
Department of

Computer Science

On Input Pro�le Selection For

Software Testing

Naixin Li and Yashwant K. Malaiya

Technical Report CS-94-109

March 15, 1994

Colorado State University



On Input Pro�le Selection For Software Testing �

Naixin Li Yashwant K. Malaiya

Computer Science Department

Colorado State University

Fort Collins, CO 80523

(303) 491-7031

malaiya@cs.colostate.edu

Abstract

This paper analyzes the e�ect of input pro�le selection on software testing using

the concept of fault detectability pro�le. It shows that optimality of the input pro-

�le during testing depends on factors such as the planned testing e�ort and the error

detectability pro�le. To achieve ultra-reliable software, selecting test input uniformly

among di�erent input domains is preferred. On the other hand, if testing e�ort is

limited due to cost or schedule constraints, one should test only the highly used in-

put domains. Use of operational pro�le is also needed for accurate determination of

operational reliability.

1 Introduction

Signi�cant e�ort is now being devoted to develop techniques to deliver reliable software.

Methods proposed include well-controlled software development practice such as the clean-

room approach[16, 24], formal veri�cation and testing. Cleanroom approach signi�cantly

reduces the number of faults introduced during the early phases of software life cycle, but it

cannot totally avoid the problem of software faults and failures. Formal veri�cation has been

used for small programs but, in its current stage, cannot be applied to practical software

which can be very large. In foreseeable future, achievement of reliable software will heavily

rely on software testing.

During testing a program is executed with some inputs to see if the software operates

as it is speci�ed. It is impossible to exhaustively test a program due to the sheer size of

�This work was partly supported by BMDO and is monitored by ONR

1



software input space. Thus some approach must be used to select a small subset of the input

space with the hope that the inputs from this subset are representatives for the whole input

space and will be able to detect most, if not all of the software faults.

Several di�erent approaches for software testing are used. For functional testing, input

space is partitioned into domains based on the functions supported by the software. Every

input from a domain is considered to be equivalent to every other input from the same

domain as far as the software fault detection is concerned. Structural testing is based on the

control 
ow of software code. One cannot have con�dence in a piece of code unless it has

been tested out. One should test all possible and reachable elements of a software if cost and

time constraints allow. Many criteria have been proposed for structural testing including

statement coverage, branch coverage, and data-
ow based coverages.

Both functional and structural testing have their limitations. Neither of them assures

that every possible fault will be found. Some coverage criteria can be too costly to be

practical.

There is another category of testing termed random testing. In this approach, test input

is selected randomly from the input space. Testing continues until either the deadline for

release is met or it is estimated that the objective failure rate is reached. The advantage of

random testing is the ease of selecting an input. However some kind of test oracle may be

needed to e�ciently verify that an output is valid.

The major purpose of testing is to increase the reliability of a software. During testing,

if a fault is found, it will be �xed and hence the reliability is improved. Even if no faults are

found and �xed for a period, our con�dence about the software reliability is increased. The

reliability growth exhibited during software testing has much to do with the selected test

input. What really matters to the user, and also to the testing personnel, is the software's

operational reliability, which depends on the software's quality as well as its operational

usage. Since it is too di�cult, if not impossible, to detect and �x all the faults in a software,

it would be ideal if one can detect and �x faults that are more likely to result in failures during

operational use. This gives rise to the idea of operational pro�le-based testing [18, 19] which

involves partitioning input space into domains and selecting inputs from each domain based

on its frequency during operational use. Musa has given detailed steps for the construction of

operational pro�le and the associated test input selection [19]. Cobb and Mills [5] mentioned

that operational pro�le based (usage) testing is 20 times more e�ective than coverage testing.

We examine this aspect of testing in detail here.

Another purpose of software testing is to assess the software quality. The software

failure data collected during software testing are used to drive software reliability growth

models so that an estimation about the software's reliability can be made. The accuracy

2



of such estimation requires that the software should be exercised during testing phase in a

similar way, or following the same input distribution, as the software in operational usage.

Indeed, this is an assumption generally made for software reliability models [9]. If the

input selection during testing phase is di�erent in distribution from that in operation, some

adjustment should be made to account for the di�erences. Musa et al [17] introduce a concept

termed test compression factor for this purpose. In contrast with real operational use, input

states for software during testing phase are generally not repeated or repeated with much

lower frequency. Thus, actual test inputs are more e�ective in revealing errors than random

sampling according to operational usage patterns. An simple example was given in [17] to

illustrate the concept of test compression factor, which is quoted below.

Assume that a program has only two input states, A and B. Input state A occurs

90 percent of the time; B, 10 percent. All runs take 1 CPU hr. In operation, on

the average, it will require 10 CPU hr to cover the input space, with A occurring

nine times and B, one. In test, the coverage can be accomplished in 2 CPU hr.

The testing compression factor would be 5 in this case.

Based on some assumptions, Musa et al[17] computed that the test compression factor varies

from 8 to 20 for softwares with the number of input states ranging from 103 to 109. Musa et

al [17] also noted that equivalence partition testing can increase the test compression factor.

A similar concept termed accelerating factor was used by Drake and Wolting [7]. Using repair

data, they computed the value of acceleration factors for two terminal �rmware systems to be

47805 and 45532. Observations [6, 8, 28] of signi�cant correlation between structural coverage

and error removal growth and work by Malaiya et al [13] also support that real testing can

be more e�ective than random sampling over operational usage distribution. Data gathered

by Hecht and Crane [10] indicate that code segments for rare conditions, like exception

handling, have a much higher failure rate than normal code. Since such code segments

are not readily exercised during software testing, relatively more errors (corresponding to

higher error rates) are left undetected in such segments. When these segments happens to

be executed in real operation, they are much more likely to result in a failure. This would

suggest that substantial number of test cases should be directed towards rare conditions,

which generally cannot be satis�ed by operational usages testing.

We thus have two con
icting considerations. On one side, test input selection re
ecting

operational usages tends to capture errors that are more likely to result in a failure during

operation; on the other side, it is believed that test input pro�le with more coverage (of

code, path, rare conditions, etc.) should be more e�ective in error removal. Taking both

of these aspects into consideration, what is the best overall test input selection scheme for

enhancing the reliability of a software ? How can the knowledge of operational pro�le be

3



best used in software testing ? This paper tries to answer these questions.

2 Optimum Test Input Distribution

2.1 Input space with two domains

Let us start with a simple case which is analyzed and interpreted relatively easily. Assume

we have a software whose operational pro�le is described by input space partition S1, S2,

jS1j � 1, jS2j � 1, with op1 (percent of) usage from S1 and op2 (percent of) usage from S2.

Obviously op1+ op2 = 1. There are exactly 2 faults in the software. Fault 1 can be detected

only by inputs from S1, with detectability [15] of d1 = 1� p1 in S1. Fault 2 can be detected

only by inputs from S2, with detectability of d2 = 1 � p2 in S2. (If two faults are equally

testable by S1 and S2, then the e�ect of testing on reliability growth is independent of the

distribution of test input selection.) We also assume that all failures will be observed and

debugging is perfect, that is, no new faults are introduced while a fault is �xed. Since both

S1 and S2 are large enough, we will consider input selection from either of them as sampling

with replacement, which will facilitate the calculation.

Ps1 = Probfan input from S1 is processed properly after n1 test runs from S1g

= ProbfFault 1 will not be encountered j it was not found in n1 testsg

� Probfit was not found in n1 testsg

+ Probfit will not be encountered j it was found in n1 testsg

� Probfit was found in n1 testsg

= p� pn1
1
+ 1� (1 � pn1

1
)

= 1� pn1
1
+ pn1+11

Similarly,

Ps2 = Probfan input from S2 is processed properly after n2 test runs from S2g

= 1� pn2
2
+ pn2+12

Let n1 + n2 = n be the total number of test runs. n1 = k � n, n2 = (1 � k) � n;

where 0 � k � 1 is the proportion of test inputs that are chosen from S1. Then the overall

probability of a correct execution is given by,

Psys = Ps1 � op1 + Ps2 � op2 = op1(1 � pkn
1
+ pkn+1

1
) + op2(1� p

(1�k)n

2 + p
(1�k)n+1

2 ) (1)

Di�erentiating this with respect to k on both sides,

dPsys

dk
= op1[�(n ln(p1))pkn1 + (n ln(p1))p

kn+1

1 ] + op2[(n ln(p2))p
(1�k)n

2 � (n ln(p2))p
(1�k)n+1

2 ]

4



To obtain the optimal value of k, we equal the above to 0 and solve to get,

kopt =
1

n
�
ln(op2 ln(p2)

op
1
ln(p

1
)
�

p
n

2
(1�p

2
)

1�p
1

)

ln(p1p2)
(2)

This gives the optimum proportion of test input which should be selected from S1 provided

that we know the values of all the parameters p1, p2, op1, op2, and n. So the optimum test

input distribution is not the same as the operational usage (in this case, k 6= op1). Instead,

it is a function of the operational pro�le as well as the individual fault detectabilities (1�p1)

and (1� p2), and the planned amount of test e�ort in terms of the number of test inputs n.

It should be noticed that in Equation 2, the terms op1, op2, p1 and p2 occur within

logarithmic functions. Thus kopt is not as sensitive with respect to them as for n.

To explore the variation of kopt, let us assume that p1 = p2 = p, i.e., the two faults have

equal detectabilities, then the above equation can be reduced to:

kopt =
1

2
+

ln(op2
op1

)

2n ln(p)
(3)

Notice that the second term is negative when op2 > op1. From this equation, we can make

the following observations:

� When op1 = op2, k = 0:5. This says that if inputs from two domains are used with equal

chance during operation, they should be tested with equal chance. When op1 < op2,

k < 0:5. That is, if the domain S1 is used less frequently than the domain S2, S1

should also be tested less compared to S2. Similar is true for the case op1 > op2. This

is consistent with the suggested operational pro�le based testing, although the exact

distribution for test input selection di�ers.

� For �xed input sample size n, smaller detectability (1 � p) implies kopt closer to 0.5

i.e. more even distribution. So test input selection should also be based on the initial

overall fault detectability or software reliability. Figure 1 plots the variation of kopt

with p, where op1 = 20%, op2 = 80%, curve A corresponds to 100 test inputs, curve B

to 1000 and curve C to 10000.

� For �xed fault detectability (1 � p), larger value of n suggests more even distribution

since kopt is closer to 0:5 as shown in Figure 2. This tells us that the optimal distribution

of input selection depends on how much testing is going to be spent. To test most

e�ectively all the time, the test input distribution should vary as testing proceeds.

For small n, and small value of (1 � p), the value of kopt obtained from the above

equation can be negative, which suggests that no test inputs should be chosen from S1

if the amount of testing is very limited.

5



-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

O
pt

im
al

 v
al

ue
 o

f k

Reliability within each input domain (p)

50 test cases
200 test cases

1000 test cases

Figure 1: Variation of k with p (op1=20%, op2=80%)

As n approaches in�nity, kopt approaches 0.5. Which means that to achieve ultra-high

reliability through extensive testing, we should select inputs with equal frequency from

each domain. This may correspond to weighted random testing, because S1 and S2

may not have the same size.

2.2 Input space with multiple domains

In practice, there are several domains not just two. Typically the number of domains obtained

during the construction of operational pro�le can be hundreds or even thousands for very

large projects [18, 19]. For such cases, we can still get an analytical optimal distribution for

test input selection. Lets assume that a program's input space consists of m domains with

one fault associated with each domain with the same detectability (1� p). In this case, the

system operational reliability after n tests is described by :

Psys = 1 � (1 � p)
P

m

i=1
opi � pkin

which is constrained by
P

m

i=1
ki = 1.

Solving this, we obtain the optimal test input distribution given by the following values

of ki
opt
:

ki
opt

=
1

m
+
ln(

Q
j 6=i

opj

op
m�1

i

)

mn ln(p)
(4)

6



0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
pt

im
al

 v
al

ue
 o

f k

Number of test cases

op1=20%, op2=80%
op1=80%, op2=20%

Figure 2: Variation of kopt with n (p=0.99)

This has the same format as the earlier solution for the case of two partitions. The

observations and conclusions in the previous section are thus still applicable.

3 Reliability Growth With Di�erent Test Input Dis-

tributions

In this section, we will examine how reliability growth is a�ected by di�erent test input

distribution. These examples are given below to illustrate di�erent reliability growth trend

for di�erent detectability pro�les with di�erent test input distributions.

Example 1. Figure 3 plots the reliability growth for a software consisting of two domains

with one fault associated with each domain. Where X-axis is the number of test cases

applied, Y-axis is the relative value of MTTF as given by the mean number of test cases to

a failure, which is

MTTF =
1

1� Psys

(5)

where Psys can be computed using Equation 1. Curve for k = 0:1 describes the reliability

growth using operational pro�le based testing, curve for k = 0:01 corresponds to testing

using more biased input distribution, and the curve for k = 0:5 to uses even distribution

between two input domains. For this example, we assume op1 = 0:1, op2 = 0:9, 1�p = 0:01.

From the plots, we can see that initially when the number of test input is small, more

7



0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800

R
el

at
iv

e 
M

ea
n 

Ti
m

e 
To

 F
ai

lu
re

Number of test cases

k=0.1
k=0.01
k=0.5

Figure 3: Variation of relative MTTF with n (one fault for each domain)

biased test input distribution gives MTTF. As more test inputs are exercised, the reliability

growth curve favors the even distribution.

Example 2. Figure 4 plots the reliability growth for a system consisting of two domains

with three faults associated with each domain. The X-axis and Y-axis are de�ned the same

as above. The detectabilities for the three faults within each domain are (1 � p1) = 0:01,

(1�p2) = 0:05, (1�p3) = 0:1 respectively. The operational pro�le is described by op1 = 0:01,

op2 = 0:99. The curve for k = 0:01 shows the result of testing with operational usage. The

curve for k = 0:001 is more biased. While the Curve for k = 0:1 is less biased than operational

usage. Again the curve for k = 0:1 uses an even distribution.

The plot shows that when the number of test is less than 450, usage-based testing is

slightly better than more uniform testing. After this, uniform testing will be remarkably

superior to usage-based testing.

Example 3. Figure 5 plots the reliability growth for a system consisting of four domains

with one fault associated with each domain. Again the X-axis and Y-axis are de�ned the

same as above. The values of the parameters used in this plot are: op1 = 0:01, op2 = 0:1,

op3 = 0:3, op4 = 0:59, (1�p) = 0:02. The dashed curve in the plot corresponding to uniform

testing. The solid curve re
ects usage-based testing.

When the number of test input is less than 630, usage-based testing is superior to uniform

testing. However, as more testing is involved, uniform testing becomes much more better

than usage testing.

8



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200 400 600 800 1000 1200

R
el

at
iv

e 
M

ea
n 

Ti
m

e 
To

 F
ai

lu
re

Number of test cases

k=0.01
k=0.001

k=0.1
k=0.5

Figure 4: Variation of relative MTTF with n (3 faults in each domain)

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e 
M

ea
n 

Ti
m

e 
To

 F
ai

lu
re

Number of test cases

usage-based testing
uniform testing

Figure 5: Variation of relative MTTF with n (p=0.98)

9



Although the number of domains, the number of faults associated with each domain,

and the parameters vary, the general trend shown in the above three examples is the same.

That is, testing should be more biased towards the frequently used domains if only a small

number of test inputs is allowed. However, as more test inputs are executed, test inputs

should be selected more uniformly among di�erent domains.

0

2000

4000

6000

8000

10000

12000

14000

50 100 150 200 250 300 350 400 450 500

R
el

at
iv

e 
M

ea
n 

Ti
m

e 
To

 F
ai

lu
re

Number of test cases

usage-based testing
uniform testing

Figure 6: Variation of relative MTTF with n (op1=90%, op2=10%, p1=0.9, p2=0.99)

Example 4. Figure 6 plots the reliability growth for a system with 2 domains. There is

one fault associated with each domain. The parameters are assumed as follows: op1 = 90%,

op2 = 10%, p1 = 0:9, p2 = 0:99. One should notice here the detectabilities of faults are

di�erent and the detectability values are set in favor of usage based testing. However, even

for this case, uniform testing gives better MTTF once the number of tests exceeds about

110.

4 Usage Testing vs. Coverage Testing

Adams' study of some real software [1] shows that the operational failure rates for di�erent

projects follow a similar distribution with the number of faults having a certain failure rate

being inversely proportional to the failure rate. Figure 7 plots the relative detectability

pro�les from two projects and the average detectability pro�le for 9 other projects.

Cobb and Mills [5] used Adams' data in their computation and came to the conclusion

that usage testing testing is about 20 times more e�ective than (statement) coverage testing.

10



0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6

Pe
rc

en
ta

ge
 o

f E
rro

rs
 w

ith
 th

e 
D

et
ec

ta
bi

lit
y

Relative Detectability

project1
project2
average

Figure 7: Detectability pro�le of errors for some operational software

If this is true in general, than there is no need to do coverage testing. However, a close

examination suggests that some assumptions implied in the calculation may not hold.

Assumption 1: Usage testing distributes testing e�ort to faults according to the failure

rates: faults with higher failure rates are tested with more e�ort than faults with lower failure

rates. Coverage testing distributes test e�ort equally to every fault, so a major portion of

testing e�ort is devoted to faults with small failure rate because a majority of faults have

small failure rates according to Adam's data.

The fact is that each fault has a certain detectability associated with each input domain.

The overall detectability pro�le of faults in a software depends partly on the software's input

distribution. In general, bias in input distribution will make faults detectable by inputs from

heavily used domains more testable. However, for an arbitrary input distribution, we can

not claim that all the faults detectable by inputs from heavily used input domains are more

testable than any faults detectable by inputs from less used domains. Both usage testing and

coverage testing select test input randomly either to follow certain test input distribution

or to achieve certain coverage level, so the error removal process is still dictated by the

detectability pro�les associated with each input selection. With operational pro�le based

software testing, initially faults associated with heavily used input domains are exercised

more often and well-testable faults associated with those domains get removed quickly. So

during early software testing, input pro�le re
ecting the software's operational usage is

e�cient. As testing proceeds further, however, the number of such faults with high testability

diminishes and only hard to detect faults remain undetected. Now most faults that are

11



relatively more detectable are associated with less used input domains. Continued testing

following the operational pro�le then becomes ine�cient.

Assumption 2: Usage testing and coverage testing is equally e�ective in terms of the

number of failures detected per test input.

The fact is that initially during testing, coverage testing and usage testing may have

similar fault detecting ability since they exercise the program in similar way (each input will

exercise some new features of the software). As testing proceeds, coverage testing would

be more e�ective because it always tries to select test input such that some new part of a

software will be exercised, hence coverage testing is likely to reveal more faults than usage

testing for each test input on the average.

Ramsey and Basili noticed that the number of faults detected in a procedure are in-

dependent of the number of times the procedure is executed [23]. Piwowarski et al [22]

observed that error removal rate and code coverage are closely related by a somewhat linear

function. Vouk [28] suggested that the relation between software coverage and fault removal

rate follows the Weibull distribution. Chen et al [4] suggested exclusion of the tests that do

not contribute to any type of coverage from consideration when using traditional software

reliability models. Malaiya et al [14] proposed a new model to relate test coverage to software

reliability. These results support that, when the number of tests increases to the point where

many additional test inputs based on operational usage do not contribute to more coverage,

coverage testing should be more e�ective in fault detection than usage testing.

Assumption 3: The failure rate distribution remains the same when testing starts

and after testing �nishes. Adams' data [1] gives the distribution of failures collected from

operational use.

For an untested software, the distribution of faults over di�erent detectabilities would be

more uniform. Trachtenberg [27] argue that the reason Adams' data follows Zipf's law may

be because during software development in IBM, consciously or unconsciously, \the e�ort to

prevent and remove each fault could have been expended in proportion to the fault's potential

failure rate". Although no data is available to describe the failure rate distribution of faults

for an untested software, it is reasonable to assume that such failure rate distribution must

be more uniform in nature. The e�ect of such changes in software failure rate distribution

during testing phases should also be taken into consideration.

As conclusion to this section, more detailed and careful analysis is needed to compare

the relative e�ectiveness of usage testing vs. coverage testing. Quantitative evaluation of

their e�ectiveness remains a problem and calls for more experimentation and experience to

fully understand the testing processes.

12



5 Testing For Reliability

The operational pro�le of a software system can be used at di�erent stages in the software's

lifetime [17]. For the purpose of reliability certi�cation or prediction, software test input

selection should follow the software's operational pro�le [16]. Also, operational pro�le based

testing can be e�cient if very limited amount of testing is available. If our main objective of

testing is fault removal, operational pro�le based testing must be supplemented by coverage

based testing. Accurate operational pro�le of a software can be di�cult and costly to obtain

in some cases but is worth the e�ort if high reliability levels need to be certi�ed. When

accurate operational pro�le is available, other factors, such as the planned testing e�ort and

the initial software quality also need to be considered because they also a�ect the e�ectiveness

of testing. When testing a program, we must consider the software usage, but should not

rely solely on it.

Like operational pro�le-based testing, coverage testing has its intuitive appeal. An ideal

coverage criterion should be such that it is possible to generate tests manually or automati-

cally to achieve the desired coverage. The number of inputs for a target coverage level should

not be too large to be practical, and the chosen level of the measure should satisfy the critical

reliability requirement. There should be a strong known correlation between reliability and

the coverage measure so that one can accurately estimate and predict the reliability from

the coverage measure and determine when testing can be stopped because certain coverage

(and hence reliability) has already been reached.

Statement coverage (or block coverage) and branch coverage are the most used coverage

measures in practice. Other coverages such as data 
ow coverages also becomes well-known.

Tools are now available for collecting the coverage data of test inputs for some metrics: block,

branch, c-use, p-use, all-use [12]. Some work is being done to study the test coverage growth

and its relation to fault removal rate or software reliability achieved. For example, Ntafos [20,

21] compared the e�ectiveness of random testing with that of branch testing and all-uses

testing, and observed that coverage testing is muchmore e�ective in revealing errors. Ramsey

and Basili [23] empirically investigated the relationship between the number of tests and the

test coverage. Sneed [25] reported his experience on comparing the e�ectiveness of branch

coverage and data coverage in catching real bugs. Piwowarski et al [22] analytically derived

a model characterizing the test coverage growth. Vouk [28] has derived a di�erent model

starting with di�erent assumptions. Chen et al [4] proposed incorporating test coverage

into traditional time-based software reliability models by �ltering out the test e�orts that

contributes to no new coverage. Frankl and Weiss [8] empirically evaluated the fault exposing

capability of branch coverage and data 
ow coverage criteria. Malaiya et al [14] suggested

a hypothesis that di�erent test coverage growths follow an logarithmic trend. Based on this

13



hypothesis, software fault removal rate and software reliability can be estimated directly from

static test coverage measures. Still more empirical data and analytical studies correlating

such coverage measures and reliability are needed.

It was noticed that faults are not evenly distributed among program modules. Static

metrics have been used to predict error-prone modules. Usage information may be used

to estimate the relative use frequencies of program modules or functions. Combination of

these knowledges may be used to determine the reliability level for di�erent modules. And

then based on the reliability objective, di�erent coverage measures and/or di�erent coverage

levels may be associated with di�erent modules to achieve most e�cient testing.

6 Conclusions

Our results show that the optimal test input pro�le for the purpose of defect removal depends

on the operational pro�le and the defect detectability pro�le of the program. It is also

related, to a larger extent, to the amount of testing planned. If only limited testing can

be a�orded, test input distribution should be more biased than the operational pro�le.

For accurate estimation or prediction of software reliability, testing should be conducted

according to the software's operational pro�le. However, if very high reliability is to be

achieved through extensive testing, test inputs should be more evenly distributed among

di�erent input domains.

Coverage testing can be very e�ective in practice. Detailed investigations are needed in

this area to examine and evaluate di�erent coverage measures. Work is also needed to relate

di�erent coverage measures to software reliability growth. Since some modules are more

error-prone than others, and some modules are more critical to a system's operation than

others, a family of coverage measures may be chosen eventually to meet di�erent reliability

requirements for di�erent modules or di�erent systems.

We suggest that e�ective software testing requires the knowledge of operational pro�le,

e�ectiveness of coverage measures, and error-proneness of program modules. However, before

this is possible, further empirical and analytical researches are required to better understand

these problems.

References

[1] E.N. Adams, Optimizing Preventive Service of Software Products, IBM Journal of Re-

search and Development, Vol. 28, No. 1, January 1984, pp. 2-13.

14



[2] B. Beizer, Software Testing Techniques, 2nd Edition, Van Nostrand Reinhold, 1990.

[3] J.R. Brown, and M. Lipow The Quantitative Measurement of Software Safety and Re-
liability, TRW Report QR 1776, August 1973.

[4] M.H. Chen, J.R. Horgan, A.P. Mathur and V.J. Rego, \A time/structure based model
for estimating software reliability," SERC-TR-117-P, Purdue University, Dec. 1992.

[5] R. Cobb and H. Mills, Engineering Software under Statistical Quality Control, IEEE
Software, November 1990, pp. 44-56.

[6] S.R. Dalal, J.R. Horgan and J.R. Kettenring, \Reliable Software and Communications:
Software Quality, Reliability and Safety," Proc. 15th Int. Conf. Software Engineering,
May 1993, pp. 425-435

[7] H.D.Drake and D.E.Wolting, Reliability Theory Applied to Software Testing" Hewlett-
Packard Journal, April, 1987, pp. 35-39.

[8] P.G.Frankl and N.Weiss, \An Experimental Comparison of the E�ectiveness of Branch
Testing and Data Flow Testing," IEEE Trans. Soft. Eng., Aug. 1993, pp. 774-787.

[9] A.L.Goel, \Software Reliability Models: Assumptions, Limitations, and Applicability",
IEEE Trans. Software Engineering, Vol. December 1985, p. 1411-1423.

[10] H. Hecht and P. Crane, \Rare Conditions and Their E�ect on Software Failures" Proc.
Annual Reliability and Maintainability Symposium, 1994, pp. 334-337.

[11] Y. Levendal, Improving quality with a Manufacturing Process, IEEE Software, March
1991, pp. 13-25.

[12] M.R. Lyu, J.R. Horgan and S. London, \A coverage Analysis Tool for the E�ectiveness
of Software Testing" IEEE Int. Symp. on Software Reliability Engineering, 1993, pp.
25-34.

[13] Y. K. Malaiya, A. von Mayrhauser and P. Srimani, \An examination of Fault Exposure
Ratio," to appear in IEEE Trans. Software Engineering, 1993.

[14] Y.K.Malaiya, N. Li, J.Bieman, R. Karcich and B. Skibbe, The Relation Between Soft-
ware Test Coverage and Reliability, Technical Report, 1994.

[15] Y. K. Malaiya and P. Verma, Testability Pro�le Approach to Software Reliability, Ad-
vances in Reliability and Quality Control (Ed. M.H. Hamza), Acta Press, December,
1988, pp. 67-71.

[16] H.D. Mills, M. Dyer and R.C. Linger, Cleanroom Software Engineering, IEEE Software,
Nov. 1986, pp. 19-24.

[17] J.D. Musa, A Iannino, K. Okumoto, Software Reliability, Measurement, Prediction,

Application, McGraw-Hill, 1987.

15



[18] J.D. Musa, The Operational Pro�le in Software Reliability Engineering: An Overview,
Proc. of International Symposium on Software Reliability Engineering, October, 1992.
pp. 140-154.

[19] J.D. Musa, Operational Pro�les in Software Reliability Engineering, IEEE Software,

March 1993, pp. 14-32.

[20] S.C. Natfos, \An Evaluation of Required Elemente Testing Strategies", 7th Int. Conf.
on Software Engineering, March 1984.

[21] S.C. Ntafos, \On Required Element Testing" IEEE Trans. on Software Engineering,
October 1984, pp. 795-803.

[22] P. Piwowarski, M. Ohba and J. Caruso, \Coverage Measurement Experience During
Function Test," ICSE'93, pp. 287-300.

[23] J. Ramsey and V.R. Basili, \Analyzing the Test Process Using Structural Coverage,"
Proc. 8th international conference on Software Engineering, August 1985, pp. 306-3312.

[24] R. Selby, V. Basili, and F. Baker, \Cleanroom Software Development: An Empirical
Evaluation," IEEE Trans. Software Engineering, SE-13(9), 1987, pp. 1027-1037.

[25] H.M. Sneed, \Data Coverage Measurement in Program Testing,"Workshop on Software

Testing, July 1986.

[26] M. Takahashi, and Y. Kamayachi, \An Empirical Study of a Model for Program Error
Prediction," IEEE Trans.l Software Engineering, SE-15(1), 1989, pp. 82-86.

[27] M. Trachtenberg, \Why Failure Rates Observe Zipf's Law in Operational Software,"
IEEE Trans. Reliability, Vol. 41, No. 3, 1992, pp. 386-389.

[28] M.A. Vouk \Using Reliability Models During Testing With Non-operational Pro�les,"
Proc. 2nd Bellcore/Purdue workshop on issues in Software Reliability Estimation, Oct.
1992, pp. 103-111

16


