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Abstract

In this paper, we model the relation between testing e�ort, coverage and reliabil-

ity. We present a logarithmic model that relates testing e�ort to test coverage (block,

branch, c-use or p-use). The model is based on the hypothesis that the enumerables

(like branches or blocks) for any coverage measure have di�erent detectability, just

like defects have di�erent detectability. This model allows us to relate a test cover-

age measure directly with defect coverage. Data sets for programs with real defects

are used to validate the model. The results are consistent with the known inclusion

relationships among block, branch and p-use coverage measures. We show how defect

density controls time to next failure.

The model can eliminate the variables like test application strategy from consider-

ation. It is suitable for high reliability applications where automatic (or manual) test

generation is used to cover enumerables which have not yet been tested.

1 Introduction

Developers can increase the reliability of software systems by measuring reliability as early
as possible during development. Early indications of reliability problems allow developers to
correct errors and make process adjustments.

�Y. Malaiya and N. Li are partly supported by a BMDO funded project monitored by ONR
yJ. Bieman is supported, in part, by the NASA Langley Research Center, the Colorado Advanced Software

Institute (CASI), Storage Technology Inc, and Micro-Motion Inc. CASI is supported in part by the Col-

orado Advanced Technology Institute (CATI). CATI promotes advanced technology teaching and research

at universities in Colorado for the purpose of economic development.
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Reliability can be �rst measured as soon as running code exists. To quantify reliability
during testing, the code (or portion of code) is executed using inputs randomly selected
following an operational distribution. Then, appropriate reliability models can be used to
predict the amount of e�ort required to satisfy product reliability requirements.

The needs of early reliability measurement and modeling unfortunately are not met by
common testing practices. The focus of testing is on �nding defects, and defects can be often
found much faster by non-random methods [bei90]. Testing is directed towards inputs and
program components where errors are more likely. For example, testing may be conducted
to insure that particular portions of the program and/or boundary cases are covered.

Models that can measure and predict reliability based on the status of non-random
testing are clearly needed. Reliability models will be a�ected by:

� the testing strategy: Test coverage may be based on the functional speci�cation (black-
box), or it may be based on internal program structure (white-box). Strategies can
vary in their ability to �nd defects.

� the relationship between calendar time and execution time: The testing process can
be accelerated through the possibly parallel, intensive execution of tests at a faster
rate that would occur during operational use. However, testing, in some environments,
might occur at a slower rate than normal operational system use.

� the testing of rarely executed modules: Such modules include exception handling or
error recovery routines. These modules rarely run, and are notoriously di�cult to test.
Yet, they are critical components of a system that must be highly reliable. Only by
forcing the coverage of such critical components, can reliability be predicted at very
high levels.

Intuition and empirical evidence suggests that test coverage must be related to reliability.
Yet, the connection between structure based measurements, like test coverage, and reliability
is still not well understood.

Ramsey and Basili [ram85] experimented with di�erent permutations of the same test
set and collected data relating the number of tests to statement coverage growth. A variety
of models were attempted to �t the data. The best �t was obtained using the Goel and
Okumoto's exponential model (GO model). Ramsey and Basili also noticed that the faults
revealed in a procedure are independent of the number of times the procedure is exercised.
Their results support the view that structural (procedure) coverage may be used as an

indicator of testing thoroughness. However, they did not model the relation between test
coverage and software reliability.

Dalal et al [dhk93] also examined the correlation between test coverage and the error
removal rate. They give a scatter plot of the number of faults detected during system testing
versus the block coverages achieved during unit testing for 28 program modules. The plot
clearly shows that modules covered more thoroughly during unit testing are much less likely
to contain errors.
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Vouk [vou92] found that the relation between structural coverage and fault coverage is a
variant of the Rayleigh distribution. He assumed that the fault detection rate during testing
is proportional to the number of faults present in the software and test coverage values
including block, branch, data-ow, and functional group coverage. Vouk's experimental
results, however, support the use of a more general Weibull distribution. Using the Rayleigh
model, Vouk computed that, in terms of error removal capability, the relative power of the
coverage measures block:p-use:DUD-chains is 1:2:6.

Chen et al [chm92] incorporate structural coverage into traditional time-based software
reliability models (SRMs). Their model only includes test cases that increase coverage.
The included test e�ort data is used to �t existing time-based models. Thus, they avoided

the overestimation from traditional time-based SRMs due to the saturation e�ect of testing
strategies. They do not relate test coverage directly to the error removal process as we do
here.

Assuming random testing, Piwowarski, Ohba and Caruso [poc93] analyzed block coverage
growth during function test, and derived an exponential model relating the number of tests
to block coverage Their model is equivalent to the GO model attempted in [ram85]. They
also derived an exponential model relating the covering frequency to the error removal ratio.
However, the utility of the model relies on prior knowledge of the error distribution over
di�erent functional groups in a product.

Frankl and Weiss [fra93] compared the fault exposing capability of branch coverage and
data ow coverage criteria. They found that for 4 out of 7 programs, the e�ectiveness of
a test in exposing an error is positively correlated with the two coverage measures. They
also observed complex relationships between test coverage growth and the probability of
exposing an error for a test set. Since the 7 programs they used are very small and they
only considered subtle errors, the result can not be extrapolated to practical software. They
did not model the relation between test coverage and fault coverage.

The Leone test coverage model given in [neu93] is a weighted average of four di�erent
coverage metrics achieved during test phases: lines of executable code, independent test
paths, functions/requirements, and hazard test cases. The weighted average is used as an
indicator of software reliability. The model assumes that full coverage of all four metrics
implies that the software tested is 100% reliable. In reality, such software may have some
remaining faults. A similar approach, but with di�erent coverage metrics, was taken to
provide a test quality report [pos93].

In this paper, we explore the connection between test coverage and reliability. We develop
a model that relates test coverage to defect coverage. With this model and with knowledge
of the operational pro�le, we can predict reliability from test coverage measures.

2 Coverage of Enumerables

The concept of test coverage is applicable for both hardware and software. In hardware,
coverage is measured in terms of the number of possible faults covered. For example, each
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node in a digital system can possibly be stuck-at 0 or stuck-at 1. A stuck-at test coverage
of 80% means that the tests applied would have detected any one of the 80% faults covered.

Test coverage in software is measured in terms of structural or data-ow units that have
been exercised. These units can be statements (or blocks), branches, etc. as de�ned below:

� Statement (or block) coverage: the fraction of the total number of statements that
have been executed by the test data.

� Branch (or decision) coverage: the fraction of the total number of branches that have
been executed by the test data.

All-Paths

All-DU-Paths

All-Uses

All-C-Uses All-P-Uses

All-Defs All-P-Uses

Some-P-Uses Some-C-Uses

All-Branches

All-Blocks

Figure 1: The subsumption relationships of di�erent coverage criteria [weu84]

� C-use coverage: the fraction of the total number of c-uses that have been covered
by one c-use path during testing. A c-use path is a path through a program from
each point where the value of a variable is modi�ed to each computation use or c-use
(without the variable being modi�ed along the path).

� P-use coverage: the fraction of the total number of p-uses that have been covered by
one p-use path during testing. A p-use path is a path from each point where the value
of a variable is modi�ed to each p-use, a use in a predicate or decision (again, without
modi�cations to the variable along the path).

When such a unit is exercised, it is possible that an associated fault is detected. Counting
the number of units gives us a measure of the extent of sampling. The defect coverage in
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software can be de�ned in an analogous manner, it is the fraction of actual defects initially
present, that would be detected by a given test set.

Table 1: The complexity (test length) for achieving di�erent coverage criteria [weu93]

Coverage Criterion Upper bound Observed

All-Blocks d+ 1

All-Branches d+ 1

All-P-Uses 1

4
(d2 + 4d + 3) 0:38d + 3:17

All-Defs m+ (i� n)

All-P-Uses/Some-C-Uses 1

4
(d2 + 4d + 3)

All-C-Uses/Some-P-Uses 1

4
(t2 + 4d + 3) 0:36d + 2:82

All-Uses 1

4
(d2 + 4d + 3) 0:39d + 3:76

All-DU-Paths 2d
0:49d + 4:03

2d

All-Paths 1

n: variables, m: assignments, i: input statements,
d: binary decisions.

Figure 1 is taken from [weu84], which shows the relative strength of some well-known
criteria. If there is a directed path from criteria A to criteria B, then test sets that meet
criteria A (complete coverage) are guaranteed to satisfy criteria B. Table 1 shows the upper
bounds on the test length [weu84] to satisfy these criteria and the observed complexities
[weu93] for some of the criteria. Such knowledge of complexities can be very useful for
testers for selecting appropriate test coverage criteria. The upper bound for all-du-paths
was reached in one subroutine out of 143 considered by Bieman and Schultz [bisc89,bisc92].

In order to keep the following discussion general, we will use the term enumerable. For
branch coverage, the enumerables are branches, for defect coverage the enumerables are
defects and so on. In this paper, the term enumerable-type implies one of these: defects,
blocks, branches, c-uses and p-uses. We will use superscript i, i = 0 to 4, to indicate one of
the �ve types in this sequence: 0: defects, 1: blocks, 2:branches, 3: c-uses, 4: p-uses.

3 Detectability Pro�les of Enumerables

The coverage achieved by a set of tests, under a testing strategy, depends not only on the
number of tests applied (or, equivalently, the testing time) but also on the distribution of
testability values of the enumerables. A statement which is reached more easily, is more
testable. Such statements are likely to get covered (i.e. exercised at lease once) with only a
small number of tests. Testability also depends on the likelihood that a fault that is reached
actually causes a failure [voas92]. On the other hand a statement which gets executed in
rare situations has low testability. It may not get exercised by most of the tests which would
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normally be applied. As testing progresses, the distribution of testability values will shift.
The easy-to-test enumerables will get covered early during testing, and are thus removed
from consideration. The enumerables remaining to be covered include a larger fraction of
hard-to-test enumerables. Thus the growth of coverage will be slow.

De�nition: Detectability of an enumerable djl is the probability that the l-th enumerable
of type j will be exercised by a randomly chosen test.

The distribution of detectability values in the system under test is given by the detectabil-
ity pro�le. The detectability pro�le concept was introduced by Malaiya and Yang [mal84]
and has been used to characterize testing of hardware [wag87] as well as software [mvs93].
A continuous version of the detectability pro�le was de�ned by Seth, Agrawal and Farhat
[set90]. For convenience, we use the normalized detectability pro�le (NDP) as de�ned below.

De�nition: The discrete NDP for the system under test is given by the vector,

P j = fpjd1; p
j
d2; :::; p

j
di; :::; p

j
dug d

j
i�1 < d

j
i < d

j
i+1 (1)

where pjdi is the fraction of all enumerables of type j which have detectability exactly equal
to di. Thus pbranch0:3 represents the fraction of all branches which have detectability equal to
0.3. In Equation 1, du refers to the detectability value of unity (1), which is the highest
detectability value possible. Notice that

P
1

di=0 p
j
di = 1 since all fractions added will be unity.

Notice that a detectability value of 0 is possible, since a branch might be infeasible,
or a defect might not be testable because of redundancy in implementation. Detectability
pro�les of several digital circuits [mal84, wag87] and software systems [tra92, dun86] have
been compiled by researchers.

If the number of enumerables is very large, the discrete NDP above can be approximated
by a continuous function de�ned below.

De�nition: The continuous NDP, for the system under test is given by the function
pj(x), 0 � x � 1

pj(x)dx =
nr enumerablesj(x; x+ dx)

all enumerablesj
(2)

where nr enumerablesj(x; x + dx) stands for all enumerables of type j with detectability
values between x and x+ dx.

Notice that
R
1

0
pj(x)dx = 1, just like the discrete NDP case.

4 A one-parameter Model

The detectability pro�le gives the probability of each enumerable getting exercised. Hence it

can be used to calculate expected coverage when a given number of tests have been applied.
In this section, we will assume that testing is random, i.e. any single test is selected randomly
with replacement. Malaiya and Yang [mal84], and Wagner et al [wag87] have shown that
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the expected coverage of the enumerables of type j is given by

Cj(n) = 1�
nX
i=1

(1� d
j
i )

np
j
i (3)

provided testing is random. The same result can be obtained for continuous NDP [set90]

Cj(n) = 1�
Z
1

0

(1 � x)np(x)dx (4)

In practice, testing is more likely to be pseudo-random, when a test will not be repeated.
In this cases random testing can be considered to be an approximation. This approximation
can be fairly good, except when close to 100% coverage has been achieved.

Equations 3 and 4 give expected coverage. In a speci�c case, the coverage obtained can
be di�erent. If the number of vectors applied is large, then the central limit theorem suggests
that results obtained should be close to these given by Equations 3 and 4.

The use of Equations 3 and 4 requires the knowledge of detectability pro�les. Obtaining
exact detectability pro�les requires a lot of computation. Discrete detectability pro�les have
been calculated for several small and large combinational circuits. Continuous detectability
pro�les for some benchmark circuits have been estimated [set90]. However software systems
are generally much more complex.
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1.6

1.8
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at time t0
at time t1
at time t3

Figure 2: Distribution of detectability

Fortunately, it is possible to obtain reasonable approximation for the detectability pro-
�les. When one test is applied, the probability that an enumerable with detectability dji will
not be covered is (1 � d

j
i ). The probability that an enumerable will not be covered by n

tests and thus remain a part of pro�le is (1 � d
j
i )

n. Thus if the initial pro�le was given by
Equation 1, the pro�le after having applied n tests, will be given by
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P j
n = fpjd1(1 � d1j)n; pjd2(1� d2j)n; :::g

Equivalently the continuous pro�le is given by

pjn(x) = pn(x)(1� x)n

The above equations state that the enumerables with high testability are likely to get
covered earlier. This would cause the pro�le to \erode" as testing progresses, as shown in
Figure 1. The enumerables with low testability will get removed at a much lower rate, and
thus will soon dominate. Thus during much of the testing, the shape of the pro�le will
appear like the bottom curve in Figure 1, regardless of the initial pro�le.

The available results for hardware components suggest that the initial detectability pro-
�le may be of the form

pj(x) = (mj + 1)(1 � x)mj (5)

where mj is a parameter. The factors (mj+1) ensures that the area under the initial pro�le
curve is unity. The signi�cance of the parameter mj can be seen by substituting the right
hand side of Equation 5 in Equation 4. We get

Cj(n) = 1� (mj + 1)
Z

1

0

(1 � x)mj+ndx = 1 �
mj + 1

mj + n + 1
=

n

mj + n+ 1
(6)

The curve given by Equation 6 has the general shape found with experimental data.
However it does not provide a good �t. One problem is that Equation 6 includes only a
single parameter which can be adjusted for �tting. We can assume a more general initial
detectability in Equation 5, involving two parameters, but even that will not be accurate, as
we discuss in the next section. The approach considered next, yields a much better model.

5 A New Logarithmic Coverage Model

Random testing is rarely done in practice. Randomness implies that a new test is selected
regardless of the tests that have been applied thus far, and that tests are selected based only
on the operational distribution. In actual practice, a test case is selected in order to exercise
a functionality or enumerable that has remained untested so far. This process makes actual
testing more directed and hence more e�cient than random testing.

Malaiya, von Mayrhauser and Srimani [mvs92] show that this non-random process leads
to a defect �nding behavior described by the logarithmic growth model [mus87]. Their analy-
sis gives an interpretation for the model parameters. The coverage growth of an enumerable-
type depends on the detectability pro�le of the type and the test selection strategy. If the
defect coverage growth in practice is described by the logarithmic model, it is likely that the
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coverage growth for other enumerable-types may also be logarithmic. We thus suggest the
following model.

C i(t) =
1

N i
�i
0
ln(1 + �i

1
t); C i(t) � 1 (7)

where N i is the total number of enumerables of type i, �i
0
and �i

1
are model parameters. If

a single application of a test, assuming it is a constant, takes Ts seconds, then the time t,
needed to apply n tests is nTs. Substituting in 7,

C i(n) =
�i
0

N i
ln(1 + �i

1Tsn)

De�ning bi0 as (
�i

0

N i ) and bi1 as (�
i
1Ts), we can rewrite the above as,

C i(n) = bi
0
ln(1 + bi

1
n); C i(n) � 1 (8)

Notice that when C i = 1, there are no more additional enumerables of that type to be found.
With non-random testing assumption, it takes a �nite, although possibly large, number of
tests to achieve 100% coverage of the feasible enumerables.

For defects (i = 0), the parameters �00 and �11 have the following interpretation [mvs93].

�00 =
K0(0)N0(0)

a0TL
(9)

and
�01 = a0 (10)

where K0 is the exposure ratio, TL is the linear execution time and a0 is a parameter that
describes the variation in the exposure ratio.

Equation 8 relates coverage C i with the number of tests applied. We can use it to obtain
an expression giving defect coverage C0 in terms of one of the coverage metrics C i, i = 1 to
4. Using Equation 8, we can solve for n,

n =
1

bi1
[exp(

C i

bi0
)� 1]; i = 1 to 4

Substituting this for C0, again using Equation 8,

C0 = b00 ln[1 +
b0
1

bi1
(exp(

C i

bi0
)� 1)]; i = 1 to 4

De�ning ai0 = b00, a
i
1 =

b0
1

bi
1

and ai2 =
1

bi
0

, we can write the above using three parameters as,
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C0 = ai
0
ln[1 + ai

1
(exp(ai

2
C i)� 1)] i = 1 to 4 (11)

Equation 11 gives us a convenient three-parameter model for defect coverage in terms of
a measurable test coverage metric. Notice that Equation 11 is applicable for only C0 � 1.
It is possible to approximate Equation 11 by a linear relation, but it would be valid for only
a small range.

6 Analysis of Data

Here we will evaluate the proposed model, as given by Equations 8 and 11 using four data
sets. The �rst data set, DS1, is from a multiple-version automatic airplane landing system
[lyu93]. The twelve versions have a total of 30,694 lines. The data used here is for integration
and acceptance test phases, where 66 defects were found. One additional defect was found
during operational testing. The second data set, DS2, is from a NASA supported project
implementing sensor management in inertial navigation system [vou92]. For this program,
1196 test cases were applied and 9 defects were detected. The third data set, DS3, is for a
simple program used to illustrate test coverage measures [agr93]. The fourth data set, DS4,
is from an evolving software system containing a large number of modules.

Table 2: Summary table for DS1 (total 21,000 tests applied)

Blocks Decisions c-uses p-uses Defects

i=1 i=2 i=3 i=4 i=0

Total enums 6977 3524 8851 4910 67

Final cov. 91.8% 83.9% 91.7% 73.5% 98.4%

bi
0

0.031 0.049 0.036 0.041 0.184

bi1 2E+8 1234 3.4E+6 2439 0.01

LSE 5.7E-4 3.5E-5 5.8E-4 8.1E-5 7.3E-7

The �rst data set and the results from it are summarized in Table 2. The �rst row gives
the total number of enumerables for all versions. The second row gives the average coverage
when 21,000 tests had been applied. The values of the estimate parameters bi0 and b

i
1 and the

least square error are given in the rows below. The model given by Equation 8 �ts the data
very well. The data shows that C1 > C2 > C4. This relationship is expected. Complete
decision coverage implies complete block coverage, and complete p-uses coverage implies
complete decision coverage [bei90, fra88, n88]. The c-uses coverage has no such relation
relative to the other metrics. Indeed the data shows that while C3 < C1 at the beginning of
testing, near the end of testing C3 is almost equal to C1.

Table 3 summarizes the result for DS2. Nine faults were revealed by application of 1196
tests; we assume that one fault (i.e. 10%) is still undetected. In spite of the small number
of faults, the models given in Equations 8 and 11 still �t the data very well.
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Table 3: Summary table for DS2 (total 1196 tests applied)

Blocks Branches c-uses p-uses Defects

i=1 i=2 i=3 i=4 i=0

Final cov. 89% 84% 76% 61% 90%

bi0 0.032 0.060 0.034 0.039 0.166
bi
1

2E+8 870 3E+7 2500 0.11

LSE 0.02 6.2E-4 3.5E-3 4.9E-3 0.025

ai
0

1.31 0.46 0.23 0.29

ai1 1.8E-3 4.6E-3 9.11E-7 5.2E-3

ai2 6.95 3.84 23.12 13.46

LSE 0.017 0.018 0.041 0.025

One important observation can be made from Table 3. We can use the number of tests
applied and parameters b0

0
and b0

1
(equation 8) to estimate the defect coverage. Alternatively

we can use branch coverage and the parameters a2
0
, a2

1
and a2

2
(equation 11) to estimate the

defect density. The second approach provides a slightly better �t and it is una�ected by the
test selection strategy.
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Figure 3: Growth of coverage measures with testing

As shown in Figure 3, we can see that the curves for C1, C2, and C4 have the same
shapes, and we again observe that C1 > C2 > C4. Again the c-uses coverage does not have
the same relation with other three. With the logarithmic x-axis (number of tests) C1, C2,
C3, C4 appear as straight lines. This can be explained by examining equation 8. If bi

1
n� 1,

is true for i = 1, 2, 3, 4, then we can write,

C i(n) = bi
0
ln(bi

1
n)
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Figure 4: Scatter plot of C2, C3 and C4 against C1

or

C i(n) = bi0 ln(b1) + bi0 ln(n)

This gives us the linear curves of Figure 3. Notice that since b01 < 1, the approximation
above is not applicable for C0(n) as observed in Figure 3. Figure 4 shows the correlation
of other test coverage measures C2, C3 and C4 with block coverage C1. As we would
expect, branch coverage, and to a lesser extent p-use coverage, are both strongly correlated
with block coverage. The correlation with c-use coverage is weaker. Figure 5 shows actual
and computed values for fault coverage. The computed values have been obtained using
branch coverage and Equation 11. Notice that at 50% branch coverage, the fault coverage
is still quite low (about 10%), however with only 84% branch coverage, 90% fault coverage
is obtained. The branch coverage shows saturation at about 84%. This may provide an
explanation for why it is often considered quite adequate to achieve 80% branch coverage
[gra92].

Figure 6 gives a scatter plot of computed values of defect coverage against actual values.
The computed values are obtained using the number of tests and Equation 8 (traditional
reliability growth modeling), and using test coverage measures C1, C2, C3 and C4 using
Equation 11. The calculated values are all quite close, showing that coverage based modeling
can replace time-based modeling.

Table 4 presents similar results for a very small illustrative program. No defects were
involved. However this again illustrates applicability of our modeling scheme. We again
notice that C1 � C2 � C4. The c-use coverage again behaves di�erently.

In evolving programs, signi�cant changes are being made while testing is in progress.
Because new modules are being added new defects as well as non-covered enumerables are
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Figure 5: Actual and �tted (using Equation 11) values of defect coverage

Table 4: Summary table for DS3 (total 16 tests applied)

Blocks Branches c-uses p-uses
i=1 i=2 i=3 i=4

Total enums 12 10 10 26
Final cov. 100% 100% 100% 93%

bi0 0.06 0.11 0.11 0.12
bi1 8.4E5 769 561 162

LSE 2E-5 1.7E-3 1.6E-3 2.3E-3

also being added. The coverage obtained by a test set can actually go down in some cased.
FromDS4, as shown in Figure 7, we see that the linear correlation between coverage measures
can still be applicable. The part of the data used here covers an intermediate phase of the
process. The analysis of evolving programs is however more complex and is the subject of
future research.

7 Model Parameters

Researchers have noticed that the logarithmic model works best among other two-parameter
models [mkv92], however interpretation of its parameters has been di�cult. One interpre-
tation is given by Malaiya et al [mvs92], described by Equations 9 and 10. We can argue
that the same interpretation may be applicable for enumerables other than defects. The �rst
parameter of Equation 8 then is,
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bi0 =
K i(0)N i

aiTLN i
=

K i(0)

aiTL
(12)

Notice that the linear execution time is given by the number of lines of code multiplied
by the average execution time of each line. An empirical method to estimate the initial
fault exposure ratio K0(0) has been suggested by Li and Malaiya [lim93]. Estimation of ai

remains an open problem. The second parameter is given by,

bi = a0Ts (13)

The single test execution time Ts depends on the program size and its structure. The
product bi0b

i
1 then should be independent of the program size.

The parameters ai
0
, ai

1
, and ai

2
are de�ned in terms of bi

0
and bi

1
above. When this

de�nition for ai
0
, ai

1
, and ai

2
is as an initial estimate for numerically �tting Equation 11,

the initial estimate itself provides a least-square �t. If the initial estimates are signi�cantly

di�erent, then the least square �t may yield somewhat di�erent parameter values.

A-priori estimation of model parameters remains a partly unsolved problem. Currently
we must rely on curve �tting based approaches.

8 Defect density and reliability

Since the failure intensity is proportional to the number of defects, we have [mvs92, mvs93],
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Figure 7: Scatter chart for module & branch coverages for an evolving program

� =
K

TL
N

Where K is the overall value of fault exposure ratio.

Let N0 be the total number of faults initially present in the program and there is no new
fault introduced during testing process. Then N can be computed as:

N = N0(1� C0)

Substituting C0 using Equation 11,

N = N0(1 � ai
0
ln[1 + ai

1
(exp(ai

2
C i)� 1)])

Hence, the expected duration between successive failures can be obtained as

1

�
=

TL

K

1

N0(1� ai0 ln[1 + ai1(exp(a
i
2C

i)� 1)])
(14)

The Equation 14 can be used for operational period also, provided the appropriate value
for fault exposure ratio is used. In can be estimated by testing using the operational input
pro�le. Alternatively, appropriate compression factor should be used.
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9 Conclusions and Discussions

In this paper we have presented a modeling scheme that relates defect density to measurable
coverage metrics. The scheme is based on the observation that defects have some detectabil-
ity distribution like other coverage enumerables, and the same model may govern them.
There are two advantages of using logarithmic model to describe test e�ort and enumerables
covered.

1. The logarithmic model has been found to be superior to other models for predicting
the number of defects.

2. The logarithmic model can take into account the fact that 100% coverage can be
achieved in �nite time. For high reliability applications, it is quite possible that 100%
block coverage is achieved, but the reliability requirements will require further testing.
A more strict coverage measure, branch or p-use coverage then can be used to estimate
the defect density.

The data sets used suggest that the model works well. The results are consistent with
the theoretical results obtained in the past about coverage inclusion relationships. There is
a need to collect additional data sets with larger number of points. The model presented
here is simple and easily explained, and is thus suitable for industrial use.

The model, as given by Equation 11, can be used in two di�erent ways. Extrapolation

requires collecting data for part of the testing process, which is then used for estimating the
applicable parameter values. These are used for making projections for planning the rest of
the test e�ort. A priori parameter estimation requires empirical estimation of parameters
even before testing begins. We have some observations on what factors control the parameter
values. Further work is needed to fully develop these techniques. This would include a careful
study of enumerable exposure ratios.

As we have shown, any test coverage measure can be used to estimate the defect density,
by using applicable parameter values. This raise an important question. Should several

coverage measures be used or just one ? Which individual measure (or selected set) would
provide the best estimate ? We have the following considerations.

1. We need further studies to determine which coverage measure would provide the best
project about the number of defects. For DS2, we have observed that block coverage

C1 provides the best and c-uses coverage C3 the worst �t. This however may be true
for only speci�c data sets, or for speci�c coverage/defect density ranges. Since the
di�erent coverage measures can be strongly correlated, as we have seen, perhaps most
of them may work equally well in many situations.

2. For every high reliability, we may need a \scale" that works in that region. If the
requirements are such that 100% block coverage is not enough, branch or p-use coverage
may be more appropriate. From prevailing practices in industry today, it appears that
branch coverage may be an adequate measure in many cases, since about 80% branch
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coverage often produces acceptable results [gra92]. However for testing of individual
modules or for highly reliable software p-use may be a better measure.

3. Several researchers have suggested use of some form of a weighted risk measure [agr93,
pos93, neu93], where a weighted average is computed using some coverage measures.
The weights are chosen on the basis of relative signi�cance of each measure. As we

have seen the structural coverage measures tend to be strongly correlated, and thus a
weighted average may not provide more information than a single measure. We need
to identify measures with weaker correlation. It is possible that other types of coverage
measures like functional coverage measures may be suitable for this purpose. Further
study is needed to evaluate correlation among di�erent types of coverage measures,
and how they can be optimally combined.

The results presented here can serve as a basis for further data collection and analysis.
We need to examine the behavior at di�erent fault densities, specially at very low defect
densities (for highly reliable applications). We also need to validate the model for di�erent
testing strategies on the modeling scheme and the parameter values. In general deterministic
(coverage driven) is more e�cient than true random testing. Testing using special values
or use of equivalence partitioning can signi�cantly compress the test time. Since test cov-
erage measures provide direct sampling of the state of the software, we expect the model
Equation 11 to hold because time is eliminated as a variable. Additional data will allow
us to validate and re�ne the modelling scheme presented here. In addition we need to de-
velop schemes for evolving programs where new faults and other non-covered enumerables
are being added.
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