
Department of

Computer Science

Estimating Bounds on the Size

of Compressed Tries

Karl W. Glander and Karl P. Durre

Technical Report CS-94-114

May 19, 1994

Colorado State University



Estimating Bounds on the Size of
Compressed Tries

Karl W. Glander Karl P. D�urre

glander@cs.colostate.edu durre@cs.colostate.edu

Abstract

The compression of a trie reduces the storage requirements of the standard

trie structure while maintaining the O(j W j), where W is a key word, access time.

The problem of estimating the size of a compressed trie without taking the time to

perform the compression has hindered the application of compressed tries to index

large static databases. This paper addresses this problem by using results analyzed by
Tarjan and Yao for storing sparse matrices to de�ne a class of tries called \harmonic"
tries. Approximate compression sizes are given for harmonic and non-harmonic tries.
These compression sizes are used to show the performance of using Single-Linked

Compressed tries and two hybrid data structures that use Single-Linked Compressed
tries to store subsets of two large databases.

Keywords

Information Retrieval; Indexing; File Organization; Tries; Trees; Data Struc-
tures.

Introduction

A trie [3, 5] is an M-ary tree where each node consists of an M-positional vector
of pointers that correspond to the symbols in the trie alphabet. The trie is constructed
such that the M-ary branch in a node at level i is dependent on the symbol located at

the (i + 1)st position of the key word. The construction of a trie results in common
pre�xes being represented by a sequence of trie nodes beginning with the trie's root
node. The access time of the trie structure is O(jW j) where W is the key word being
sought in the trie. This is unlike most other data structures since the access time is

not dependent on the number of key words stored in the trie. The major drawback of

the trie structure, the reason tries are not frequently used, is a substantial overhead

in storage requirements that arise from the fact that a large majority of the nodes do

not require all M pointers.
Various methods have been investigated to reduce the storage requirements of

tries. The methods of primary interest are trie compaction in [1, 2, 9, 10] and trie
compression1 in [4, 11]. Although these two methods are di�erent in their general

structure, they are similar since both are based on the process of merging nodes of

the trie into an array. The process of merging the nodes of the trie takes O(mn)
where m is the number of nodes in the trie and n is the number of non-null pointers

in the m trie nodes. The time needed to construct a compacted/compressed trie is

1See Appendix A for brief review of trie compression



p.2

large enough to restrict the use of such tries to situations where the data set to be

stored is static. This limitation has greatly reduced interest in the trie data structure.

Additionally, interest has not been generated about the trie variations since no study

has been conducted concerning the e�ectiveness of using the trie variations to store

a wide range of data sets. Most considerations of tries have avoided the issue of

estimating the size of a compressed/compacted trie since the general problem of

�nding a merging of nodes that results in a minimal array size is an instance of an

NP-Complete problem. When storage requirements have been given in the literature,

the size of the array containing the merged nodes is determined by performing the

merging of the nodes. The large amount of time to merge the nodes into an array

has limited the size of the data sets and the number of data sets tested.

The problem of estimating the size of compressed tries without performing the

actual merging of nodes is possible. A result of Tarjan and Yao [12] derived for storing

sparse compiler tables allows certain tries, labeled harmonic tries, to be identi�ed as
being optimally compressible with an O(m) algorithm. This result is presented in
the �rst section. In the second section, an estimate is introduced that provides a
compression size estimate for non-harmonic tries. The �nal section, presents how

both compression size estimates are used to direct research e�orts away from basic
Single-Linked Compressed tries and towards two new trie variations.

Harmonic Tries

In many instances the matrix representation of a trie will be sparse. Tarjan
and Yao analyzed the method, proposed by Ziegler in [13], of storing a sparse matrix
in a one dimensional array by merging the rows of the matrix while maintaining a
row displacement that contains the absolute array address of each row. Let n be the

number of non-zero entries in the two dimensional array A, the function n(l), for l � 0,
be the total number of non-zero entries in rows with more than l non-zeros, and the
�rst-�t-decreasing method indicate a matrix compression algorithm whereby rows are
merged at the �rst available position in the compressed array starting with the most
dense rows and concluding with the least dense rows. Given the above de�nitions

Tarjan and Yao proved the following theorem:

Theorem 1 Suppose the array A has the following \harmonic decay" property:

H: For any l, n(l) � n=(l + 1)
Then every row displacement r(i) computed for A by the �rst-�t-decreasing

method satis�es 0 � r(i) � n.

In terms of determining the size of a compressed trie array, this theorem means

that if the matrix representation of a trie T, constructed from data set D, satis�es
the harmonic decay property then n, the number of non-zero entries in the matrix,

will be a good estimate for the number of cells in the compressed trie array.
Theorem 1 speci�es only a good estimate, as opposed to an exact value, since the

compressed array constructed by the �rst-�t-decreasing method does not guarantee

that the �rst cell of every node will be located at a di�erent cell in the compressed
array. The �rst-�t-decreasing method, however, allows nodes with the same number



p.3

of non-zeros to be merged into the compressed array in any order. Should there be an

attempt to merge two nodes into the compressed array with the same �rst cell address

then there is more than likely, but not guaranteed, to be another node with the same

order that can be used. This is especially true since the lower order nodes will be

the nodes that will be merged into the empty spaces in the compressed array2 and

the lower order nodes will have the most alternatives. The harmonic decay property

requires that at least half of the non-nulls come from nodes with one non-null.

The procedure to determine if T is harmonic is an O(m) algorithm, m is the

number of nodes in the trie, since the data for function n(l) can be captured with a

straight forward tree traversal algorithm.

To check the harmonic nature of tries, a database, called WORDS, that con-

tained 351,644 English words, names and abbreviations was used to create test sets

that ranged in size from 10,000 to 351,644. Several test sets were generated from

WORDS by partitioning the database into as many sets as possible for a given test
set size. For example, there were 35 test sets containing 10,000 key words while only
three test sets containing 100,000. Partitioning of the database into test sets ensures
that results were not unduly a�ected by nearly identical data sets. To further increase

the number of test sets, multiple partitions were conducted. For test sets containing
10,000, 20,000, 40,000, 80,000, and 160,000 key words ten partitions were conducted
while the remaining data set sizes were partitioned only three times.3 Every test set
generated from WORDS constructed a harmonic trie.

Non-Harmonic Tries

The harmonic nature of tries constructed from data sets4 from a second database,
called NUMBERS that contained 351,644 randomly selected nine digit numbers in the

range 000,000,000 to 999,999,999, were checked. The tries constructed from data sets
containing 10,000 through 80,000 key words were all harmonic, only two of the nine
tries containing 100,000 key words were harmonic, and none of the tries containing
120,000 through 351,644 key words were harmonic. The tries that were non-harmonic
did not have the harmonic decay property indicated in theorem 1 because of an over

abundance of nodes that contained between two and six non-nulls.

Initial studies of tries constructed from subsets of the WORDS database showed
that although the complete trie was harmonic, an analysis of the subtries showed that
some subtries were not harmonic. For example, two subtries that were non-harmonic

contained:

� 1 node containing 7 non-nulls, 1 node containing 2 non-nulls and 35 nodes
containing 1 non-null;

� 3 nodes containing 2 non-nulls and 5 nodes containing 1 non-null.

In both of these subtries the distribution of non-nulls throughout the nodes was not
uniform enough to satisfy the harmonic decay property. There were also subtries

2Higher order nodes will tend to block each other an thus be appended onto each other.
3The 10,000 key word data set results thus consist of 10 � 35 = 350 data sets.
4Data sets were formed in same manner as indicated for data sets from WORDS.



p.4

encountered that did not satisfy the harmonic decay property because of too many

high order nodes.

To accurately give the size of a compressed trie given that the trie is non-

harmonic without performing the actual compression is, in most cases, impossible

since there exists no way to predict how the nodes with two or more non-nulls will

�t into the compressed trie array. Nodes with a single non-null can be merged most

anywhere there is an empty location in the compressed trie array. A way to provide

a reasonable over-estimate of the size was sought and two di�erent techniques for

calculating the estimate were �nally considered.

Both over-estimates divided the trie nodes into two parts: nodes with exactly

one non-null and nodes with two or more non-nulls. The theory behind the �rst

estimate is to initially construct the compressed trie array by appending all the nodes

with two or more non-nulls onto the end of the array without trying to merge the

nodes into each other. The nodes containing a single non-null are then used to �ll
as many of the holes as possible or if there are more nodes than holes, append the
remaining nodes to the end of the list. The theory behind the second estimate is
identical to the �rst except that instead of simply appending the nodes with two or

more non-nulls, these nodes are merged together such that the left-most non-null of
the node being merged into the array is placed next to the right-most non-null in the
array.

The �rst estimate was selected for estimating the size of compressed tries. Al-
though the �rst estimate will, in most cases, give a larger estimate than the second

estimate, the �rst estimate can be calculated from the information gathered to de-
termine if the given trie is harmonic; the second estimate requires the summation of
the distances between the left-most and right-most non-null in all nodes containing
two or more non-nulls. The �rst estimate is additionally less likely to have two nodes
merged together such that the �rst cell of both nodes is located at the same location

in the compressed trie array since only the nodes with a single non-null are merged
into the compressed array.

Establishing Bounds

Realizing that the compression estimates for harmonic and non-harmonic tries

are only close approximations of the expected performance, the two estimates can
be combined to form approximate bounds on the size of compressed tries. This
estimate can be used to determine the feasibility of continuing research into using the

compressed trie structure or using a hybrid data structure in which a component of

the structure uses compressed tries. If the trie or tries is/are harmonic then there
will be a single value that indicates the best possible performance.5 If the trie or tries
is/are non-harmonic or any combination thereof, an upper and lower bound can be
given. The upper bound would be obtained by using the appropriate estimate after

determining the harmonic nature of the trie(s). The lower bound would be obtained

by assuming that each trie is harmonic. For example, compression estimates were

5Harmonic tries are optimally compressible. This represents the case where only the non-nulls
are represented in the compressed trie array. Since none of the non-nulls can be removed without
loosing information this represents a �xed lower bound.



p.5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Cost

1,000's of Key Words

SLC

Static Binary Tree

Static B-Tree

Figure 1: Average Cost of Storing Data Sets from WORDS.

generated for storing as Single-Linked Compressed (SLC) Tries the data sets from the
WORDS and NUMBERS databases. The results are graphically given in �gures 1
and 2 respectively.

The �gures show the average cost of using an SLC trie for storage as a function
of data set size. Cost is de�ned as the ratio of estimated storage size (in bytes) to the

measured number of bytes in the original unadulterated data set.6 To calculate the
size of one cell in the SLC trie, the minimum number of bits needed to represent all
characters in the trie alphabet was added to the minimum number of bits needed to
indicate any of the SLC trie cells.7 This sum was then expanded to the nearest byte.
The storage requirement estimate for an SLC trie is thus calculated by multiplying

the SLC trie cell byte size by the compressed trie size estimate.
Included in these �gures are cost estimates for storing the data sets in a static

binary tree and static B-tree. The storage requirements for these data structures were

minimized for the comparison. Minimization was accomplished primarily by requiring
that node records contain an integer number of bytes while �elds within the records
are bit sequences using the smallest number of bits possible. This means that if the

�elds of a record need a total of 11 bits then the record size is 2 bytes. The storage

requirements for the B-tree were additionally minimized by searching the di�erent
orders and choosing the order which resulted in the smallest storage requirement.

These structures are identi�ed as being static because in both cases the number of
bits assigned to pointers within these structures is limited.

6A cost of 1.0 means that the data structure requires as many bytes to store the data set as a
sequential list of key words.

7This quantity is the compressed trie size estimate.



p.6

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Cost

1,000's of Key Words

Lower Bound SLC

Upper Bound SLC

Static Binary Tree

Static B-Tree

Figure 2: Average Cost of Storing Data Sets from NUMBERS.

The single estimate given in �gure 1 is, once again, a result of all data sets
from WORDS creating harmonic tries. The SLC trie estimate shows that further
investigation into using SLC tries to store English word data sets will be unpro�table
since the static B-tree will perform better.

In �gure 2 the harmonic tries found in the 10,000 through 80,000 key word data

sets results in a single cost estimate while the remaining data sets have a lower and
upper bound. The single cost estimate shows that an SLC trie should be considered
as an e�cient storage structure for data sets containing 20,000 to 80,000 key words.
The 10,000 key word SLC trie cost estimate is a little higher than the cost estimate for
the static B-tree. Although there is great potential for data sets containing 100,000

key words and above to be stored in an SLC trie with fewer bytes than when stored
in a static B-tree, the true cost of using an SLC trie will probably be closer to the

upper bound than to the lower bound. This means that the static B-tree will either

be slightly better or slightly worse than the SLC trie costs. When the time needed
for construction is considered, the static B-tree will require far less time than that
needed for the compression of the trie. Under these conditions the use of an SLC trie

to store the 80,000 key words and above would not be practical.

The size estimates for harmonic and non-harmonic tries basically indicated that
the sole use of SLC tries to store large data sets is impractical. The estimates,

however, show that continued investigation would be advisable into two hybrid data
structures in which SLC tries are a component. The trie variations called the PL

trie and VLC trie apply a divide and conquer approach to minimize the storage

requirements of SLC tries by storing subtries as SLC tries and storing the \top"
portion of the trie in a linked list structure. Speci�c details about these trie variations



p.7

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Cost

1,000's of Key Words

Upper PL Trie

Lower PL Trie

Upper VLC Trie

Lower VLC Trie

Static B-Tree

Static Binary Tree

Figure 3: Cost Performance of Trie Variations on Subsets of WORDS.

can be found in [6, 7, 8].8 Figure 3 shows the average cost performance of the trie
variations in relation to the static B-tree and static Binary tree for subsets of WORDS.
Figure 4 shows the average cost of the VLC trie variation in relation to the static

B-tree and static binary tree for subsets of NUMBERS and �gure 5 distinguishes
between the average performance of the VLC trie and PL trie.

The cost estimates for the trie variations show a substantial reduction in storage
requirements over both the static B-tree and static Binary tree. The approximate

number of bytes saved by the trie variations can be estimated from the cost graphs
and the facts that the average word length for subsets from WORDS was just over 10

and the word length for subsets from NUMBERS was exactly 10.9 For subsets from

both databases, the subset containing 180,000 key words contained approximately
1,800,000 bytes and a change of 0.1 in cost is a change of 180,000 bytes. Thus

the closest the static B-tree comes to approaching the performance of either trie
variation is at the 10,000 key word subset of WORDS where the di�erence between

8See Appendix B for brief review of trie variations.
9A nine digit number put one character for end-of-string character.



p.8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Cost

1,000's of Key Words

Upper VLC Trie
Lower VLC Trie

Static B-Tree

Static Binary Tree

Figure 4: Cost Performance of VLC Trie Structure on Subsets of NUMBERS.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Cost

1,000's of Key Words

Upper VLC Trie

Lower VLC Trie

Upper PL Trie Lower PL Trie

9

+

M

O

Figure 5: Cost Performance of Trie Variations on Subsets of NUMBERS.



p.9

the static B-tree cost and upper VLC trie cost estimate is 0.09 which translates into

an approximate 54,000 byte di�erence in storage requirements. Although the error in

the upper bound size estimate is unlikely to be this great, circumstances may arise

where the error is in fact this large or larger.

Conclusions

The delineation of harmonic and non-harmonic tries provide the means of de�n-

ing approximate bounds on the size of compressed tries. Although the estimates

themselves do not guarantee speci�c performance, they can be used to direct re-

search e�orts. The bounds con�rm the general practice of using B-trees to index

large databases instead of using SLC tries. The bounds, �nally, indicate that a new

avenue of research be directed into indexing large static databases using hybrid data

structures in which SLC tries are a component.

Appendix A: Trie Compression Review

A trie may be represented as either a tree or a matrix as shown in �gure 6.
Trie Compression addresses the issue of excessive storage requirements by removing
null pointers through merging the nodes of the trie (as represented by either the tree

nodes or the rows in the trie matrix) into a two-dimensional array without pruning
any nodes from the trie. Figure 7 shows the compression of the trie given in �gure 6.
The �rst dimension of a Single-Linked Compressed (SLC) trie contains the character
associated with each non-null pointer. The second dimension implements the point-
ers between trie nodes by providing a relative pointer from the current location in

the SLC array to the location where the desired node has been place in the SLC
array.10 For example, node 0 contains a pointer to node 3. This pointer is placed
in cell 3 of the SLC array. Node 3 is merged into the SLC array at cell 1. The
relative pointer for cell 3 is thus �2. The compressed trie has the access relationship:
chr[i + ptr[i] + ord(KEY[i])] = KEY[i].

Trie Compression does not dictate the order in which nodes are merged into the
compressed trie array. The method does require that no two nodes are merged into
the compressed trie at the same location, i.e. the absolute address of the �rst cell of

each node must be unique. To obtain the compression given in �gure 7 the nodes of
the trie in �gure 6were merged into the compressed trie array in the following order:

0, 1, 3, 2, 4, 5, 7, 10,6, 8, 11, and 9. This ordering, unlike other orderings that might
be used, results in a compression that is optimal.11

Appendix B: Trie Variation Review

Trie Compression works well to remove the null pointers from the trie structure,

but even when the trie satis�es the harmonic decay property, thus guaranteeing a
(near) optimal compression, the size of the pointers in the second dimension of the
compressed trie array will be quite large when storing large data sets. In general, a

relative pointer will have to be large enough to point from one end of the compressed

10An absolute pointer may be used with only a slight modi�cation the the SLC trie structure.
11The relatively small number of nodes in the trie allowed an optimal compression to be found

with only a small amount of work. Finding an optimal compression for larger tries in unlikely.



p.10

(a) tree structure

@ a e h i s t

� � � � � � �

0

@ a e h i s t

� � � � � � �

1
@ a e h i s t

� � � � � � �

3

@ a e h i s t

� � � � � � �

2
@ a e h i s t

� � � � � � �

4

@ a e h i s t

� � � � � � �

10
@ a e h i s t

� � � � � � �

5

@ a e h i s t

� � � � � � �

7

@ a e h i s t

� � � � � � �

11
@ a e h i s t

� � � � � � �

6
@ a e h i s t

� � � � � � �

8

@ a e h i s t

� � � � � � �

9

(1)

(2)

(3)

(4)

(5)

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

?

s

(b) matrix representation

node @ a e h i s t

0 { { { { 1 { 3
1 (1) { { { { 2 {
2 (2) { { { { { {
3 { { { 4 { { {
4 { 5 7 { 10 { {
5 { { { { { { 6
6 (3) { { { { { {
7 { { { { { 8 {
8 { { 9 { { { {
9 (4) { { { { { {
10 { { { { { 11 {
11 (5) { { { { { {

Figure 6: Two trie representations containing words fi, is, that, these, thisg with

� = f @, a, e, h, i, s, tg



p.11

address: -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

node 0: { { { { i
1

{ t
3

node 1: @
(1)

{ { { { s
2

{

node 2: @
(2)

{ { { { { {

node 3: { { { h
4

{ { {

node 4: { a
5

e
7

{ i
10

{ {

node 5: { { { { { { t
6

node 6: @
(3)

{ { { { { {

node 7: { { { { { s
8

{

node 8: { { e
9

{

node 9: @
(4)

node 10: { { { { { s
11

{

node 11: @
(5)

{ { { {

chr { i @ t h @ t s a e @ i @ s s e @

rel. ptr -3 1 (1) {2 3 (2) 4 {2 {8 {1 (3) {2 (5) 0 {2 1 (4)

Figure 7: Construction of a Single-Linked Compressed Trie.

trie array to the opposite end. With the realization that only a relatively small

number of pointers in a compressed trie require the large pointers and that these
pointers are primarily located in cells that originate from the nodes at the top of
the trie, a technique that separates out the top nodes of the trie and individually
compresses the remaining subtries was proposed and investigated.

The two trie variations are formally based on establishing a partition of the trie

edge set and a decomposition of the trie node set such that trie T is decomposed
into f �; t1; t2; � � � ; tng where � contains the top nodes in the trie and each ti is a
distinct subtrie. The assignment of nodes to � and which node in T are distinguished
as the root nodes of the ti subtries is speci�c to each of the two trie variations. In
the �rst variation, called the VLC trie,12 � contains the top k levels of T, each ti is
a subtrie de�ned by the edges between the k and (k + 1) levels of the trie and each

ti is compressed using the smallest cell size13 possible (i.e. the cell size is allowed to

vary from one subtrie to the next). In the second trie variation, called the PLC trie,14

each ti contains the maximal number of nodes of T such that ti is compressible into a
compressed trie with a uniform cell size of c and � is de�ned to contain the remaining

portion of T. The fundamental di�erence between the VLC and PLC trie structures

is that all subtries for the VLC trie structure are required to be from the same level
of T while the PLC allows each Ti to be from di�erent levels of the trie.

The data structure used to store the trie nodes contained in � is a linked list of

12Named from its outstanding features: Variable subtrie cell size, List structured and Compressed
subtries.

13The cell size for a compressed subtrie is composed of the minimal number of bits to represent
all characters in the trie alphabet added to the minimal number of bits needed for a relative pointer
all of which is expanded to the nearest byte.

14Name from its outstanding features: Pre�x List structured Compressed trie.



p.12

Tau list structure containing a character �eld, a list/subtrie cell pointer �eld, subtrie

cell size mask, and list chain bit.

Character �eld.

List cell/Subtrie byte pointer.

Number of bytes in subtrie cell.

List chain bit.

a 034 0 1

| {z }

Cell 1

Cell 2
z }| {

e 142 0 1

Cell 3
z }| {

p 144 0 1

Cell 4
z }| {

r 097 0 1

Cell 5
z }| {

s 342 0 1

Cell 6
z }| {

u 540 0 0 � � �

� � �

Cell 141
z }| {

e 0240 2 0

Cell 142
z }| {

d 0034 2 1

Cell 143
z }| {

s 0001 2 0 � � �

Cell 540
z }| {

n 0032 3 0 � � �

Cell M
z }| {

a 0500 2 0

Byte1
z}|{

03

Byte2
z}|{

E5

| {z }

Cell

� � �

Byte
z}|{

00

Byte
z}|{

87

| {z }

Cell
| {z }

subtrie 1

� � �

Byte32
z}|{

03

Byte33
z}|{

E5

Byte34
z}|{

54

| {z }

Cell

� � �

Byte
z}|{

00

Byte
z}|{

87

Byte
z}|{

B2

| {z }

Cell
| {z }

subtrie M

� � �

Byte
z}|{

03

|{z}

Cell

Byte
z}|{

AC

|{z}

Cell

� � �

Byte
z}|{

00

|{z}

Cell
| {z }

subtrie N

Compressed trie byte stream with variable subtrie cell size.

? ?

? ?

? ? ??

Figure 8: VLC Trie Structure.

chained records. Each non-null pointer in the nodes in � is represented in a sequential

list of records with the �rst non-null pointer of the root node being placed in the �rst
cell of the list. Non-nulls from the same trie node are chained together by a one bit


ag that is set to indicate when the next record in the list is from the same node

as the current record. A pointer from one trie node to another is represented by a
pointer to the �rst record of the chained list of non-nulls. Included in the list record is

a �eld that contains the character associated with each non-null pointer,15 a pointer

15This explicit representation of the character is omitted in the standard trie representation since
the character can be determined by the placement of the non-null pointer in the array of pointers.



p.13

Pre�x list structure containing a character �eld, a list/subtrie cell pointer �eld, sub-

trie pointer 
ag, and list chain bit.

Character �eld.

List/Subtrie cell pointer.

Subtrie pointer 
ag.

List chain bit.

a 034 0 1

| {z }

Cell 1

Cell 2
z }| {

e 142 0 1

Cell 3
z }| {

u 050 0 1

Cell 4
z }| {

r 097 0 0 � � � g 342 0 1

| {z }

Cell 50

Cell 51
z }| {

n 540 0 0 � � �

� � �

Cell 141
z }| {

e 0240 1 0

Cell 142
z }| {

d 0034 0 1

Cell 143
z }| {

s 0001 1 0 � � �

Cell 540
z }| {

i 0032 1 0 � � �

Cell M
z }| {

a 0500 1 0

Cell 1
z }| {

03

|{z}

Byte

E5

Cell 2
z }| {

AC 42 � � �

Cell T1
z }| {

00 87

| {z }

subtrie 1

� � �

Cell 351
z }| {

03

|{z}

Byte

E5

Cell 352
z }| {

AC 42 � � �

Cell 351+TM
z }| {

00 87

| {z }

subtrie M

� � �

Cell Z
z }| {

03

|{z}

Byte

E5

Cell Z+1
z }| {

AC 42 � � �

Cell Z+TN
z }| {

00 87

| {z }

subtrie N

Compressed trie byte stream with constant subtrie cell size.

?

6

?

? ?

? ? ??

Figure 9: PL Trie Structure.

�eld with pointer types speci�c to the trie variation, and an information �eld speci�c

to the trie variation. For the VLC trie structure the information �eld indicates, by
using a bit mask, the number of bytes used in storing a speci�c compressed subtrie

while for the PLC trie the information �eld is a one bit 
ag that indicates whether

or not the cell pointer in the current list cell is a list pointer of a subtrie cell pointer.

The pointer �eld for the VLC trie is a pointer that indicates either a cell in the � list

or a byte pointer to the �rst byte of a compressed subtrie cell while the pointer �eld
for the PLC trie is a cell pointer that indicates either a � list cell or a compressed

The process of removing all null pointers makes the explicit statement of the character necessary.



p.14

subtrie cell. Subtrie cell pointers can be used in the PLC trie since the calculation

of a byte address can easily be made from knowing that all of the subtrie cells are

uniform in size.

References

1. Al{Suwaiyel, Mohammed Ibrahim, Algorithms for Trie Compaction, Ph.D. Thesis

at University of Southern California. June 1979.

2. Al{Suwaiyel, M. and E. Horowitz, Algorithms for Trie Compaction,ACM Trans-

actions on Database Systems, v.9, n.2, (June) 1984, p.243{263.

3. de La Braindais, File Searching Using Variable Length Keys, 1959 Proceedings

of the Western Joint Computer Conference, p.295{98.

4. D�urre, Karl P., Storing Static Tries, 10th International Workshop WG 84 on

Graphtheoretic Concepts in Computer Science, 13{15 June 1984, Berlin,
Germany, p. 125{135.

5. Fredkin, Edward, Trie Memory, Comm. of the ACM, v.3, n.9, (Sept.) 1960,
p.490{499.

6. Glander, Karl W. and Karl P. D�urre, Minimal Storage Trie Variations, Submit-
ted to Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, Minneapolis, MN, 24{26 May, 1994.

7. Glander, Karl W. and Karl P. D�urre, VLC Tries (Extended Abstract), Proceed-
ings of the Data Compression Conference, Snowbird, Utah, 29{31 March

1994.

8. Glander, Karl W. and Karl P. D�urre, VLC Tries, CS-94-102 Colorado State

University Technical Report.

9. Horowitz, E., and S. Sahni, Fundamentals of Data Structures, Computer
Science Press, Rockville, MD, 1976, p.517{525.

10. Knuth, D.E., Sorting and Searching, second ed., vol. 3 of The Art of Computer

Programming. Addison-Wesley, Reading Massachusetts, 1973, pp. 481{499.

11. Purdin, T.D.M., Compressing Tries for Storing Dictionaries, Proceedings of

the 1990 Symposium on Applied Computing, Fayetteville, AR, USA,
5{6 April 1990, p. 336{340.

12. Tarjan, Robert E. and Andrew Chi{Chih Yao, Storing a Sparse Table, Comm.

of the ACM, v.22, n.11, (Nov.) 1979, p.606{611.



p.15

13. Ziegler, S.F., Smaller faster table driven parser, Unpublished manuscript,

Madison Academic Comptg. Ctr., U. of Wisconsin, Madison, Wisconsin, 1977.


