
Department of

Computer Science

Integrating Failure Recovery

with Planner Debugging

Adele E. Howe

Technical Report CS-94-117

July 18, 1994

Colorado State University



Integrating Failure Recovery

with Planner Debugging�

Adele E. Howe

Computer Science Department

Colorado State University

Fort Collins, CO 80523

howe@cs.colostate.edu

February 1, 1994

Abstract

Automated failure recovery and debugging are two common methods of reducing the im-

pact of failures. This paper proposes an integration of the two methods in a system for

helping designers tune failure recovery and debug a plan knowledge base. The system will

collect information about failures and their recovery during planner execution and use that

information to identify possible 
aws in failure recovery and in the plans. The system will

be an automated and extended version of previous research on Failure Recovery Analysis

[3].

1 Introduction

Consider the following future scenario: you install a delivery robot on your manufacturing


oor. You watch it carefully for the �rst few days without incident. Then one day, you return

to discover that it emptied the delicate, special-order parts �ve feet from their destination {

why? Assuming our robot remembers everything, you can examine a trace of its actions and

its sensory inputs, but likely the trace is quite large and super�cially looks like any other day.

Instead, you could run an analysis program that will search the trace for signi�cant patterns

of actions and failure recovery leading to this failure and others, identify long-term temporal

relations, generalize those patterns over the behavior of the past week and so identify the cause

of the unexpected need for a part reorder. This paper proposes how this future scenario might

be realized by integrating failure recovery and debugging.

In general, two approaches have been adopted to improving planner reliability: automated

failure recovery (e.g., [1,6,8]) and debugging (e.g., [7,2]). The �rst is designed to �x failures

�The original research, as part of the author's PhD, was supported by a DARPA-AFOSR contract F49620-89-

C-0011. This research is currently supported by National Science Foundation Research Initiation Award #RIA

IRI-9308573. This paper also appeared in the Working Notes of AAAI Spring Symposium on Detecting and

Resolving Errors in Manufacturing Systems. Palo Alto, CA. March 1994.

1



on-line that are too di�cult or costly to avoid. The second eliminates or ameliorates the e�ects

of failures caused by the actions of the planner itself. For complex planners, neither approach is

su�cient by itself. We could pursue the two approaches separately: debug as much as possible

and then build a good failure recovery component to handle what remains. In which case, we

place considerable trust in the thoroughness of the two phases. Alternatively, we can integrate

the two approaches.

2 Exploiting Failure Recovery

Integrating failure recovery and debugging provides several advantages over maintaining

their separation. First, we need not interrupt the on-going process (planning and execution)

for debugging. Second, we avoid the need to replicate the conditions that led to a particular

failure. Because many planner failures can be pernicious, caused by subtle interactions within

or across plans, they can be extremely di�cult to replicate.

Third, the combination allows us to exploit information gathered during failure recovery

as additional evidence of causes of failure. Failure recovery uses plans in ways not explicitly

foreseen by the planner's designers, but not forbidden or prevented by them either. Failure

recovery may repair plans by adding or replacing portions of them. As a result, the plan

may include plan fragments that are juxtaposed in orders and context not envisioned by the

designers. Additionally, failure recovery itself may in
uence which failures occur; �xes to failures

may cause other failures later on.

Finally, information gathered as part of debugging can be used to improve the responses of

automated failure recovery. Failure recovery in
uences which failures occur; minor changes in

the design of failure recovery produce signi�cant changes in the number and types of failures

[4]. Failure recovery may cause other failures downstream or may simply not be as e�cient as

possible. In sum, the two processes, failure recovery and debugging, can support each other.

3 An Integrated Methodology for Improved Reliability

One way to integrate failure recovery and debugging is to use information obtained during

failure recovery as input for assisted debugging. Figure 1 shows how the two parts, failure recov-

ery and Failure Recovery Analysis (a partially automated debugging procedure), are integrated.

Failure recovery is like a loop within the debugging loop. Failure recovery repairs failures that

arise during normal planning and acting. Failure Recovery Analysis (FRA) \watches" failure

recovery for clues to bugs in the planner and informs the designer of possible bugs. FRA sta-

tistically analyzes execution data for signi�cant patterns of failure and then employs a weak

model of planner and environment interactions (stereotypical explanations) to hypothesize how

the observed failure patterns might have been produced. Because FRA uses a weak model,

it can localize a variety of bugs and should be appropriate for many planners, but it cannot

guarantee that it will �nd all bugs or correctly explain all the failures. It is most appropriate for

�nding occasionally repeating bugs that are due to common detrimental planner interactions.

This approach increases the reliability of the planner by tuning failure recovery through

debugging and identifying potential 
aws in the planner's knowledge base. The approach was

2



Failure Recovery Analysis

Detect
Failure

Repair
Failure

Repair planner or 
failure recovery

Analyze failure 
recovery for 
sources of failure

Plan & Act
Failure Recovery

Figure 1: Relationship of failure recovery to debugging (Failure Recovery Analysis)

introduced in my thesis research [3] and is currently being extended and automated.

3.1 Tuning Failure Recovery

To tune failure recovery, we begin with a simple control strategy, a 
exible method selection

mechanism and a core set of recovery methods. We test the performance of that set, use the

performance to motivate the method selection and then re�ne the set by evaluating subsequent

failure recovery performance in the host environment.

Failure recovery is initiated in response to detecting a failure. Failure recovery iteratively

tries recovery methods until one works, at which point the plan is resumed. The recovery

methods make mostly simple repairs to the structure of the failed plan. Consequently, these

methods can be used in di�erent situations, do not require expensive explanation, and o�er a

response to any failure. This strategy sacri�ces e�ciency for generality and results in a planner

capable of responding to most failures, but perhaps in a less than optimal manner. Additionally,

it exploits the contents of the plan knowledge base, and when information is recorded about

the knowledge base fragments used, these methods indirectly test for 
aws or inadequacies in

the knowledge base.

Starting from the core set, one can enhance recovery by gradually broadening the classi�ca-

tion of failures and systematically adding new recovery methods to address them, evaluating the

recovery methods as they were added. Recovery methods are evaluated in two ways: comparing

performance in terms of an expected cost model and checking whether recovery detrimentally

interacts with portions of the plan in progress. The expected cost model summarizes the com-

bined cost of unsuccessful and successful recovery attempts and provides a means of comparing

the contribution of new methods. The other form of evaluation, checking for detrimental inter-

action, is described in the next section.

3



3.2 Debugging the Planner and Failure Recovery

The purpose of FRA is to identify cases in which plans may in
uence, exacerbate or cause

failure. In FRA, plan debugging proceeds as an iterative redesign process in which the designer

analyzes execution traces, locates 
aws, and modi�es the planner to remove the 
aws. (Figure 2

depicts a fully automated version of this process.) The process continues until the designer

is satis�ed that enough 
aws have been removed. Currently, FRA is a partially automated

procedure which is controlled by a human designer, who participates at every step in the

process.

Detect 
Dependencies

Run Planner

Identify Suspect 
Plan Structures

Find Explanations

User Modifies 
Planner

Execution Traces

User decides 
on bug

F->A->B->F->C

Dependencies

User decides 
on script

Suggestive 
Structures

Explanations

Figure 2: Enhanced debugging cycle for FRA

First, the designer starts by running the planner in its environment and collecting execution

traces of what failures occurred and how they were repaired. Thus, failure recovery provides

the input for the FRA process. Second, the execution traces are searched (by a program)

for statistically signi�cant co-occurrences (called dependencies) between recovery e�orts and

subsequent failures [5]. Dependencies tell the designer how the recovery actions in
uence the

failures that occur and how one failure in
uences another. Dependency detection involves

counting the number of times particular repairs and failures co-occurred (meaning one preceded

the other) and statistically comparing that count to the rest of the execution data to determine

whether the co-occurrence was signi�cant.

Third, the designer selects one of the dependencies for further attention and tries to de-

termine how the planner's actions might have related to the observed dependency. The de-

pendencies are mapped to actions in plans and then the plans are searched for structures that

involve the actions and that are known to be susceptible to failure. These structures are called

suggestive structures because they are suggestive of possible bugs. Suggestive structures can be

4



combined to form di�erent explanations of failures and indicate di�erent repairs. Fourth, the

designer matches the suggestive structures for the dependency to a set of possible explanations

and modi�cations.

At the end of the cycle, the designer chooses the most likely explanation based on her or

his understanding of the planner and modi�es the planner to remove the suspected 
aw. The

nature of the revision is left to the designer. In e�ect, the selected explanation and modi�cation

constitute a hypothesis about what caused the failure. Repeating the cycle tests the hypothesis.

The cycle begins again with the designer running the planner. In the next time around, the

designer can search for more 
aws to �x and can determine whether the modi�cation achieved

the desired e�ect: the observed dependency disappeared and the incidence of failure changed

for the better.

4 Current Status

The described integration of failure recovery and debugging has been explored in a set of

four experiments with the Phoenix planner. Over the course of the experiments, failure recovery

has been iteratively improved by tuning the selection strategy, adding new recovery methods,

and repairing bugs in the plan knowledge base. The result is that the incidence of failure has

been gradually reduced from .42 to .33 failures per hour.

At present, the integration of failure recovery and FRA is limited in several ways. First, the

designer currently participates at every step in the FRA process, designing the experiments,

deciding where to focus attention, judging whether the explanations for failures are correct and

ultimately determining how to �x the planner to repair the bug. Second, the analysis is limited

to execution traces which include failures and recovery actions only, and constrained patterns of

a failure and the failure and recovery that immediately preceded it. Thus, the analysis cannot

detect temporally separated cause and e�ect or arbitrary patterns of cause and e�ect. Third,

the cases have been limited to the Phoenix planner and its environment. Because it includes an

experiment interface and simulates a challenging environment that would be di�cult to model

completely, the Phoenix system has facilitated this research; however, the techniques need to

be generalized and extended to other domains.

To address these limitations, we need to develop integrated tools to automate the tedious

parts of the process and to support the di�cult task of interpreting the results of the ex-

periments. Current research focuses on additional automation and generalization beyond the

current constrained patterns and single planner.

At present, the experiment design for evaluating failure recovery and the analysis procedure

FRA form a collection of tools and heuristics loosely organized into a semi-automated procedure

for evaluating failure recovery performance and identifying bugs in Phoenix plan knowledge.

The �rst step in building a debugging tool is to tightly integrate the existing functions and

automate portions of the remainder of the procedure. The system will support both unfocused

exploration and focused debugging. Unfocused exploration includes running benchmarks to

ensure that the system maintains a particular level of performance and analyzing execution

data for evidence of previously unsuspected bugs. Unfocussed debugging will work as follows.

Using scripts, FRA will direct the entire process from gathering execution information up to the

5



modi�cation of the planner, presenting the designer with a summary of the execution analysis

(dependency detection) and hypotheses about bugs in the planner. The designer then could

choose whether to modify the planner or to conduct focused debugging to gather evidence in

support of the hypotheses. Figure 2 shows this version of the FRA process. The designer will

intervene only to select or create a script, review the results of the execution traces and analysis,

and modify the planner; the rest of the procedure will be automated.

Focused debugging involves testing the system for the presence of particular bugs and eval-

uating the performance of speci�c design changes. Scripts will be included for repeating the

previous experiment setup (with the addition of what is being tested) and comparing the re-

sults of the new execution to the previous execution. Facilities for de�ning new scripts will be

included for designers who wish to test more during focussed debugging.

Additionally, we are generalizing the process by enhancing the underlying statistical analyses

to support more patterns and looking for additional planners and environments. One of the

most promising approaches for enhancing the statistical analysis is to apply local search to �nd

the most signi�cant dependencies of much longer, more complicated patterns. This approach

has two advantages over the current approach: it �nds partial order patterns (e.g., A comes

sometime before B with other failures in between which comes sometime before C) and it �nds

only the most signi�cant. Thus, the patterns are more general, and the user is not deluged with

dependencies.

We are looking for a planner and simulated environment in which to test the process and

gather more knowledge about failures. The most promising would be one that shares some

characteristics with Phoenix, but presents new challenges as well. For example, the planner

might be resource constrained but with di�erent resources than Phoenix. Planners in resource-

constrained environments, like Phoenix, often fail due to resource bottlenecks; some agent,

process or part of the plan consumes too many resources or does not perform up to required

levels, resulting in a bottleneck that produces failures in other processes or parts of the plan.

Detecting a bottleneck may require examining data on the allocation and use of resources or

the rate of processing. Such features are not currently included in FRA, but should be.

References

[1] Maria Gini. Automatic error detection and recovery. Computer Science Dept. 88-48, Uni-

versity of Minnesota, Minneapolis, MN, June 1988.

[2] Kristian John Hammond. Case-Based Planning: An Integrated Theory of Planning, Learn-

ing and Memory. PhD thesis, Dept. of Computer Science, Yale University, New Haven, CT,

October 1986.

[3] Adele E. Howe. Accepting the Inevitable: The Role of Failure Recovery in the Design

of Planners. PhD thesis, University of Massachusetts, Department of Computer Science,

Amherst, MA, February 1993.

[4] Adele E. Howe and Paul R. Cohen. Failure recovery: A model and experiments. In Proceed-

ings of the Ninth National Conference on Arti�cial Intelligence, pages 801{808, Anaheim,

CA, July 1991.

6



[5] Adele E. Howe and Paul R. Cohen. Detecting and explaining dependencies. In Working

Notes of the Fourth International Workshop on AI and Statistics, January 1993.

[6] Reid G. Simmons. A theory of debugging plans and interpretations. In Proceedings of

the Seventh National Conference on Arti�cial Intelligence, pages 94{99, Minneapolis, Min-

nesota, 1988. American Association for Arti�cial Intelligence.

[7] Gerald A. Sussman. A computational model of skill acquisition. Technical Report Memo

no. AI-TR-297, MIT AI Lab, 1973.

[8] David E. Wilkins. Recovering from execution errors in SIPE. Technical Report 346, Ar-

ti�cial Intelligence Center, Computer Science and Technology Center, SRI International,

1985.

7


