
Department of

Computer Science

Evaluating Planning Through

Simulation: An Example Using

Phoenix

Adele E. Howe

Technical Report CS-94-116

July 18, 1994

Colorado State University



Evaluating Planning Through Simulation:

An Example Using Phoenix �

Adele E. Howe

Computer Science Department

Colorado State University

Fort Collins, CO 80523

Net: howe@cs.colostate.edu

1 Introduction

For some time, planning researchers have advocated the use of simulators of \complex"

environments, domains or problems [8,7]. Yet, a casual survey of planning papers in the last

few AAAI and IJCAI proceedings shows that Blocksworld continues to dominate as the domain

of choice. Blocksworld is well-known and simple enough that many properties of planners can

be demonstrated by examining the search space rather than simulating performance. As a

consequence, we, as a �eld, are still accumulating experience in using and evaluating planners

in simulated environments.

In this paper, I will describe my experiences in using the Phoenix simulator to investigate

failure recovery [12,10,11]. This paper is not intended to be a summary of the state of the art

in evaluation or a description of how generally to evaluate AI Planners or to design and run

experiments. (Readers interested in these topics are directed to [5,13,2,3].) Instead, the paper

discusses the role of simulators in planning research and describes how the Phoenix simulator

facilitated and obstructed my research. Additionally, the paper lists some of the pitfalls that I

encountered and concludes with advice on how to avoid them.

2 Subject of Study: Failure Recovery in Phoenix

As part of my thesis research [11], I added a failure recovery component to the Phoenix

planner, evaluated it, described a procedure for analyzing the behavior of the planner and the

new component and then evaluated that procedure. Failure recovery played two roles; it was

part of the function of the planner and so a product of the research, but it was also a subject

of study and provided data for analyzing the behavior of the planner.

�This research was conducted at the University of Massachusetts and was supported by a DARPA-AFOSR

contract F49620-89-C-00113, the National Science Foundation under an Issues in Real-Time Computing grant,

CDA-8922572, and a grant from the Texas Instruments Corporation. I wish also to thank Paul Cohen for his

advice and support in conducting this research. This paper also appeared in Working Notes of AAAI Spring

Symposium on Foundations of Automatic Planning. Palo Alto, CA. March 23{25, 1993.

1



2.1 The Phoenix Environment and Simulator

The test environment was a simulation of forest �re �ghting in Yellowstone National Park.

The goal of forest �re �ghting is to contain �res. In this simulation, a single agent, the �reboss,

coordinates the e�orts of �eld agents to build �reline, cleared areas of the forest that halt the

spread of �re. Fire spread is inuenced by weather and terrain. While terrain stays constant,

weather changes constantly; agents acting to contain the �re must be prepared for these changes

to invalidate their expectations and perhaps cause their actions to fail.

Figure 1 shows the interface to the simulator. The map in the upper part of the display

depicts Yellowstone National Park north of Yellowstone Lake. Features such as wind speed and

direction are shown in the window in the upper left, and geographic features such as rivers,

roads and terrain types are shown as light lines or grey shaded areas. The �reboss and other

agents are clustered at a base location just north of the lake.

Figure 1: View from Phoenix simulator of bulldozers �ghting a �re.

The Phoenix system comprises a forest �re simulator, an agent architecture, a set of knowl-

edge bases for the di�erent types of agents, and an interface for conducting experiments [4]. The

forest �re simulator is tunable through the experiment interface, which allows the experimenter

to control the environment and gather data.

The experimenter can control two aspects of the environment: the initial state and the way

the environment changes over time. Initial state includes the number of agents of di�erent

2



types, what they know and how they are initially situated in the world. Environmental change

is controlled by scripts, which describe the type, amount, time and frequency of changes to the

environment. Any environment parameter can be changed with scripts; typically, the scripts

change dynamic features such as wind speed, wind direction, humidity, temperature, moisture

content of parts of the park (e.g., as in when it rains), and the location and incidence of �re.

Scripts can also specify the collection of time-stamped data at intervals over an experimental

trial. Alternatively, the experiment can collect data on the environment and the agents, access-

ing any process information available, in retrospect, about the execution. For the agents, this

includes their long-term memories about what they `thought', how they acted, and how they

perceived the environment.

2.2 Failure Recovery and Failure Recovery Analysis

Plan failures are common in some environments. In fact, both execution time and planning

time failures are common for agents in Phoenix. For my research, I combined two approaches to

limiting the frequency and impact of failures: automated failure recovery and debugging failures.

Automated failure recovery both repaired failures and expedited debugging the Phoenix planner

using a procedure called Failure Recovery Analysis (or FRA).

The automated failure recovery component applies general methods to recover from failures

detected by the Phoenix planner. The design of the failure recovery component was based on

an expected cost model of failure recovery. The model served as the basis of three experiments

in which I tested the assumptions of the model, compared two strategies for selecting recovery

methods (one of which was derived from the model), and evaluated the performance of the

system after adding two new recovery methods.

Failure recovery analysis is a procedure for analyzing execution traces of failure recovery

to discover how the planner's actions might be causing failures. The procedure involves sta-

tistically analyzing execution traces for dependencies between actions and failures, mapping

those dependencies to plan structures, and explaining how the structures might produce the

observed dependencies. I evaluated the procedure by applying it to explain some results of

the experiments in which I evaluated automated failure recovery and by analyzing the Phoenix

data for FRA's sensitivity to noise and size of the execution traces.

3 Role of the Simulator

Although Blocksworld is the most common planning domain, planners have been constructed

for many di�erent domains from simple and easily described to complicated and hard to un-

derstand fully. Figure 2 positions the di�erent domains on a spectrum. Blocksworld is the best

known example of a constrained closed world domain. At the other end of the spectrum are

uncontrolled, \real" environments that either involve the normal complexity of everyday hu-

man life or are particularly challenging even for humans; the JPL Planetary Rover [14] and the

Transportation Planning Problem for USTRANSCOM [6] exemplify such domains. Between

the almost trivial and almost impossible lies both simulated complex environments and con-

trolled real environments. Examples of simulated complex environments include Phoenix and

3



Simple Closed 
World

Uncontrolled Real 
Environment

Simulated Complex

Complexity

Controlled Real{ }
Figure 2: Spectrum of Complexity of Domains for Planning

Tileworld [15]; an example of a constrained real environment is an underwater remotely-piloted

robot in a test tank [1].

The Phoenix simulator was integral to my research on failure recovery. First, the simulator

provided a platform in which to test the feasibility of the design for failure recovery. I designed a

failure recovery component and modeled it; the simulator helped demonstrate the utility of the

failure recovery design and was used to test the assumptions of the model. Second, the simulator

allowed the collection of data from 30,000 simulated hours of �re �ghting (without burning a

single tree). The failure recovery research involved many pilot studies and four experiments,

which together required three weeks of execution time on a TI Explorer. Without the simulator,

I could not have run enough trials to test statistical signi�cance and would never have noticed

long-term trends in the data, trends that motivated the design of Failure Recovery Analysis.

Third, the experiment interface expedited testing hypotheses because it grants considerable

control to the experimenter. In each experiment, I tested hypotheses about the performance of

failure recovery under varying conditions; the experiment interface allowed me to specify which

aspects of the experiment should be changed and which should remain the same.

3.1 Advantages of Using a Simulator

The obvious advantage of a simulator is that the experimenter is in control. One can de�ne

the conditions that should hold in the environment to test one's hypothesis or evaluate the

performance of a system. Additionally, instrumentation is easily obtained by adding hooks to

the planner or simulator.

Embedding the planner in a simulated environment with an experiment interface supports

\soup to nuts" inquiry. Many stages of experimentation can be automated, from running trials

and collecting data to partially interpreting the results. With the facilities in the simulator, I

wrote code to run multiple trials of the experiment, gather data, process the data and perform

basic statistical analyses on it.

Another advantage of simulation is that it expedites comparing the behavior of the system

over time and across environment conditions. I was able to gather execution data on the long

term e�ects of planning actions and to search for common behaviors in di�ering conditions of

the environment.

Simulators are portable domains. We can copy software from one system to another and

4



expect that it will perform roughly the same. Simulators o�er us the chance to replicate and

compare results on shared metrics.

The possibilities for replication and the ability to de�ne whatever metrics we want mean

that it should be possible to generalize results beyond a single simulator. When we can look

inside the environment to see what it is doing, we should also be able to disregard super�cial

di�erences, such as between forest �re �ghting and oil spill containment, and recognize the

commonalities in approach.

3.2 Disadvantages of Using a Simulator

Although my research could not have progressed without a simulator, using Phoenix did

have its downside. One major problem with complex simulation is that so much e�ort can be

expended acquiring domain-speci�c knowledge that any results obtained from the planner may

be speci�c to the domain. In other words, it can become di�cult to attribute credit for the

system's performance: was the algorithm responsible or was the knowledge base? I found that

my approach to failure recovery worked for Phoenix, but at present, I can only argue, based

on the requirements of the approach and similarities in the characteristics of the environments,

that it will work in other environments.

The most often cited problem with simulators is that they are not the real world, but are

only approximations of it. In particular, simulators tend to avoid dealing with the realities of

noisy sensors and faulty e�ectors [9]. Additionally, they do not capture richness of sensation or

true parallelism and so can mislead us about what will work in \real" environments.

Simulators depend on their hardware and software platforms. The major problem with this

dependence is that it can be di�cult to predict the e�ects of changes in hardware or software.

I determined early in my pilot studies that I needed to run the experiments on machines with

exactly same con�guration (hardware, operating system and application software) because the

same experiments took longer to run and the results did not look comparable on other \similar"

machines.

Simulators may give a false feeling of control. The e�ect of the platform is one factor

that may cause hidden di�erences. Other factors that I had di�culty controlling were: system

stability, programming errors that led to collecting di�erent data than I had intended, and

updates to the software. When experimenting with a new system, one should expect a lot of

bugs and system crashes to occur; in fact, with Phoenix, we sometimes spent days �xing the

system after installing modi�cations to make Phoenix stable enough to run hours of experiments

without crashing. Also, instrumentation is not immune to programming bugs. The hardest

aspect to control was the installation of new software: patches and updates to the platform

and to the simulator. My experiments were run over a period of several months; in that time,

I could not prevent programmers from �xing bugs and support people from installing updates.

In at least one case, I know that an update introduced a bug in the planner. The bug produced

data that was dramatically di�erent from a previous experiment and made comparing results

from the two experiments a questionable activity. As it happened, that experience had the

positive e�ect that I realized I could detect bugs in the program by simply looking at the data

I had collected, but I paid for the serendipity by a loss in generality of other results.

5



3.3 Exploiting the Advantages While Avoiding the Pitfalls

Simulators provide a remarkable exibility and degree of control for evaluating planners.

The problem is that it is so easy to dash o� experiments that the results can be uninterpretable.

As in any experimental activity, one needs to have clearly stated hypotheses and needs to ensure

that the experiment is indeed testing those hypotheses under adequately controlled conditions.

Based on my experiences, I o�er the following suggestions for avoiding some of the pitfalls of

experimentation with a complex simulator.

First, pilot studies are essential! Bugs need to be worked out of both the planner and the

experiment itself. Typically, the simulator will create situations that the programmers never

thought to or did not have the time to test. The experiment may sound good on paper, but

may not be adequately controlled. I ran three pilot studies to test the simulated conditions of

my experiment and still had to run the �rst experiment twice because of corrupted data.

Second, the planner and the simulator should be isolated from modi�cations. Unless you can

be certain that no one can change the system (planner and simulator) during the experiment,

the results from one controlled experiment may not actually be the same as those in the \same"

experiment run later.

Third, dependent and independent variables should be selected carefully and understood

thoroughly. Because of a di�erence in the representation of di�erent actions, I implemented

the instrumentation for one dependent variable with a test for the type of action. I thought

the di�erence was largely syntactic, but in fact, analyzing the data showed that the value of

the dependent variable depended, oddly enough, on another dependent variable and did not

measure what I had intended it to measure.

Fourth, experiments based on concrete hypotheses are much easier to understand and cri-

tique than exploratory experiments. Exploratory experiments are important for helping narrow

the hypotheses, but the results should be viewed as preliminary.

Simulators have been invaluable in identifying canonical problems and in making ideas

concrete. However, their exibility and ease of use can lead us astray. In particular, we need

to learn how to factor in the contribution of knowledge to the performance of systems, how

to formulate and test hypotheses in simulated environments and how to generalize our results

beyond a single planner in a single simulator.

References

[1] R. Peter Bonasso. Underwater experiments using a reactive system for autonomous ve-

hicles. In Proceedings of the Ninth National Conference on Arti�cial Intelligence, pages

794{800, Anaheim, CA, July 1991. American Association for Arti�cial Intelligence.

[2] Paul R. Cohen. A survey of the eight national conference on arti�cial intelligence: Pulling

together or pulling apart? AI Magazine, 12(1):16{41, 1991.

[3] Paul R. Cohen. Empirical Methods for Arti�cial Intelligence. In Preparation, 1993.

[4] Paul R. Cohen, Michael Greenberg, David M. Hart, and Adele E. Howe. Trial by �re:

Understanding the design requirements for agents in complex environments. AI Magazine,

6



10(3), Fall 1989.

[5] Paul R. Cohen and Adele E. Howe. How evaluation guides AI research. AI Magazine,

9(4):35{43, 1988.

[6] David S. Day. Acquiring search heuristics automatically for constraint-based planning and

scheduling. In J. Hendler, editor, Arti�cial Intelligence Planning Systems: Proceedings of

the First International Conference (AIPS92), pages 45{51, San Mateo, CA, 1992. Morgan

Kaufmann Publishers, Inc.

[7] Mark E. Drummond, Leslie P. Kaelbling, and Stanley J. Rosenschein. Collected notes from

the benchmarks and metrics workshop. Arti�cial Intelligence Branch FIA-91-06, NASA

Ames Research Center, June 1990.

[8] Lee D. Erman. Intelligent real-time problem solving (IRTPS): Workshop report. Technical

Report TTR-ISE-90-101, Cimex Teknowledge Corp., January 1990.

[9] Maria Gini. Automatic error detection and recovery. Computer Science Dept. 88-48,

University of Minnesota, Minneapolis, MN, June 1988.

[10] Adele E. Howe. Analyzing failure recovery to improve planner design. In Proceedings of

the Tenth National Conference on Arti�cial Intelligence, pages 387{393, July 1992.

[11] Adele E. Howe. Accepting the Inevitable: The Role of Failure Recovery in the Design

of Planners. PhD thesis, University of Massachusetts, Department of Computer Science,

Amherst, MA, February 1993.

[12] Adele E. Howe and Paul R. Cohen. Failure recovery: A model and experiments. In

Proceedings of the Ninth National Conference on Arti�cial Intelligence, pages 801{808,

Anaheim, CA, July 1991.

[13] Pat Langley and Mark Drummond. Toward an experimental science of planning. In Ka-

tia P. Sycara, editor, Proceedings of the Workshop on Innovative Approaches to Planning,

Scheduling and Control, pages 109{114. Morgan Kaufmann Publishers, Inc, 1990.

[14] David P. Miller, Rajiv S. Desai, Erann Gat, Robert Ivlev, and John Loch. Reactive navi-

gation through rough terrain: Experimental results. In Proceedings of the Tenth National

Conference on Arti�cial Intelligence, pages 823{828, San Jose, CA, July 1982.

[15] Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Experimentally eval-

uating agent architectures. In Proceedings of the Eight National Conference on Arti�cial

Intelligence, pages 183{189, Boston, MA, July 29-August 3 1990.

7


