers can read and understand language syntax de�ned by BNF. In contrast, it may be di�-

cult for them to develop a W-grammar that properly encodes the semantic rules for the system.

W-grammars are not easy to write, and small mistakes in the grammar will generate incorrect

sentences. Furthermore, combining semantic rules into the syntax of the language may not be

prudent from the stand point of test case generation. Suppose a test engineer wants to turn o� all

or some of the semantic rules. Using a grammar to encode these rules would require the tester to

rewrite the BNF without the semantic information. This is not an acceptable solution to our test

generation problem.

One could argue that we could resolve some of these issues by abandoning W-grammars

and moving to attribute grammars. An attribute grammar is a special form of syntax directed

translation where semantic rules are associated with language productions. Because the two are

separate, we can solve the problem of turning rules on and o� by associating a Boolean Flag with

each rule. On the other hand, previous research shows that syntax directed translation may not be

a good design choice either. Duncan and Hutchison used an attribute grammar to automatically

generate tests for arbitrary designs. Semantic rules of the grammar can be resolved with a bottom-

up traversal of the parse tree. Unfortunately, they discovered that the number of semantics rules

that had to be de�ned and maintained on the stack during parsing became overwhelming. This

suggests that all of the semantic information should not be handled in a single mechanism during

test generation.

2.2.4 How can we use Formal Languages for Domain Based Testing

The results of this background investigation reveals three useful features for Domain Based

Testing. First, we can use experience from other researchers to analyze problem domains for

Domain Based Testing. Next, a grammar can be used to specify the command language. Third,

we know that the syntax speci�cation and semantic rules should not be combined.

Not all problem domains are suitable for Domain Based Testing. We know that the problem

must have a command language interface or one must be able to de�ne a \command language"

for the system. In addition to the command language, the parameters of the language must hold

most of the semantic content of the language. For systems with prede�ned command languages,

we may not be able to change the language such that it meets these requirements. On the other
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hand, if one is de�ning a \command language" for an Abstract Data Type (ADT) or a reusable

software component, then these requirements may in
uence how the language is designed if one

wants to use DBT.

We know from prior research, that speci�c problem domains are more suited to automatic

test generation. As cited above, the more successful research into using formal language to auto-

matically generate test cases has been associated with narrowly de�ned problems. At the other

extreme, the literature shows that trying to use a grammar to generate tests for general problem

domains does not work very well. Some reasons cited for this shortcoming is that the semantic

rules overwhelm the problem because of combinatorial explosion of the number of rules that must

be written, applied, and stored. Therefore, we will use grammars for test generation, but we will

focus on the problem domain of software testing.

We also know that combining the syntax of the language and the semantic rules into one

representation is not a good design. Celentano's results show that a phased approach to test

generation worked well for compiler testing [CRV+80]. Therefore, Domain Based Testing should

split test generation into a reasonable set of phases such that each phase focuses on speci�c aspects

of test generation. In addition, we would like the 
exibility to turn semantic rules on and o�.

Encoding the rules into the grammar is cumbersome and it requires the test engineers to understand

complex grammars such as W-grammars. Given this information, Domain Based Testing will use

a grammar to de�ne the syntax of the language and we will use other mechanisms to capture

semantic rules.

2.3 Software Reuse

Over the past ten years, software reuse has been a topic of study and empirical test [Kru92]

[BP89] [Big92]. Historically, reuse has been con�ned to shared libraries, reusable programs, and

reusable components. Recently, software reuse concepts have been applied throughout the software

life cycle. In general, reuse looks beyond single projects or systems. Instead, information common

to a set of similar systems is exploited. Using knowledge about similar systems is a good idea

from an engineering and from an economic point of view. To a software engineer, one can build

complex systems from sets of proven building blocks. To the project manager, one can in
uence

project costs, time, and schedule by using reusable software instead of \reinventing the wheel."

Besides exploiting information common to a problem domain, applying software reuse methods

creates a natural feedback mechanism. Every project that employs software reuse can be analyzed

with respect to the current reuse knowledge base. The results of this analysis may identify new
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reusable components, it may identify a better way to catalog the existing components, or it may

justify earlier reuse decisions.

For software reuse to be successful, one must be able to extract common information about

a problem domain, specify the operations of the domain, and package the information such that

one can build a new system based on the reuse knowledge. One way to capture this information

is to perform a Domain Analysis. Prieto-Diaz de�nes Domain Analysis as, \a process by which

information used in developing software systems is identi�ed, captured, and organized with the

purpose of making it reusable when creating new systems" [HC91]. The result of a DomainAnalysis

is called a Domain Model. Domain Models represent the reuse problem domain and they serve as a

mechanism to create instances of the reusable components. Hooper summarized the importance of

Domain Models when he stated, \Even more leverage is gained from reuse if domain analysis can

derive common architectures, generic models, or specialized languages that characterize software

in a special problem area" [HC91]. The special problem area for the proposed research is called

Domain Based Testing (DBT). In the next sections, we present background information about a

Domain Analysis and we show how Domain Analysis can be used for DBT.

2.3.1 Background - Domain Analysis

The name Domain Analysis was originally used by Neighbors in his 1981 PhD dissertation

on software [HC91]. Since then, Domain Analysis has been associated with the development of

reusable software components [Gom91] [HC91] [Tra92] [TCY93]. Some reuse is apparent while

other reuse is more di�cult to identify. For example, it is easy to imagine a collection of reusable

data structures, sorting algorithms, and searching algorithms. These are general purpose program-

ming tools and they can be used across a wide variety of problems. Hooper calls this \horizontal"

reuse [HC91]. On the other hand, identifying a set of reusable components within a narrowly

de�ned problem domain may be di�cult. For instance, it seems plausible that a set of algorithms

and libraries could be developed and reused to automate navigation for ships, cars, trains, and

aircraft. This represents a \vertical" reuse problem.

Domain Analysis extracts information from narrowly de�ned, \vertical" reuse situations. The

emphasis is on analyzing a family of systems 1 instead of one particular system. Domain Analysis

often concentrates on those objects that are common in a problem domain. They are sometimes

called \kernel objects." Then, optional or enhancements to the kernel objects are added to address

1A family of systems is a collection of systems that share common characteristics [Gom91]
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the variations in the family of systems. Domain Analysis commonly includes a thorough analysis

of the problem, a list of domain terminology, and descriptions of the entities and operations in

the problem domain. Domain Analysis does not constrain the reuse engineer to a single analysis

technique. Because reuse is applied across a wide variety of problem domains and because it is

used at all phases of software development, one should choose the analysis method that best �ts

the problem.

The result of a Domain Analysis is called a Domain Model. According to Gomaa, \A Domain

Model is a problem-oriented architecture for the application domain that re
ects the similarities

and variations of the members of the domain" [Gom91]. Similar to Domain Analysis, Domain

Models are not constrained to a single representation. Many authors suggest that one should use

a representation most natural to the problem. Some of the more popular ways to represent a

Domain Model are listed below [BP89] [Gom91] [HC91].

1. Data Flow Diagrams

2. Natural Language

3. Entity Relationship Diagrams

4. Objects

5. Class Hierarchies

6. Thesaurus/Classi�cation Scheme

7. Predicate Logic

8. Semantic Nets

9. Knowledge Based System

10. Predicate Logic

11. Production Rules

12. Frames

Sometimes more than one representation may be needed. Domain Models represent complex

problems because they capture information that is common to a number of similar systems. Booch

points out that \It is impossible to capture all of the subtle details of a complex software system

in just one kind of diagram" [Boo91]. Therefore, more than one representation may be needed to

fully specify a DomainModel. Using multiple representations is useful in many ways. For instance,

multiple views may be needed for di�erent phases of the life cycle or for di�erent users. Multiple

representations can also be used to build an abstraction hierarchy. Because abstraction is one of

the most powerful tools to understand complex systems, it seems natural to use them for Domain

Models. Multiple representations can also help with modi�cations or extensions to the Domain

Model. Using multiple views of the problem, one can isolate changes to the Domain Model as new

information is learned about the problem.
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Figure 2.2: A Reuse Infrastructure [HC91]

2.3.2 How Domain Analysis Can be Used for Domain Based Testing

Domain Analysis provides two useful features that can be used by Domain Based Testing.

First, Domain Analysis can be used to create a method to reuse test cases. Second, Domain Anal-

ysis and the resulting Domain Model serve as an infrastructure to combine all of the components

of DBT into a single method. Software reuse can be used at every phase of a software life cycle.

Prieto-Diaz suggested one \reuse infrastructure" for waterfall software development (see Figure

2.2) [HC91]. Even though this scenario uses waterfall software development, one could substitute

another life cycle model.

As the �gure shows, the result of a Domain Analysis is a Domain Model. Domain Models

are subsequently used at each phase of software development. Notice that feedback loops are

provided to Domain Analysis to update the Domain Models. For Domain Based Testing, we

propose to focus on the Testing phase. In Figure 2.2, boxes highlighted with BOLD lines denote

our narrowed focus. From this point of view, Domain Based Testing can be used as a simple test

generation tool, a generator for \reusable" test case design, or to identify regression test suites.

In software reuse, Domain Analysis and Domain Models collect the many facets of software

reuse under one model. Likewise, Domain Analysis and the resulting Domain Model serve as

mechanisms to combine all of the components of Domain Based Testing into a single infrastruc-

ture. For instance, Domain Analysis provides the analysis tools needed to identify what needs
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to be represented in the Domain Model. Currently, DBT uses three di�erent representations of

the problem (1) Scripting (Command Sequencing), (2) Command Template Generation, and (3)

Parameter Value Selection. This provides three levels of abstraction for the domain analyst and

the test engineer. Command sequencing captures the dynamic behavior of executing a series of

commands. This is a high level view of test generation where most test engineers will work to cre-

ate test cases. At the command level, command syntax, semantic rules about the commands, and

parameter value selection rules must be represented. At the lowest level of abstraction, parameter

values must be represented and parameter value selection rules must be written.

Using three levels of abstraction is extremely useful. First, the domain engineer can analyze

complex problems by viewing the system at multiple levels. Syntax and semantic information can

be separated, and static and dynamic views of the system can be split. Second, it helps test engi-

neers by allowing them to \ignore" low level details such as command syntax and parameter value

choices. Instead, they can focus on high level test scenarios. Third, the design and implementation

of Domain Based Testing can bene�t from the multiple views of the system. For instance, one can

substitute a new Script Generator into the system without disrupting the Command or Parameter

phases. Finally, using an abstraction hierarchy for test generation makes it easier to isolate where

changes and updates must be made as the problem domain evolves.

2.4 Requirements Analysis

The proposed research is based on creating a Domain Model for testing purposes. Many

Domain Models, ours in particular, use an object oriented speci�cation. To help us understand

what we need to specify in the Domain Model, we borrow ideas from one of the more recent object

oriented analysis techniques called Object Behavior Analysis (OBA). Developed by Rubin and

Goldberg, OBA is an analysis method that emphasizes \behaviors" or what takes place in the

system [RG92]. From the analysis, objects that initiate behavior can be identi�ed, objects that

o�er services can be described, and the interactions among the objects can be speci�ed. We do not

need a full Object Behavior Analysis for Domain Based Testing. Rather, we extract from OBA

what is needed to analyze objects, object relationships, and object behavior. We will use this

information to perform a Domain Analysis and to create a Domain Model. In the next section, we

provide a short overview of OBA and in the subsequent section, we describe how we use OBA for

our proposed research.
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2.4.1 Background - Object Behavior Analysis

Object Behavior Analysis is an object oriented analysis method that emphasizes object be-

haviors. It is an iterative, �ve step process with multiple entry points. The �ve steps are listed

below,

0. Setting the Analysis Context

0.1 Identify goals and objectives

0.2 Identify appropriate resources for analysis

0.3 Identify core activity areas

0.4 Generate preliminary analysis plan

1. Understand the Problem

1.1 Scenario Planning

1.2 Scripting

1.3 Build Glossaries

1.4 Deriving Attributes

2. De�ning Objects

2.1 Generate Modeling Cards

3. Classifying Objects and Identifying Relationships

3.1 Describe Contract Relationships

3.2 Organize Objects into Hierarchies

4. Modeling System Dynamics

4.1 Generate State De�nition Glossaries

4.2 Determine Object Life Cycle

4.3 Determine Sequencing of Operations

The output of Object Behavior Analysis consists of (1) Scripts, (2) Glossaries, (3) Object

Models, and (4) System Dynamic Models. Scripts record scenarios about how one uses the system.

Glossaries capture de�nitions, ranges of values, and trace information for objects, object attributes,

and object state information. Object Models are used to de�ne structural and contractual rela-

tionships between objects. Finally, system dynamic models show object life cycles and sequence

of operations.

Step #0 of Object Behavior Analysis identi�es the goals, resources, primary areas for analysis,

and a preliminary analysis plan. The authors use this step to make sure a clear set of objectives

are stated, a clear boundary for the analysis is set, and a plan is established for the remaining

analysis. Because these tasks are typically not included as one of the iterative steps in the analysis,

it is labeled as step \zero."

In Step #1, system analysts develop use scenarios to understand the problem, to determine

what the system is supposed to do, and with whom it it supposed to do it. By interviewing users

and domain experts, knowledge about end-user and detailed system dynamics can be understood.

Use scenarios are recorded in tables called scripts. From the scripts, the parties of the domain
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are de�ned. An initiator is a party that requests actions from other parties. A participant is

a party that provides a service to other parties. Each script is recorded as a table of 4-tuples

where each row contains an initiator, an action, a participant, and a service. The sequence of

4-tuples formally denotes a particular use scenario. Along with each script, preconditions and

postconditions are listed. Preconditions denote what must be true for the script to be applicable,

and the postconditions denote what is true after the script completes. Scripts can be linked together

by matching preconditions and postconditions to show how actions might progress through the

system.

The next step is to de�ne attributes for the parties of the scripts. An attribute is a logical

property of a party that is associated with the requirements to ful�ll one or more of its contracts.

The attribute may be needed to invoke a service or it may be used to ful�ll the service request.

Rubin and Goldberg use a table to list the relationships between the attributes of various objects

[RG92]. They found that attributes were di�cult to classify and de�ne using the more popular

diagraming techniques (i.e. ER-Diagrams). Instead, a table shows the required information where

entries are augmented with a diagram if it is appropriate. The results from OBA Step #1 are sets

of scripts that de�ne use scenarios of the system, a set of entities called initiators and a set of

entities called participants. All of this information is recorded in a Parties Glossary, an Attribute

Glossary, and a Service Glossary.

The next step is to de�ne the objects of the system. While many parties may be identi�ed in

the previous step, not all of them will be represented in the �nal system. Some of them will be

external analysis objects and the others will be system objects. Each system object is recorded on

an Object Modeling Card. The card names the object, shows relationships to other objects, and

lists several analysis traces. The names used on the modeling cards must match the names used

in the various glossaries.

In Step #3, relationships among the objects are identi�ed. Typically, the relationships are

hierarchical in nature where one object uses attributes or behaviors from other objects. By drawing

these relationships, one can identify objects that need to be re�ned and objects that can be

combined. Objects that are too complicated are split into two or more objects. This is called

factorization. In contrast, some objects may o�er similar services. Combining them through a

common parent object is called abstraction. As new objects are de�ned through factorization

and abstraction, one must iterate back through the scripts and use scenarios to annotate them

accordingly. Object Modeling Cards must be written and the various glossaries must be updated.

During the iterative process, the trace lists on the modeling cards are used to keep track of the
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original objects, the newly re�ned objects, and the abstracted objects. Rubin and Goldberg suggest

that notations such as Booch's can also be used to denote the object relationships [RG92] [Boo91].

In Step #4 of Object Behavior Analysis, we de�ne the dynamics of the system. In short

we must model those parts that change over time. To do this, the states of the objects must

be identi�ed, the events that cause the system to change states must be listed, and the order in

which the events take place must be known. States are associated with each object where a state

represents a situation or condition of an object. Most object states can be identi�ed from script

preconditions and postconditions. States and state transitions are noted using a State Glossary.

Other system dynamics must also be modeled. For example, we need to show the life cycle of the

objects, how the object moves from state to state, and the events that cause the state transitions.

Typically, this information is stored in state transition diagrams or state transition tables. The

�nal step in OBA is to capture the ordering of the operations within a script. Operation order

can also reduce the complexity of the problem. For example, if there are �ve steps in a script and

order doesn't matter, then there are 5! or 120 ways to execute the script. If order matters, then

we need to identify the operation order that is important.

2.4.2 How OBA Can be Used for Domain Based Testing

This short introduction to Object Behavior Analysis reveals how to conduct a formal object-

oriented analysis for an arbitrary problem domain. Object-oriented analysis is important to Do-

main Based Testing because we must perform a Domain Analysis to create an object based Domain

Model. Therefore, we can extract information from OBA about how to conduct a thorough Do-

main Analysis. Furthermore, we can tailor the concepts from OBA to meet the speci�c needs of

Domain Based Testing. This makes sense because we no longer need to analyze an arbitrary prob-

lem. Instead, we are analyzing a problem for a speci�c intent, namely, automated test generation.

To tailor OBA, steps may be eliminated, modi�ed, or extended to meet the needs of DBT.

Object Behavior Analysis provides a good analysis foundation for Domain Based Testing in

several ways. First, OBA shows how to represent both the static and dynamic nature of the

problem. For the static view, OBA shows how to de�ne objects, object attributes, and object

relationships. For the dynamic view, OBA shows how to capture state information, state transition

behavior, and operation sequencing. Second, OBA emphasizes its iterative, multiple-entry point

approach. An iterative Domain Analysis and Domain Modeling works well.

We do not propose to use a complete Object Behavior Analysis during Domain Analysis. We

need to borrow the useful parts of OBA and modify or extend other parts such that OBA is tailored

to the automated test generation domain. In Table 2.2, the relationship between the concepts in
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Object Behavior Analysis Domain Based Testing

Objects Analyze the Command Language
Object Attributes More precise classi�cation
Object Relationships Object Hierarchy

Parameter Value Constraints
Object State State \Attributes"
Script Command Sequencing Scripts

Script Classes
Script Pre/Post Conditions Pre/Post Conditions associated with commands
Script Operation Ordering Order �xed by the script

Table 2.2: Comparison of Object Behavior Analysis and Domain Based Testing

Object Behavior Analysis and Domain Based Testing are listed. For instance, OBA shows how to

identify objects of the system for an arbitrary problem domain. For Domain Based Testing, we

will narrow our focus and select objects from the command language.

Identifying object attributes is a typical step in almost any object-oriented analysis (OOA)

or object-oriented design (OOD). It is also used in Object Behavior Analysis. Likewise, Domain

Analysis and Domain Based Testing will need to keep track of object attributes. But, the classi-

�cation for attributes is too general for automated test generation. Therefore, DBT conducts a

more detailed analysis of the object attributes where they are classi�ed much more precisely.

Once objects and their attributes are identi�ed, relationships between objects must be shown.

OBA uses object relationships to split objects that are too complex and to conjoin objects that

perform similar functions. During Domain Analysis, one may need to combine or split an object.

Furthermore, Domain Based Testing will use object relationships to record semantic information

about how to choose values for the parameters of the command language. For instance, relation-

ships can be shown as an object hierarchy where the arcs are annotated with information about

how parameter values from one object constrain parameter values of another object.

Scripting is an important part of Object Behavior Analysis. Scripts capture scenarios about

how the system will be used. Almost every step in OBA is based on information in the scripts.

Scripting will also be used in Domain Based Testing, but it will be used in a di�erent way. OBA

uses scripting as an analysis tool. Domain Based Testing will use scripts as a test generation

mechanism where the dynamic behavior of the test scenario is captured. In Object Behavior

Analysis, preconditions and postconditions are associated with each script. For Domain Based

Testing, preconditions and postconditions must be represented, but they are de�ned at a lower level

of abstraction. Therefore, DBT will associate preconditions and postconditions with individual

commands.
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In OBA, preconditions identify object state information that must be true before the com-

mand can be issued. Postconditions identify the state of the system after the script executes.

For automated test case generation, object state information is needed for semantically correct

command sequences. Therefore, during Domain Analysis, object states must be de�ned, state

transitions must be identi�ed, and the pre/post conditions for each command must be shown.

Finally, Domain Based Testing must de�ne an order in which commands can be executed.

The rules for generating command sequences is called scripting. Scripts in OBA and DBT are

similar in that they capture dynamic behavior of the system. They are di�erent with respect to

the rules about the sequence of \operations" (commands) with the script. For Object Behavior

Analysis, scripts are used to identify objects operations. For Domain Based Testing, the operations

are de�ned a priori by the system's command language. In OBA, a separate step makes sure that

script operations are analyzed with respect to their execution order. If there are no constraints

among the operations, then any permutation of the operations is a valid command sequence for

that script. For DBT, the execution order for the commands is �xed by the script. By �xing the

sequence of commands within a script, test engineers control test case generation easily and the

application of semantic rules becomes easier. Using scripts in this manner also allows us to create

script classes such that the scripts can be combined, merged, and modi�ed.

2.5 Software Testing - Test Case Design

Test Case Design refers to the various ways to choose a subset of all possible test cases. If

exhaustive testing were possible, one would not have to consider test case design. Instead, we

need ways to choose a subset such that each test has a high probability of detecting errors. One

way to achieve this goal is to de�ne several test case design strategies where each one focuses on

particular types of errors. Because each strategy focuses on speci�c types of errors, one should use

a collection of strategies to test software. In the next sections, a few test case design strategies are

presented. Some of them provide information about new ways to employ Domain Based Testing.

2.5.1 Background - Structural Testing

White-Box Testing or Structural Testing is based on the internal structure of the program.

Test cases are created by looking at the logic of the program's source code. Coverage measures are

used to describe the degree to which test cases exercise the source code of the program. Coverage

measures are classi�ed according to the control 
ow or data 
ow of the program. For instance, the

ultimate control 
ow coverage measure is to execute every path in the control 
ow graph at least

once. Unfortunately, loop control structures make this criterion almost impossible to achieve. Even
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Coverage
Measure Description

Statement Coverage - P1 Execute every statement at least once
Branch Coverage - P2 Each branch is traversed at least once
Condition Coverage Each condition in a decision takes on all possible outcomes

at least once
Decision/Condition Coverage Each condition in a decision takes on all possible outcomes

at least once, each decision takes on all possible outcomes
at least once, and each entry point is executed at least once

Multiple/Condition Coverage All possible condition outcomes in each decision and all entry
points are invoked at least once

Table 2.3: Some Control Flow Coverage Measures

for small programs with a single loop, the number of paths through the program is too large to

test. Beizer calls this measure P1 [Bei90]. As one can imagine, there are many coverage measures

ranging from P1 to P1. As more paths are covered, one gets closer to P1. Some control 
ow

measures are listed in Table 2.3 [Mye79].

Data 
ow testings is a unit testing method based on the data 
ow of the program. Data 
ow

coverage uses the following de�nitions [vM93a] [CPRZ89].

DEF(x) is the set of vertices at which variable x is de�ned.

USE(x) is the set of vertices at which variable x is used.
p-use is a vertex at which variable x is used in a conditional branch statement
c-use is a vertex at which variable x is used in a computation

A de�nition of variable x is associated with a node when a statement at that node assigns a

value to x. Variable x is used at a vertex whenever a statement at that node accesses x's value.

Special cases of de�nition and use are sometimes needed. For example, p-use is a subset of the

USE(x) set where x is used in a predicate or in a conditional branch statement. Using these

de�nitions, Table 2.4 lists several data 
ow coverage measures.

Domain Based Testing does not have the luxury of examining the structure of the program.

We must base all test case generation on the command language. Yet, we can borrow the idea of a

coverage measure fromWhite-Box testing. Instead, of basing coverage on control 
ow or data 
ow,

we might be able to de�ne Domain Based Coverage Measures from the structure of the Domain

Model.

2.5.2 Background - Black-Box Testing

Another way to test software is to think of the program as a \black-box." Test cases are

derived by examining the program's speci�cation instead of its structure. For example, Equivalence

Partitioning is a test case design strategy where the input domain is divided into equivalence
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Coverage
Measure Description

All-Paths Every path must be traversed
All-Edges Every edge must be traversed
All-Nodes Every node must be traversed
All-Defs All De�nitions must be traversed
All-Uses At least one subpath from each variable de�nition

to every p-use and every c-use of that variable
de�nition must be traversed

All-C-Uses At least one path from each variable de�nition to
every c-use of that variable de�nition must be traversed

All-P-Uses At least one path from each variable de�nition to
every p-use of that variable de�nition must be traversed

All-DU-Pairs Every simple subpath from each variable de�nition to
every p-use and every c-use of that variable must be traversed

Table 2.4: Some Data Flow Coverage Measures

classes. Each equivalence class is de�ned such that any value in the class is representative of all

values in the class. Choosing a value from an equivalence class can be used in a test case. If the

results from the test are correct, then all inputs in the equivalence class are assumed to be correct.

Boundary-Value Testing is a test case design strategy that tests conditions at the boundaries of the

input domains and output ranges. For instance, suppose the valid set of input values is f0 : : : 10g,

then a boundary-value test would create a test suite with the following test cases f-1,0,5,10,11g.

Boundary-Value testing can be used to test output ranges, too. Suppose the output of a function

is in the range f0 : : : 100g, then input values should be selected to generate outputs of 0 and 100.

One should also try to select input values that would cause the output to be less than 0 or greater

than 100. Boundary-Value testing is also useful when testing data structures. Consider a structure

that has a capacity of 256 records. One should test the system with 0, 1, 256, and 257 records

for proper behavior. Some of the Black-Box strategies can be based on the speci�cation or on

the structure of the program. For example, Boundary-Value testing could examine the program's

logic to de�ne boundary conditions. For this proposal, we will consider their Black-Box testing

de�nitions.

2.5.3 Background - Regression Testing

Regression Testing is a testing strategy associated with evolutionary software development

[Bei90] [Mye79] [vMO93] [Sne93]. Software is always undergoing change. New features may be

added, old options may be deleted, and bugs may be �xed. As the software evolves, the tester must

make sure the old feature still work and the \�xes" don't cause new problems. Most of the time,
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Figure 2.3: Requirements and Test Suite Hierarchies [vMO93]

it is economically infeasible to re-run all of the test cases from the original system. Therefore, one

must choose a subset of test cases that have a high potential to detect errors.

The typical scenario for regression testing is to isolate the change in the software product.

Test cases that are relevant to the modi�cation are chosen. From this set, any test case that no

longer applies can be deleted. Some of the existing tests may need modi�cation. Finally, new

tests are added to complete the \regression test suite." Von Mayrhauser and Olender de�ned

rules for regression testing of requirement modi�cations [vMO93]. In their paper, requirements

are represented hierarchically where a node represents a requirement and the children of a node

represent subrequirements. Associated with the requirements hierarchy, a duplicate Test Suite

hierarchy. Each requirement has a corresponding test suite. An example of this structure is shown

in Figure 5.2 [vMO93]. Note that a test suite is comprised of a set of individual test cases. As

the �gure shows, test cases can be shared by more than one test suite. Qualitative requirements

are represented as an attribute vector associated with individual requirements. Each entry in the

attribute vector also has a corresponding test suite in the test suite hierarchy.

Using the two hierarchies, rules for building regression test suites are given. For instance, rules

are de�ned for requirements addition, deletion, and modi�cation. Suppose a new requirement is

added to the requirements hierarchy. A path from the root of the tree down to the new require-

ment identi�es all of the requirements that may need to be retested. Similarly, when deleting a

requirement, the requirement and all of its children (subrequirements) are deleted. In addition, the

test suites associated with the deleted requirements must be removed. The rules will be classi�ed

according to how aggressive or conservative they are.

2.5.4 How Software Testing can be used for Domain Based Testing

Three useful ideas from Software Testing can be used for our research. First, coverage measures

can be extended to evaluate the quality of Domain Based Test generation. Second, Domain Based
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Testing must be able to support higher level test case design, and third, Domain Based Regression

Testing rules can be developed. We emphasize that test criteria selection is one facet of Domain

Based Testing. It should not be confused with test case generation. Domain Analysis and the

Domain Model concentrate on test case generation. Test criteria is handled separately through

our Testing Process Model.

White-Box Testing uses coverage measures to evaluate the quality of a test case. While DBT

does not use the structure of the source code to de�ne test cases, DBT can extend the idea of a

coverage measure by using the structure de�ned by the Domain Model. The Domain Model uses

three levels of abstraction to specify test cases (1) Scripting, (2) Commands (object methods), and

(3) Parameters (object elements). From this structure, one could de�ne the following coverage

measures:

� Object Coverage

� Path Coverage (with respect to the Object Hierarchy)

� Command Coverage

� Command Rule Coverage

� Script Coverage

� Script Rule Coverage

At �rst, we will measure the coverage of test cases generated by DBT and correlate the results

with error detection. From these results, worthwhile coverage measures can be identi�ed. The

results may also be helpful in de�ning improved coverage measures for DBT.

The second way Domain Based Testing can bene�t from existing work in Software Testing

is to support a variety of Black-Box test strategies. A single test case design strategy is not

su�cient for thorough testing. Because each test criteria focuses on particular types of errors,

DBT must not force test engineers into one test strategy or methodology. Domain Based Testing

is a Black-Box testing method. We do not have the program's logic nor the implementation to

guide our testing e�ort. DBT must rely on the command language interface to generate test

cases. Because the command language is parameterize, the test engineer can change test cases by

modifying the semantic rules, or by changing the set of parameter values. Some of the Black-Box

strategies that DBT could support include valid/invalid test cases, restricted input domain tests,

(boundary-value/partitioned tests), special input/output test cases, and error handling tests.

The third way DBT can bene�t from Software Testing research, is to leverage from the well-

de�ned approach to regression testing as outlined above. DBT uses a Domain Model to structure

test case generation. Part of the model is an object hierarchy. The hierarchy identi�es relationships

between objects and it de�nes rules for selecting parameter values. In the regression testing

technique described above, requirements and test suites are represented hierarchically. Combining
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these two ideas, Domain Based Regression Testing can be de�ned. First, the object hierarchy can

be substituted for the requirements hierarchy, and test suites can be associated with objects of the

system. We can also replace the qualitative requirements vector with the object elements. From

this new structure, regression test rules can be applied to handle changes in the Domain Model.

For instance, a new object may be added to the model, objects may be deleted from the hierarchy,

or an object may be modi�ed. For all three cases, rules can be identi�ed to generate regression

test suites.

2.6 Comparisons between Domain Based Testing and Other Methods

2.6.1 Domain Testing

Boris Beizer describes a test strategy called Domain Testing [Bei90]. Even though the name

is similar to our proposed research, the two testing methods are not the same. Domain Testing

views programs as mathematical functions where input values are classi�ed as correct or incorrect.

Programs accept input vectors and partition them such that similar cases take similar processing

paths. Invalid input can be handled by adding an \error" processing path or an \input vector

rejected" path. Domain Testing can be used for functional or structural testing. If tests are based

on a speci�cation, then it is functional testing. If tests use internal program structure, then it is

a structural method. Most Domain Testing theory is based on structural methods.

DomainTesting earned its name because programs are considered to be input vector classi�ers.

Input vectors form the domain of the program in the mathematical sense. Each domain is speci�ed

with a set of boundaries. Each boundary is de�ned using at least one predicate. The predicate

returns TRUE if the input vector is a member of the domain, otherwise it returns FALSE. Beizer

uses the following example [Bei90]:

IF x > 0 THEN ALPHA ELSE BETA

Numbers greater than zero belong to the ALPHA domain and numbers less or equal to zero

belong to the BETA domain.

Domain Testing identi�es errors in the classi�cation of input vectors. For example, suppose

the if-statement above used ``>='' instead of greater-than. Proper test vector selection, would

misclassify input value x=0. Domain Testing assumes the program processes the data correctly, but

it may misclassify input vectors. It also assumes that once the input vector is correctly classi�ed,

then the input will be processed correctly. To detect processing errors, Domain Testing should be

used along with other testing strategies.
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Our research is called Domain Based Testing. Its name is derived from the Domain Analysis

and Domain Model used to represent the system under test. Domain Analysis and Domain Models

have been used in the Software Reuse communities for the past ten years. Domain Based Testing

uses ideas from software reuse to develop a testing method. Until a more descriptive name can be

derived, we will use Domain Based Testing for this research.

2.6.2 Category-Partition Testing

Category-Partition Testing is a test case design strategy created by Ostrand and Balcer

[OB88]. We present this design method separately to compare and contrast it with Domain Based

Testing. Category-Partition testing creates functional test suites from speci�cations. The speci�-

cation can be written in a formal language or in a natural language. The goal of Category-Partition

testing is to de�ne a systematic approach to writing test speci�cations and to generate test case

descriptions using an automated tool. The results of this approach is to generate tests with a

good coverage of the input domain, tests with good error detection, and test suites with a reduced

number of test cases.

The �ve steps for category-partition testing are listed below. Steps A through D create the

test speci�cation and Steps E and F generate the test suites.

A. Analyze the speci�cation.

B. Partition the categories into choices.

C. Determine constraints among the choices.

(StepC and the following two steps frequently occur repeatedly as the tester re�nes the test speci�cation to achieve

the desired level of functional tests.)

D. Write and process test speci�cation

E. Evaluate generator output.

F. Transform into test scripts.

The �rst step in Category-Partition Testing is to analyze the speci�cation. The test engineer

identi�es functional units that can be tested independently. For each functional unit, input param-

eters and environmental conditions are identi�ed. An input parameter is an explicit input to the

functional unit, and an environmental condition is a system state needed at the time of executing

the test. For each parameter and environment condition, the tester makes a third pass through

the speci�cation to de�ne categories. A category is \: : : a major property or characteristic of a

parameter or environment condition" [OB88]. Categories identify how the functional unit behaves

when presented with respect to parameter values and conditions. Consider a functional unit with

an array data structure. The categories for this unit may include farray size, type of element,

maximum element value, and minimum element valueg All of the information in Step A can be

derived from the speci�cation.
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In the second step, the tester partitions the categories into choices. Choices are sets of similar

values where any value in the set is representative of all values in the set. This classi�cation is

similar to equivalence partitioning where the input domain is classi�ed according to equivalence

classes. Test cases will be built from choosing among the list of choices from each category. While

identifying choices, the tester is not restricted to the speci�cation. One can use past experience,

error conditions, special cases, or the structure of the source code. Consider the category array

size from the previous example. Choices may include f0, 1, 2-100, >100g.

Step C identi�es constraints between choice values. Parameters and environment conditions

have relationships to one another. Sometimes choices for one parameter may in
uence choices

for others. Without restrictions, the total number of test cases would equal the product of the

cardinality of each category set,
Q

i
j categoryi j. In most applications, this would generate too

many tests, and many of the tests would be meaningless because choices may con
ict. To resolve

both issues, test engineers identify constraints between choices. During test generation, the total

number of test cases is reduced and many of the meaningless tests should be eliminated. Using

the same array example, suppose the array size choice = 0. Then, it is meaningless to generate a

test with choices for maximum element value and minimum element value.

In Step D, a formal Test Speci�cation is written for each functional unit. The format of the

speci�cation captures the categories, environmental conditions, choices, and constraints. From the

speci�cation, a generator produces templates called test frames. Each frame \consists of a set of

choices from the speci�cation, with each category contributing either zero or one choice" [OB88].

Step E allows the test engineer to examine the test frames, modify the test speci�cation, and

to generate a new set of test frames. This may be needed because some tests are missing, some tests

may need additional constraints, and sometimes too many test frames are generated. If changes

are needed, then the tester returns to Step D.

In the last step, the tester converts the test frames into test cases. Currently, the test frames

specify the conditions for each test, but it does not write the complete test case. The tester

must write (by-hand) the actual program, set of commands, set up data �les, and environment

conditions for each test frame. After the test cases are written, the tester can organize them into

groups called test scripts.

Table 2.5 cites some similarities and di�erences between Category-Partition Testing and Do-

main Based Testing. Consider the goals and objective for each method. Category-Partition Testing

creates functional tests from a speci�cation. Each script tests a single functional unit by automat-

ically generating test frames from a formal test speci�cation. The total number of test cases is
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reduced by using constraints. In contrast, Domain Based Testing creates test scripts from a \com-

mand language." Scripts contain a sequence of syntactic and semantically correct commands.

DBT does not focus on a single test case design strategy. Instead, test engineers are able to create

a wide variety of test cases. No restrictions are placed on the number of tests that are gener-

ated. Because of this freedom, one would be able to create stress tests easier with DBT than with

Category-Partition Testing.

Each method also uses di�erent Test Generation Models. Test generation for Category-

Partition testing iteratively re�nes the formal test speci�cation until the number of test frames is

acceptable and the input domain coverage is su�cient. The actual test cases and the compilation

of the test scripts are hand written. Domain Based Testing provides a testing process model with

three levels of test case generation. Testers start at the script level where a list of command names

is generated. At this level, the test engineer is free to specify command sequencing, the number of

commands to generate, and the types of commands. From this list of commands, the second phase

�lls in each command name with a syntax template. This template does not specify parameter

values. In the last phase, a complete test case is generated by �lling in parameter values.

Despite these di�erences, Category-Partition Testing and Domain Based Testing share some

things in common. For instance, both methods use constraints to generate meaningful test cases.

Category-Partition employs constraints to denote that one choice from a category cannot be used

in the same test frame with other choices from other categories. Test frames are generated by

enumerating all possible combinations of choices. Many of these frames are meaningless because of

con
icts between choices. Using constraints to eliminate these frames, Category-Partition testing

reduces the total number of tests. On the other hand, Domain Based Testing uses constraints to

generate semantically correct commands. For instance, choosing the value of one parameter may

in
uence the choice of another parameter. DBT is more 
exible in the types of constraints that can

be applied. For instance, parameter values can be eliminated from being selected, we can reduce

the set of valid choices, and we can force parameters to the value of a previously bound value.

2.7 Summary

The foundation for Domain Based Testing is build from four areas of computer science (1)

Formal Languages, (2) Software Reuse, (3) Requirements Analysis, (4) Software Testing. In this

chapter, background information about each area was presented. Along with this survey of existing

work, we described how each area will be used for our proposed research. In summary, Domain

Based Testing is based on performing a specialized Domain Analysis and creating a Domain Model
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Category-Partition Domain Based Testing

Goals
Functional Testing Wide Variety of Test Case Design Strategies
Reduce Number of Test Cases Syntactic/Semantically Correct Commands
Speci�cation Based Command Language Based

Generation
Automate Test Frame Generation Completely Automated
Generate all possible choice combinations Three Levels: Scripts, Command, Parameter
Test Cases hand written
Test Suites hand written

Constraints
Limit Number of Test Frames Three Levels : Script, Command, Parameter

Remove meaningless Test Frames Generate Semantically Correct Tests
Error and Special cases Variety of Semantic Rules
Constraints Local to one Functional Unit

Table 2.5: Comparison of Category-Partition Testing and Domain Based Testing

for the system under test. The Domain Model represents the problem at three levels of abstraction

(1) Scripting, (2) Command Template Generation, and (3) Parameter Value Selection. Scripts

de�ne the dynamic behavior of the system by recording the sequencing of commands. At the

command level, a grammar (BNF) de�nes the syntax of the command language. Semantic rules are

recorded as pre/post conditions for each command, and parameter value selection rules are de�ned

for each command. The Domain Model describes all of parameters of the command language using

objects and an object hierarchy. From this hierarchy, rules for choosing semantically correct values

for the parameters can be derived. Domain Based Testing is not limited to test case generation.

Because of its structure and levels of abstraction, DBT also makes a good platform for test reuse

and regression testing.
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Chapter 3

DOMAIN BASED TESTING

3.1 Introduction

Domain Based Testing (DBT) is a software test method based on Domain Analysis and Do-

main Modeling. A DBT speci�cation requires three closely related components (1) Object Model

De�nition, (2) Command Language De�nition, and (3) Scripting De�nition. In this chapter, we

present the steps for analyzing a system under test and we show how to create a Domain Based

Test Speci�cation. Table 3.1 lists the steps for conducting a Domain Analysis for DBT. Even

though the steps are listed in sequence, one should apply them iteratively. The results of the

speci�cation is a Domain Model from which test cases can be automatically generated.

In the remainder of the chapter, we de�ne Domain Based Testing, what must be analyzed

when building a Domain Based Testing system, and what functions are needed for automated test

generation. All static and dynamic behaviors of the software product are considered. We encourage

a thorough analysis of the problem as we present it here. Some domains may not need all aspects

of a generic speci�cation. Rather, we can tailor it for a given software product and its domain.

Throughout the chapter, we will use a simple robot manufacturing system as an example.

3.2 Command Language Analysis

The �rst step is to analyze the \command language" of the system under test. Domain Based

Testing uses a \command language" to automatically generate test cases. Many systems have a

command language interface, and sometimes a \command language" can be de�ned for the system.

For example, editors such as emacs and vi use commands to move the cursor, insert characters,

and manipulate �les. These represent systems with prede�ned command languages. Software

components such as abstract data types (ADTs) and reusable software components do not have

formal a command language interface, but their interface speci�cations could be used to de�ne

one for test purposes. In object oriented systems, classes de�ne templates for objects. Methods or

operations exported by the class also represent a form of \command language."



1. Command Language Analysis
1.1. Identify/De�ne a Command Language Interface
1.2. Check Semantic Content
1.3. Check Parameter to Object Mapping
1.4. Create Command Language Glossary

2. Object Analysis
2.1. Identify Objects and Their Elements
2.2. Identify Object Relationships
2.3. Create Object Glossary and Object Element Glossary

3. Command De�nition
3.1. Command Language Representation
3.2. Identify Pre/Post Conditions
3.3. Identify Intracommand Rules

4. Script De�nition (Command Sequencing)
4.1. Script Analysis
4.2. Script Classes
4.3. Script Rules

Table 3.1: Domain Analysis Steps for Domain Based Testing

Once the command language is identi�ed or de�ned for the system under test, it must also

be analyzed for semantic content. As described in the background chapter, most of the semantic

information should be encoded in the parameters of the command language. If the semantic

information is not encoded in the parameters, then other test strategies must be used to test the

software. Consider a compiler. Most of the semantic content is stored in the source �le and not

in the command line parameters used to invoke the compiler. E�ective tests for the compiler

would focus on the syntax and semantics of the programming language instead of the compiler's

command language interface.

In addition to semantic content, the parameters of the command language should map to

objects in the system. As pointed out in the background chapter, this mapping is needed to keep

track of object instances, the state of the objects, and the state of the system. Without a good

mapping between the parameters and objects of the system, we may not have enough information

to generate semantically correct commands.

Let's examine a command-based system that would be a good candidate for automated test

generation using a command language. Consider a manufacturing plant with robotic machining

devices. Each robot uses tools to cut, drill, and to shape various products. Suppose we have a

command language interface to the robots. Commands perform such things as machine set up,

tool selection, robot arm movement, and status reporting. Because command language parameters

hold the semantic content of the language, and because the parameters map to physical objects,

this system would meet the initial requirements for Domain Based Testing.
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Command Description

DRILL <robot-id> USING <drill-bit> AT <coord> Drill a hole
SAW <robot-id> USING <saw-id> FROM <coord1> TO <coord2> Saw from Point-1 to Point-2
SET TOOL FAILURE <robot-id> f Shutdown j Standby g Set operating Mode
POWER <robot-id> f Online j Offline g Turn a robot On/O�
ACCEPT <robot-id> FROM <conveyor-id> Accept a new job
RELEASE <robot-id> TO <conveyor-id> Release a job

Table 3.2: Robot Manufacturing Commands

Table 3.2 lists commands for the robot manufacturing plant. We will use these commands to

demonstrate each step in the DBT Domain Analysis. From this list, a command glossary should

be created. Information about the command, a short description, and the syntax of the command

should be listed. For example, one entry for the robot manufacturing system command glossary

is shown in Table 3.8.

Command Name DRILL

Syntax Drill-Cmd ::= DRILL <robot-id> USING <drill-bit> AT <coordinates>

Description Instruct a robot to drill a hole using a speci�c drill bit
at a particular position.

Table 3.3: Command Glossary Entry for the DRILL command

3.3 Object Analysis

Object Analysis is the second step in the DBT Domain Analysis. The results of this step

identify objects of the system, object elements, and relationships between the objects. We use

object oriented analysis to specify the problem domain because it is a popular way to represent

DomainModels for software reuse [BP89] [Gom91] [HC91]. Because object models tend to focus on

the \problem" or \problem space", they are excellent speci�cation tools [Boo83] [Boo91] [RG92].

Domain Based Testing will use the results of this analysis to choose semantically correct parameter

values and we will use its structure for Domain Based Regression Testing.

3.3.1 Objects and Their Elements

The next step in developing a speci�cation for Domain Based Testing is to de�ne objects

and their elements of the problem domain. Typically, objects denote physical or logical entities.

In Object Oriented Analysis/Object Oriented Design (OOA/OOD), analysts and designers use a

variety of rules to identify objects [Boo83] [Boo91] [Mul89]. Domain Based Testing focuses on the

command language and user documentation for object identi�cation. Domain Based Testing uses
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List of Commands

Object Name

Mode

State

Event

NP State

Attribute

Commands

Object Elements

Object-n

Figure 3.1: Anatomy of an Object

POWER <robot-id> {Online | Offline}

Robot

Drill Coordinates

DRILL <robot-id> USING <drill-bit> AT <coord>

Figure 3.2: Analyzing Robot Manufacturing Commands for Objects

the term object to describe the template or type-de�nition of the problem domain entity. When a

speci�c entity is needed, we refer to the entity as an object instance. Figure 3.1 shows a generic

object blob. Each object has a name, object elements, and commands. In the next few sections,

each part of the object will be de�ned in more detail.

For command-based systems, we can easily identify parameters of the command language and

then identify whether they are part of or describe a property of a physical or logical object. This

gives us a �rst cut of the objects and their particular attributes. Figure 3.2 shows two commands

from the robot manufacturing example. The two commands identify three objects Robot, Drill,

and Coordinates. The �rst two objects represent physical entities while the third represents a

logical object. Analyzing other commands reveal additional objects such as those listed in Figure

3.3.
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Figure 3.3: Objects for the Robot Manufacturing Example

Object Robot

Description Represents the type-de�nition for a
manufacturing robot

Commands DRILL, POWER, SET TOOL FAILURE,

ACCEPT, RELEASE

Table 3.4: Object Glossary Entry for the Robot Object

From this analysis, an Object Glossary is created. The glossary should list the object names

along with a short description of the object. We also list the commands associated with each

object. From OOA/OOD, these commands act as \methods" for our objects. Table 3.4 shows an

Object Glossary entry for the Robot object.

The next step in the Domain Analysis is to identify object elements. Object elements are

similar to the concept of object attributes in OOA/OOD. In traditional object oriented analysis and

design, one must identify the attributes of each object. Attributes de�ne qualities and properties of

the object. Attributes may place constraints upon an object such as limiting the range of possible

values, forcing the selection of a particular value, or indicating dynamic behavior of the object.

Rarely do OOA/OOD methods re�ne the concept of an object's attribute. But, for Domain Based

Testing we found that classifying attributes more precisely simpli�es test generation. We call the

information associated with an object its object elements.

Domain Analysis for DBT classi�es object elements into �ve mutually exclusive categories

as shown in Figure 3.4. First, object elements are categorized as (1) parameters or (2) non-

parameters. Parameters are those object elements that appear as parameters in the command

language. Conversely, non-parameters do not appear as parameters of the command language.

Each element can be split into more detailed categories. For example, parameter attributes, mode

parameters, and state parameters identify speci�c types of parameters in the command language.

Our classi�cation parameter attribute should not be confused with the general classi�cation object
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Figure 3.5: Parameter Attributes

attribute used in OOA/OOD. Our classi�cation is much more speci�c. Short discussions of each

object element is presented in the next few sections. We describe the general concepts �rst and

then give an example to reinforce the idea.

Parameter Attribute

In Figure 3.4, an attribute is classi�ed as a parameter of the command language. Parameter

Attributes uniquely identify instances of objects. For example, the Robot object represents an

object template and the robot-id parameter identi�es a particular robot. Each object may have

one or more parameter attributes, although in our analysis most objects have only one. Recall

the robot manufacturing example above. After analyzing the command language for objects, one

could identify the following parameter attributes, robot-id, tool-id, console-name, drill-bit, saw-id,

router-bit, coord, and conveyor-id (see Figure 3.5).

Mode Parameter

A mode is a parameter of the command language that sets an operating mode or a warning

mode for an object. An operating mode de�nes how the system behaves when an error occurs, or

when an event takes place. A warning mode can identify the type of warning messages, where the
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SET TOOL FAILURE <robot-id> {Shutdown | Standby}

Robot

failure-mode

Figure 3.6: Mode Parameter - SET TOOL FAILURE Command

warnings appear, or the conditions for issuing warnings. Because they appear as parameters of the

command language, operating modes can be changed by issuing the appropriate command.

In some problem domains, it is important that the current value for the mode is stored explic-

itly. Suppose the mode parameter for an object instance is set to Manual. It may be semantically

incorrect to issue another command to set the mode to the same state (i.e. Manual). Therefore,

we must keep track of the object instance and its mode parameter value. The current value must

be eliminated as a choice when generating commands that in
uence the mode parameter.

Returning to the robot manufacturing example, consider the SET TOOL FAILURE command

(see Figure 3.6). This command sets an operating mode for a particular robot. If a tool fails, then

the robot will automatically Shutdown or it will go to a Standby mode.

State Parameter

A state parameter is a parameter of the command language that holds the state of the ob-

ject. Because state parameters are part of the command language, one can change their value by

issuing a command with an appropriate parameter value. Parameter state is important semantic

information for test case generation. For instance, an object may need to be in a particular state

as a precondition for a command or instruction. If the object is not in the proper state, then

an appropriate sequence of commands can be issued to ensure semantic correctness. Similar to

the mode parameter, we may need to explicitly store the state parameter along with each object

instance.

Returning to the robot manufacturing example, suppose we can turn a robot on or o� with

the with the following command,

POWER <robot-id> f Online j Offline g

Furthermore, assume that a robot must be On before issuing any drill commands. By associating

a state parameter, robot-status, with the Robot object we can make sure semantically correct
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commands are executed. Consider robot \r23". Suppose it is currently turned Off (robot-status

= Offline), and we need to issue a drilling command. The following sequence of commands will

make sure the test case is semantically correct.

POWER r23 Online

DRILL r23 USING Drill-Bit2 AT (100,50,20)

Nonparameter Event

A Nonparameter Event is an event that cannot be controlled by parameters of the command

language. Typically, an event is the result of the dynamics of the problem domain. Even though

the command language cannot control events explicitly, we may need the information to generate

semantically correct sequences of commands.

Consider the Conveyor Belt object in the robot manufacturing problem. One event for

this object would be a boolean 
ag that signals a conveyor belt FULL. Suppose a robot is busily

accepting new jobs for processing and releasing those jobs to the same conveyor belt. It would be

semantically incorrect to release another job to the conveyor once it becomes full.

Nonparameter State

Nonparameter State elements do not appear as parameters of the command language. They

represent object state that cannot be set through a parameter choice. They are results of the side-

e�ects of executing a command or a sequence of commands. Experience shows that nonparameter

state elements change as a postcondition of a command or a script.

Like the state parameter, nonparameter states are needed to make sure preconditions for

a command or a sequence of commands are satis�ed. The di�erence between the two is state

parameters can be changed by issuing a command and choosing the appropriate parameter value.

Nonparameter states are set as a result or a side-e�ect of executing a command or a sequence

of commands. It may not be possible to change the value of a nonparameter state element on

demand. Most likely, nonparameter state elements are used to identify which object instance are

a valid parameter value choices.

Suppose the following command is issued: DRILL r23 USING Drill-Bit2 AT (100,50,20)

The results of executing this command places the robot \r23" and \Drill-Bit2" in a BUSY state.

Therefore, two nonparameter state elements robot-state and drill-state are associated with the

Robot andDrill objects, respectively. If the preconditions for another command require the robot

to be AVAILABLE, then robot \r23" cannot be used as a parameter value in the next command. This

example shows how the dynamic behavior of object instances can in
uence test case generation.

38



Object Robot

Description Represents the type-de�nition for a
manufacturing robot

Commands DRILL, POWER, SET TOOL FAILURE,

ACCEPT, RELEASE

Parameter Attribute robot-id

Parameter Mode failure-mode

Parameter State robot-status

Nonparameter Event
Nonparameter State robot-state

Table 3.5: Object Glossary Entry for the Robot Object

Object and Object Element Glossaries

To complete this phase of the Domain Analysis, we must update the Object Glossary and we

must create an Object Element Glossary. The Object Glossary maintains information about each

object. Initially, each entry records the name of the object and the list of commands associated

with the object. At this point, object element information needs to be added. Table 3.5 shows the

Robot entry from the Object Glossary.

A set of glossaries are also created for each object element. This glossary includes detailed

information about each element. While writing the object element glossary, it is crucial to analyze

the range of values for each element and the way the values are represented. Such detailed in-

formation will be needed for design decisions, implementation decisions, and test case generation.

Table 3.6 shows several entries from the Object Element Glossary.

3.3.2 Relationships Between Objects and Their Elements

For command-based systems, we can easily identify parameters of the command language and

then identify whether they are part of or describe a property of a physical or logical object. This

gives us a �rst cut of the objects and their elements, but not relationships between them. In Domain

Based Testing, relationships between objects de�ne semantic rules about parameter values. These

relationships are captured in an object hierarchy. Figure 3.7 shows an arbitrary object hierarchy

with four objects. The relationship between objects is shown by an arrow from one object to

another. For Domain Based Testing, these arrows denote parameter inheritance rules. In the

�gure, Object1 may in
uence parameter values in Object2 or Object3 or Object4. Detailed

parameter relationships are shown as labels on the arcs. In the example, element1 from object1

has a relationship with element2 of object2. In the following sections, we discuss the types of

relationships between objects, we suggest ways to make the inheritance rules uniform, and we
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Parameter Attribute

robot-id
Full Name Robot Identi�er

De�nition Names an Instance of robot
Values Range = r00...r99

Object Robot
Representation Range of values
Number of Values 1 to 100

Parameter Mode

failure-mode
De�nition Stores the failure mode of a robot
Values Shutdown j Standby

Object Robot
Representation Enumeration

Parameter State

robot-status
De�nition Indicates whether a robot is on or o�
Values Online j O�ine

Object Robot
Representation Enumeration

Nonparameter Event

conveyor-full

De�nition Indicates whether conveyor belt is full
Values TRUE j FALSE

Object Conveyor Belt
Representation Boolean

Nonparameter State

number-jobs

De�nition Number of jobs currently on the conveyor belt
Values Natural Numbers = 0 ... Max Capacity
Object Conveyor Belt
Representation Integer

Table 3.6: Object Element Glossary
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Figure 3.7: Generic Object Model

Type Representation Description

No Constraint No annotation on the arc Choices for the �rst parameter
do not constraint choices for the 2nd

Explicit Constraint a! b Parameter a constrains b

Implicit Constraint concat(a,b) Parameter is created by a
concatenation of values

Peer Constraint Arrow between objects Relationship between objects

at the same level

Explicit Concatenation a AND b ! c Explicit Constraints spanning more than
one level of the hierarchy

IntraObject Constraints Split the object into two objects

Table 3.7: Types of Relationships

provide rationale for the object hierarchy. Figure 3.8 shows the object hierarchy for the robot

manufacturing example. This hierarchy will be used to explain some of the object relationship

rules.

Types of Relationships

A wide variety of relationships between objects exists, and Table 3.7 summarize the types of

rules that have been identi�ed. The �rst relationship, No Constraint, is denoted as an arrow from

an object at one level of the hierarchy to an object at the next lower level. No annotations are

placed on the arc. Sometimes, objects may be related physically. For example, one object may be

constructed from several instances of another object. Despite the physical relationship parameters

from the higher level object may not constrain parameter values at the lower level.

The second type of relationship is called and Explicit Constraint. This is the most common

relationship found in our preliminary research. The relation states that the value of an attribute
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concat(robot-id, conveyor-id)

Coordinates

Robot

saw-id -> coord

drill-bit -> coord

router-bit -> coord

Console
Tool
Robot Conveyer

Drill

tool-id -> drill-bit Router

Belt

Saw

robot-id -> tool-id

tool-id -> saw-id tool-id -> router-bit

Figure 3.8: Robot Manufacturing Example - Object Hierarchy

from one object constrains the choices for another object. Because this is so common, we use the

notation a ! b to denote parameter a constrains the choices of parameter b. During parameter

value selection, the test case generator must explicitly handle this rule. It should be noted that

the explicit constraint does not address constraints that span more than one level. In the robot

manufacturing object hierarchy, robot-id constraints the tool-id parameter. Suppose robot \r23" is

selected in a command. The robot might be a special purpose machine with various sawing tools,

but it does not have any drills or router bits.

The third relationship, Implicit Constraints, are a special case of an explicit constraint. They

are actually resolved by the syntax of the command language, but we present them here for

completeness. Sometimes parameter values are constructed by concatenating information from a

higher level with information at the current level. Through concatenation, parameter inheritance

is implicitly carried down to lower level objects. Suppose the conveyor-id is a concatenation of the

robot-id and the conveyor belt number. For instance, \r23c2" represents robot \r23" and conveyor

belt \c2." Because this constraint is resolved by the syntax of the command language, it does not

have to be explicitly handled during parameter value selection.
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Param1-> Param2

Param1

Param2

Param1-> Param2

Figure 3.9: Object Splitting - What to do when constraints are local to one object

Peer Constraints address relationships between objects at the same level in the object hi-

erarchy. It may be possible that objects at the same level constrain one another, but we have

not witnessed this constraint in practice. To resolve a peer constraint, we recommend that ob-

jects at the same level be ordered from left to right by some priority assignment. While choosing

parameters during test generation, we will impose a \left-to-right" resolution rule to make sure

parameter attributes are resolved in the correct order. If objects have equal priority, then order

them left-to-right arbitrarily.

The �fth relationship, Explicit Concatenation, de�nes how to handle constraints that span

more than one level in the object hierarchy. During parameter value selection, all explicit con-

straints are concatenated from the root (top) of the hierarchy down to the object in question. Con-

sider the path in the robot object hierarchy fRobot : : : Robot Tool : : : Drill : : : Coordinatesg.

As we choose parameter attributes along the path, we must concatenate the constraints from all

previous levels. For example, when choosing a value for the drill-bit, we must consider the com-

pound constraint, (robot-id AND tool-id ! drill-bit).

The �nal relationship IntraObject Constraint, is handled by the Domain Analysis. During

Domain Analysis, one may �nd that the range of values for one object element constrains the

values of another object element within the same object. This is called an IntraObject Constraint.

We treat this constraint as anomalous because it identi�es a relationship between parameters within

a single object instead of showing the relationship on the arc between two objects. To remedy

this anomaly, a new object is created with the new object subordinate to the other. The object

elements that caused the split can be placed into separate objects and a detailed constraining

relationship is placed on the arc connecting the objects. This keeps the object model uniform with

regards to relationship constraints. Figure 3.9 shows the steps to split an object.
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Rationale for an Object Hierarchy

The object hierarchy serves three primary purposes. First, the hierarchy stores semantic

information, second, it provides a structure for choosing parameter values, and third, it makes test

generation more e�cient. Semantic information captured by the object relationships is needed for

parameter value selection. In the last phase of test case generation, parameter values are selected

for each command. Without this semantic information, we could rarely generate meaningful test

cases.

The hierarchy also provides a structure for choosing parameter values. All parameters are

selected by traversing a path from the top of the hierarchy down to the object in question. At

each node (object) in the path, a parameter associated with that object can be selected. When

traversing an arc to the next lower level, all of the inheritance rules on the arc are applied. Consider

the object hierarchy for the robot manufacturing example. Suppose one needs a value for the drill-

bit parameter. The path fRobot : : : Robot Tool : : : Drillg must be followed. Starting at the

root of the tree, one chooses a robot-id parameter. Traversing the arc down to the Robot Tool

object, the explicit constraint robot-id ! tool-id is applied. From the constrained list of choices,

the tool-id can be set to DRILL. Next, the explicit concatenation rule is applied (robot-id AND tool-id

! drill-bit). Finally, the drill-bit parameter can be selected.

The last bene�t of the object hierarchy is to make test generation more e�cient. The object

hierarchy represents the type-de�nitions for each object in the software product. If all object

instances were stored explicitly, then we may not be able to e�ciently generate test cases. First, for

any reasonably sized system, the memory requirements to store all instances would be impractical.

Second, at any given time, very few of the object instances are truly needed for test generation.

Therefore, the object hierarchy is used as a structure to generate test cases. As parameter values

are needed, object instances are maintained temporarily. When no longer needed, the instances

can be deleted.

3.4 Command De�nition

The third step in the Domain Analysis for Domain Based Testing is to formally de�ne the

syntax and the semantics of the command language. Some of the information has already been

identi�ed in the Command Glossary. Consider the DRILL command in Table 3.8. One �eld in the

entry speci�es the syntax of the command. In this example, we use Backus Naur Form (BNF). To

generate a command from the BNF, we take a random-walk through the production. An alternative

to BNF is to use an editor to create syntax diagrams for each command. Syntax diagrams are
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Command Name DRILL

Syntax Drill-Cmd ::= DRILL <robot-id> USING <drill-bit> AT <coordinates>

Description Instruct a robot to drill a hole using a speci�c drill bit
at a particular position.

Table 3.8: Command Glossary Entry for the DRILL command

Figure 3.10: Syntax Diagram for the POWER Command

graph representations of the syntax of the language. In Figure 3.10 a window based editor is shown

1. Using this editor, the syntax for each command could be de�ned, the test engineer would have

a user-friendly tool to de�ne the syntax, and a random-walk through the internal representation

could be used to generate a test case.

Besides syntax, preconditions and postconditions for each command must be de�ned. Precon-

ditions identify the conditions that must hold before the command can execute. Postconditions

list the conditions that are true after the command executes. From our experience, pre/post con-

ditions list values for parameter state and nonparameter state elements. Parameter States can be

used to create proper command sequencing, and Nonparameter States can be used to selected valid

parameter values. Consider the SAW command in Table 3.9. The preconditions for the command

require the robot to be turned \on," and the robot and the saw to be available. If the robot is

currently turned \o�," we can issue the following sequence of commands to make sure the test case

makes sense.

POWER r23 Online

DRILL r23 USING Drill-Bit2 AT (100,50,20)

1Sleuth is an automated test tool based on Domain Based Testing. The syntax diagram editor is one part of
the tool [Wal93]
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Command SAW

Syntax SAW-CMD ::= SAW <robot-id> USING <saw-id> FROM <coord1> TO <coord2>

Description Instruct a robot make a saw cut between to points
with a speci�c saw blade

Preconditions
State robot-status(<robot-id>) = Online
NP State robot-state(<robot-id>) = AVAILABLE

saw-state(<saw-id>) = AVAILABLE

Postconditions

State
NP State robot-state(<robot-id>) = Busy

saw-state(<saw-id>) = Busy

Intracommand <coord1> 6= <coord2>

Table 3.9: Command Glossary Entry for the SAW Command

Initial State Transition Final State

Online None Online
Online POWER <robot-id> O�ine O�ine
O�ine POWER <robot-id> Online Online
O�ine None O�ine

Table 3.10: State Transition Table for the robot-status Precondition

One way to represent the transitions needed to put the system in the proper state is to use a state

transition table. Entries in the table de�ne the current state, the transition (command) needed to

change the state, and the value of the resulting state. An example of the state transition table for

the robot-status precondition is shown in Table 3.10.

Nonparameter State elements represent object state information that results from side-e�ects

of executing a command or a sequence of commands. It may not be possible to change the value

of a nonparameter state element on demand. Therefore, Nonparameter States are used to adjust

the set of choices for parameter values. For instance, the SAW command requires the robot and

the saw to be AVAILABLE. Using this information, we can reduce the number of choices for the

robot-id parameter to those robots that are AVAILABLE during parameter value selection, and we

can eliminate the saw-id's that are not AVAILABLE.

Postconditions identify the state of the system after the command executes. This state in-

formation may be important for future command sequences or for parameter value selection. The

postconditions for the SAW command show that the robot-state and the saw-state are BUSY. Asso-

ciating this information with the proper object instances will make sure the remainder of the test

generation for the script is meaningful.

The last step in Command Language De�nition is to de�ne Intracommand Rules. These rules

identify constraints placed on parameter value selection within the command. They apply only

while generating parameters for a single command. Intracommand rules handle special parameter
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Intracommand Rule Description

P1 OP P2 The relationship between P1 and P2 must hold
where, OP = f=, 6=, <, >, �, �g

if P1 OP P2 then If the relationship between P1 and P1 holds then

OMIT(P3) Eliminate the value of P3 as a valid choice
where, OP = f=, 6=, <, >, �, �g

Table 3.11: Intracommand Rules

generation constraints that cannot be encoded into the Object Hierarchy or pre/post conditions.

From our experience, the object hierarchy and the pre/post conditions handle most of the pa-

rameter constraints. Because of this, few Intracommand Rules seem to exist. An example of an

Intracommand Rule is shown in the Command Glossary for the SAW command (see Table 3.9).

This rule states that coord1 cannot equal coord2. Other Intracommand Rules have been analyzed,

and they are summarized in Table 3.11.

3.5 Script De�nition (Command Sequencing)

The fourth step in the Domain Analysis for Domain Based Testing is called Scripting. Scripts

encode dynamic system behavior by capturing rules for sequencing commands. Sequencing infor-

mation is necessary because arbitrarily ordering a list of commands rarely produces semantically

correct test cases. In fact, results from an early prototype of Domain Based Testing suggests that

without scripting less than 50% of the commands in the test case are meaningful [Cra93]. Besides

capturing dynamic system behavior, scripting allows the test engineer to develop test cases at a

high level of abstraction. They don't have to worry about parameter value selection, command

syntax, or pre/post conditions. Instead, they can focus on high level test scenarios.

Scripts are visualized as state transition diagrams (see Figure 3.11). As the �gure shows, the

script traverses various states based on the value of the current state and the choices for the next

transition(s). Arcs are labelled with the names of speci�c commands, script classes, or named

scripts. By restricting the commands that can be executed on each arc, we can create proper

command sequences.

While the state transition diagram is a good way to conceptualize scripting, scripts are easier to

represent as stored command sequences. We call these archived scripts Megascripts. For example,

\Robot.script" in Table 3.12 shows a megascript for the robot manufacturing system. The script

turns three robots on, generates up to 100 DRILL commands, generates up to 50 commands from

the \Any" Class, includes another script called \BugBuster," and it merges two scripts.
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State2

State3
State1

<Script>
Command-1

<Classes of Commands>

Figure 3.11: State Transition Diagram for a Generic Script

POWER r23 Online

POWER r24 Online

POWER r25 Online

@100/DRILL

@50/Any

@include BugBuster.script

@merge Saw.script Router.script

Table 3.12: Robot.script

3.5.1 Script Classes

Scripting classes create a set of \building blocks" from which more complex scripts can be

built. Table 3.13 suggests ideas for script classes, where one column lists examples from the robot

manufacturing system. The number of scripting classes and their content is problem dependent.

Some software products can be tested with a small number of scripts while others may need an

elaborate hierarchy of script classes. Script classes list a set of commands that perform a speci�c

task. For example, the Setup class lists commands that perform system set up tasks. During test

generation, test engineers should be able to con�gure script classes. For example, one may want

to turn o� the ACCEPT and RELEASE commands from the Action Class. By doing this, the set of

Action commands becomes fSAW, DRILLg.

Megascript is the name given to an archived (stored) sequence of commands. Megascripts

can be used to create complex test scenarios. For instance, a megascript can perform a system

setup, present a workload to the system, and then test some fault. Megascripts can also be used to

exercise particular objects, commands, or to stress test the system. Megascripts can be included

into another script and two or more megascripts can be merged. Including a megascript into a new

script is a good way to create test cases from smaller sequences of commands. It is also a good way
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Class Description Robot Example

Setup Commands that perform system Set Up POWER

Mode Commands that set Parameter Modes SET TOOL FAILURE

Action Commands that exercise the software system SAW

DRILL

ACCEPT

RELEASE

Any Setup [ Mode [ Action SET TOOL FAILURE

POWER

SAW

DRILL

ACCEPT

RELEASE

Megascript An archived script Robot.script

Table 3.13: Script Classes

to reuse test cases. Merging takes two or more megascripts and \shu�es" them together. This

may be useful when testing shared devices or when building more complicated test cases.

3.5.2 Script Rules

The last step in the Domain Analysis for Domain Based Testing is to de�ne semantic rules

associated with script generation. From our preliminary work, two types of scripting rules have

been identi�ed (1) Command Sequencing and (2) Script Parameter Selection. In some systems,

commands must be issued in a particular order. Consider the robot manufacturing system. It does

not make sense to RELEASE a job from a robot unless one has been ACCEPTed. The sequence below

shows one way to represent this rule.

ACCEPT <25/Any> RELEASE

The rule states that an ACCEPT command can be followed by up to 25 commands from the \Any"

class and the sequence is terminated by a RELEASE command. The �rst and the last command

in this rule form \bracketing" information that must be obeyed for meaningful test generation.

For example, suppose RELEASE is selected as the next command in the megascript. The scripting

rule above states that an ACCEPT command must occur earlier in the command sequence. The

application of this rule will generate the ACCEPT <25/Any> RELEASE command sequence. For


exible test generation, the test engineer should be able to modify the rule. One should be able to

change the upper limit on the number of commands to be generated between \brackets" and the

tester should be able to change the class from which commands are chosen. Testers should also be

able to turn this rule on and o� to provide as much 
exibility as possible for test case generation.
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Notation Description

p* Choose any valid value for p
p Choose a previously bound value for p
p- Choose any except a previously bound value for p

Table 3.14: Script Rule: Parameter Value Selection

The second script rule de�nes how to choose parameters for script sequencing. Table 3.14

shows three script parameter selection rules. The �rst rule, p*, states that parameter p can be

selected from any valid choice according to object inheritance constraints. The second rule, p,

restricts the value of parameter p to a previously bound value. The third rule, p-, denotes that

parameter p can be selected from any valid choice except for the currently bound value of p. The

ACCEPT - RELEASE sequencing rules can be annotated with script parameter selection rules. For

instance,

ACCEPT robot-id* conveyor-id *

<25/Any>

RELEASE robot-id conveyor-id -

This rule states that the robot-id and conveyor-id parameters can be selected from any valid choice

for the ACCEPT command. The RELEASE command must use the previously bound value for the

robot-id and it can not use the same value for the conveyor-id. This rule should make sense. The

robot that accepted a job should be the same one to release it, but you don't want to put the job

on the same conveyor belt from which the job was received.

3.5.3 Summary

Domain Based Testing is a software test method based on Domain Analysis and Domain

Modeling. In this chapter, we presented steps for a Domain Analysis for DBT. The analysis

is based on three components (1) Object Model De�nition, (2) Command Language De�nition,

and (3) Scripting De�nition. We de�ned Domain Based Testing, what must be analyzed when

building a Domain Based Testing system, and what functions are needed for automated test

generation. All static and dynamic behaviors of the software product were considered. The steps

were presented sequentially, but we recommend an iterative approach for the analysis. The results

of the speci�cation is a Domain Model from which test cases can be automatically generated.
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Chapter 4

TEST GENERATION PROCESS MODEL

4.1 Introduction

The Test Generation Process Model de�nes the sequence of steps to create test cases. In the

previous chapter, we concentrated on analyzing the software system under test, and we de�ned

what needs to be represented for test generation. In this chapter, we discuss implementation issues

needed to build an automated test generation tool. Figure 4.1 shows the components of the Test

Generation Process. First, one de�nes a System Speci�cation of the system under test. Next, test

engineers create System Con�gurations for speci�c test scenarios. Along with the con�guration,

the tester may need to consider various Test Criteria. Finally, the Test Generation component

creates the test case. In the next four sections, we describe the functions of each block in the

�gure.

4.2 System Speci�cation

The System Speci�cation sets up a new problem domain for automated test generation. This

step is performed for every new software system and it may be needed after new releases of the

software. If the new release changes the command language signi�cantly, then the speci�cation

should be rede�ned. The System Speci�cation must represent all of the information from the

Domain Model. One can think of the System Speci�cation as the default con�guration for test

data generation. Table 4.1 lists the operations available to the test engineer. For instance, testers

must be able to de�ne scripting classes, and utilities to enter command syntax, de�ne pre/post

conditions, and intracommand rules are needed. To complete the System Speci�cation, we need

editors to de�ne default parameter values and parameter inheritance rules.

4.3 System Con�guration

System Con�guration allows test engineers to hand-craft scenarios for test generation. Test

scenarios may concentrate on particular commands or command sequences. A set of test cases
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Figure 4.1: Test Generation Process Model

Component Operation

De�ne Script Classes
De�ne Script Rules

System De�ne Command Syntax
Speci�cation De�ne Pre/Post Conditions

De�ne Intracommand Rules
De�ne Default Parameter Values
De�ne Parameter Inheritance Rules

Table 4.1: Operations for System Speci�cation

52



Component Operation

Modify Script Classes
Modify Script Rules
De�ne New Scripts
Turn Script Rules on/off
Modify Command Syntax

System Modify Intracommand Rules
Con�guration Turn Pre/Post Conditions on/off

Turn Intracommand Rules on/off
Modify Parameter Values
Modify Parameter Inheritance Rules
Turn Parameter Inheritance Rules on/off
Reset Con�guration
Load Con�guration
Save Con�guration

Table 4.2: Operations for System Con�guration

may be needed to check a special con�guration of the system. Sometimes we may need tests with

some of the semantic rules turned o�. To achieve these objectives, a \work space" is created

for each tester. This prevents corruption of the original speci�cation and it allows multiple test

engineers to use the system simultaneously. Table 4.2 lists the operations supported by the System

Con�guration phase. Most of the functions allow the test engineer to modify the speci�cation.

The last three functions allow con�gurations to be restored from the original speci�cation, saved

for future use, and recalled at a later time.

4.4 Test Criteria

The Test Criteria component is used with the System Con�guration to develop test case

scenarios based on Black-Box Testing strategies. Black-Box testing identi�es the conditions where

a program does not behave according to its speci�cation. Domain Based Testing should support

strategies such as boundary-value, valid test generation, and invalid test generation. Most of the

time, these strategies involve modifying the set of parameter values from which test cases can

be generated. The Test Criteria component should provide utilities to adjust the frequencies of

command generation and functions to calculate Domain Based Coverage Measures. Sometimes

the test engineer knows that certain commands are generated more frequently than others, and

sometimes the tester has operation pro�le data that provides a real-world test scenario. Therefore,

a utility should be provided to set command generation frequencies. Another function is needed

to measure Domain Based Coverage. We need to de�ne and measure coverage with respect to

the Domain Model. With this information we may be able to improve test case generation or we
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Component Operation

Modify Parameter Values
Modify Command Syntax
Turn Script Rules on/off
Turn Pre/Post Conditions on/off

Test Criteria Turn Intracommand Rules on/off
Modify Parameter Values
Modify Parameter Inheritance Rules
Turn Parameter Inheritance Rules on/off
Measure Domain Based Coverage

Table 4.3: Operations for Test Criteria

may be able to de�ne better coverage measures. Table 4.3 summarizes the operations for the Test

Criteria component.

4.5 Test Generation

The Test Generation component creates test cases using information from Test Con�guration

and Test Criteria. Test generation follows three steps (1) Script Expansion, (2) Command Tem-

plate Generation, and (3) Parameter Value Selection. Script expansion allows a tester to type

command sequences, it applies script sequencing rules, and it includes or merges saved scripts.

The results from the scripting phase is a list of command names. The second phase takes each

command name and it generates a template by \walking" through the command syntax. The last

phase takes the list of command templates and it selects parameter values. Besides generating

test cases, the Test Generation phase should provide functions to save the tests at all three stages.

We called the archived tests megascripts, megacommands, and megaparameters, respectively. Once

archived, the test engineer can recall the test case or include it in a new test. The operations for

Test Generation are listed in Table 4.4. Domain Based Testing and the Testing Generation Process

Model have been implemented using the X Windows System. Figure 4.2 shows the main window

from the system [Wal93]. As shown in the �gure, pull down menus and buttons control the test

generation process. We will use this tool to assess the quality of Domain Based Testing.
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Component Operation

Generate Scripts
Generate Command Templates
Generate Parameter Values
Save Scripts

Test Generation Save Command Templates
Save Test Cases
Include Scripts
Include Command Templates
Include Test Cases
Merge Scripts

Table 4.4: Operations for Test Generation

Figure 4.2: Window Based Test Generation Tool

55



Chapter 5

RESEARCH PLAN

5.1 Introduction

In this chapter, we present the research plan for Domain Based Testing. Preliminary work

for DBT has been �nished. We developed speci�cation procedures for the Domain Analysis and

a representation for the Domain Model. We started to consider design and implementation issues

with the Test Generation Process Model. We also have experimental installation of a DomainBased

Testing tool called Sleuth. Yet, we still have work remaining. First, we need to completely analyze

design and implementation issues for DBT and the Testing Process Model. Second, we need to

assess the quality of DBT through an experimental evaluation. Third, we need to develop Domain

Based Regression Testing rules. Each of these is discussed in more detail in the remaining sections.

We also provide a schedule for completing the research and a summary about the contributions of

this research.

5.2 Domain Based Testing : Design Issues

We propose to evaluate design and implementation issues for Domain Based Testing and the

Test Generation Process Model. To help with this evaluation, we will compare and contrast two

DBT implementations. The �rst one is a prototype based on W-grammars where Scripting, Com-

mand Template Generation, and Parameter Value Selection are encoded into grammar productions

[vMCH93]. The second implementation is an interactive tool called Sleuth. Sleuth separates syntax

and semantic rules, and it separates the three phases of test generation. Using the prototype and

Sleuth, we can show how design decisions in
uence one another. We can demonstrate shortcomings

of particular designs, and we can point out good alternatives.

Table 5.1 summarizes the issues that will be included in the analysis. Design issues will be

separated into two categories, High Level Design and Low Level Design. The �rst issues to resolve

will be the interfaces between Scripting, Command Template Generation, and Parameter Value



Component Design Issue

High Level Design
Test Generation Process Script to Command Generation Interface

Command Generation to Script Interface
Command Generation to Parameter Value Selection Interface
Script Rule Resolution
Command Rule Resolution
Parameter Rule Resolution

Low Level Design
Scripting Script Representation

Script Rule Representation
Script Rule on/off

Low Level Design
Command Generation Command Syntax Representation

Command Pre/Post Condition Representation
Intracommand Rule Representation
Turning Command rules on/off

Low Level Design
Parameter Value Selection Parameter Value Representation

Parameter Inheritance Rule Representation
Turning Rules on/off

Table 5.1: Design Issues to Investigate

Selection. We need a clear idea about what information is passed between each phase. With well-

de�ned interfaces, each phase becomes a self-contained component. With separate components,

each phase can be designed independently and implemented separately. Maintenance should be

easier, too. As we re�ne our ideas about Domain Based Testing, we can replace one phase without

disrupting the others. Furthermore, the three phased approach provides a good foundation for

experiment. Suppose we want to try a new Script Generation procedure. We could install the

experimental Script phase without changing the Command Template Generation, or Parameter

Value Selection.

Low level design will examine each phase of the test generation process. In the Scripting

phase, we must consider alternatives for script representation, script rule representation, and script

rule modi�cation. The Command Generation phase must evaluate command syntax, pre/post

condition, and intracommand rule representations. In the last phase, we address parameter value

and parameter inheritance representation.

Besides representation issues, we must also think about where to resolve the semantic rules.

Table 5.2 shows phases where each type of rule could be resolved. The X's in the table show all

possible phases where a rule type could be resolved. P's denote where the prototype resolves the rule,

and the S's show where Sleuth resolves the rule. One approach would be to resolve each semantic
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Scripting Command Parameter
Semantic Rule Phase Phase Phase

Script
Command Sequencing X S X X P

Parameter Selection X X X S P

Command
Template Generation X S X

Precondition X S X X P

Postcondition X X

Intracommand X X S P

Parameter

Parameter Inheritance X S P

X = Possible Alternative
P = Prototype
S = Sleuth

Table 5.2: Design Alternatives : Semantic Rule Resolution

rule in its own test generation phase. For example, Command Sequencing and Script Parameter

Selection could be resolved in the Scripting phase. In practice, there are implementation trade-o�s

that show that this may not be a good approach. Therefore, we need to address rule resolution in

more detail and we need to show both the bene�ts and shortcomings of each alternative.

5.3 Domain Based Testing : Experimental Evaluations

In the second part of the research, we propose to evaluate the quality of Domain Based

Testing and the Testing Process Model. Domain Based Testing seems sound, but we plan three

evaluations to support our ideas (1) Experimental Evaluation, (2) Test Case Reuse, and (3) Domain

Based Coverage Measures. First, empirical results from commercial software testing would provide

feedback about DBT and its usefulness. We currently have a Domain Model for a robot tape

library system 1. We can generate test cases for the tape library using the prototype and Sleuth.

Our experimental evaluation can proceed in two directions. First, we can evaluate the StorageTek

problem domain in detail. This would give use detailed information from one problem domain.

Second, we can apply DBT to other problem domains. This would give us feedback about other

command-based systems. In either case, we will summarize the DBT features that make the testing

easier, which features testers don't like, and which features aren't needed.

For the second evaluation, we propose to assess test case reuse. Because Domain Based Testing

is based on ideas from the software reuse community, we should be able to reuse test cases in each

phase of test case generation. Figure 5.1 shows the combinatorial potential of the three phase

approach to test case reuse. From a single script, we can generate several command template

sequences. Each command template would be speci�c to a software release, domain con�guration,

1The tape library is a product of the StorageTek Corporation.
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Domain Based Coverage Measure

Object Coverage
Path Coverage (w.r.t. the Object Hierarchy)
Command Coverage
Command Rule Coverage
Script Coverage
Script Rule Coverage

Table 5.3: Domain Based Coverage Measures

or semantic rule set up. Each command template can generate test cases using di�erent system

con�gurations, parameter values, or parameter inheritance rules. Through test case reuse, test

engineers become more productive, they can re-run tests, and they can recall and modify test

cases easily. Even though Domain Based Testing creates a good structure to reuse test cases, we

need empirical results to support our claims.

Finally, we propose to evaluate Domain Based Coverage Measures (see Table 5.3). All of the

coverage measures are de�ned with respect to the DomainModel. For example, command coverage

measures the number of commands used in a particular test case. Many coverage measure come to

mind, and some of themmay be a better at identifying errors than others. Intuitively, we think that

many of the coverage measure will be problem dependent. Nevertheless, we will calculate Domain

Based Coverage, and we will correlate the results with error detection. From the correlation,

we should be able to identify worthwhile coverage measures, or we may be able to de�ne better

Domain Based Coverage Measures.
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5.4 Domain Based Regression Testing

The third part of our proposed research is called DomainBased Regression Testing. Regression

Testing is a testing strategy associated with evolutionary software development. New features may

be added, old options may be deleted, and bugs may be �xed. As the software evolves, the tester

must make sure the old features still work and the \�xes" don't cause new problems. Most of the

time, it is economically infeasible to re-run all of the test cases from the original system. Therefore,

one must choose a subset of test cases that have a high potential to detect errors. Leveraging an idea

from Von Mayrhauser and Olender, we can use the structure of the DomainModel to identify rules

for regression test suites [vMO93]. In their paper, requirements are represented hierarchically and

test suites are associated with each requirement. Figure 5.2 shows a example of this structure. We

propose to substitute the object hierarchy from our Domain Model for the requirements hierarchy.

Figure 5.3 shows the concept using the robot manufacturing example. The DomainModel provides

a unique structure from which regression tests can be selected. Table 5.4 lists the regression testing

rules that will be included in the research. The columns Add, Modify, and Delete refer to the

operation of adding a new feature, modifying an existing feature, or deleting a feature. Consider

the table entry for command syntax. We will investigate test suite selection rules for Adding a

New Command, Modifying Command Syntax, and Deleting a Command. Along with these rules,

we will also examine both aggressive and conservative test suite selection. Suppose an object is

modi�ed. One regression test suite may focus on tests that only include that object. Alternatively,

we could de�ne a regression test suite with test cases that include the modi�ed object and objects

with a relationship to the modi�ed object.
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Add Modify Delete

Script
Megascript X X X
Script Rule X X X
Script Class X X X

Command
Syntax X X X
Pre/Post Condition X X X
Intracommand Rule X X X
Megacommand X X X

Parameter
Object X X X
Object Element X X X
Object Relationship X X X
Megaparameter X X X

Table 5.4: Domain Based Regression Testing Rule Matrix
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5.5 Research Schedule

Table 5.5 shows the schedule for completing this research. Our goal is to address the remaining

issues within the next year. We also have ideas for at least four research papers. The �rst will

describe Domain Based Testing, DBT Domain Analysis, and the Domain Model. The second will

address our Test Generation Process Model. We are considering a paper that addresses test case

reuse, and �nally, we will publish our results from Domain Based Regression Testing.

Start Date End Date Research Topic

Jan 94 May 94 Domain Based Regression Testing
� Analysis
� Design
� Implementation

April 94 June 94 Design Issues
Evaluate New Domains
Evaluate StorageTek Domain

June 94 Aug 94 Domain Based Coverage
Analyze Test Case Reuse

Sept 94 Nov 94 Write Dissertation
Dec 94 Defend Dissertation

Table 5.5: Domain Based Testing Research Schedule

5.6 Contributions of this Work

Domain Based Testing is a general approach to automated test generation for command-

based systems. It is the �rst technique to use a Domain Analysis and a Domain Model for software

testing. DomainAnalysis shows how to specify a problem for DBT, and the DomainModel provides

a structure from which test cases can be generated. For e�ciency, DBT separates syntax and

semantic issues, and it divides test generation into three phases. Handling semantic information

has been a recurring problem for automatic test generators. By spreading the semantic rules across

three phases, DBT is able to address the complexity of the command language semantics. The

Domain Model for Domain Based Testing is not only useful for test generation it is also good for

test case reuse and regression test suite selection. Reusing test cases at three levels of abstraction

improves tester productivity. It also provides a mechanism where combinatorial potential of test

cases may be bene�cial. Domain Based Testing also provides a structure for generating regression

test suites. Choosing a good test suite will reduce the number of test cases to execute, and

automating some of the test suite selection will increase the productivity of the test engineer.
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